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Introduction

» Bioreactor model

{ 5 = D(sin — 8) — kn(s)x
% = (u(s) — D)x
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Introduction

{ 5= D(sin — 5) — ki(s)x
x = (u(s) - D)x

» V volume, g throughput, constant volume
D(t) = q/V dilution rate CONTROL

» s substrate, x biomass VARIABLES
» s, input concentration for substrate, 1 growth rate, k yield

> 1u(s) may be increasing (Monod model, 1i(s) = ax’s) or
have a maximum (Haldane model)

...............



Introduction

in a chemostat

polymer input

cells cleaves polymers into small monomers
optimize the output of small monomers

near this optimum, the model is unstable (washout)
control to obtain a robust optimal equilibrium
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The process

in a bioreactor (CSTR)

plant pathogenic bacterium Dickeya dadantii

releases plant cell wall-degrading enzymes such as pectate
lyases (Pels)

these enzymes cleave pectin polymers (polygalacturonate
(PGA)) into small unsaturated oligogalacturonates (UGA)
UGA is of interest because it is a precursor of biofuels
optimize the output of UGA (also used for growth)
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The process
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(2010). Toward a quantitative modeling of the synthesis of the
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The process

PGA

Continous stirred-tank reactor
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Figure 1. A schematic representation of the continuous reactor system.
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The process
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The model

Variables s PGA, z UGA, p bacterial biomass
Input s; PGA flux, D controlled dilution

ZI‘: — —a(s)p+ D(si — )
(Z; = 2a(8)p —yu(2)p — Dz @)
d
= = (u2)-Dy
o(s) = &Km s and p(z) = ﬁKZZJr >

a(s)p represents the conversion of PGA s into UGA 2z,
catalyzed by the biomass p

w(z)p: the cell grows on the z substrate

The number 2 means that PGA is cleaved into two UGA (for
simplicity)
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The model

this model has three variables

it is nonlinear, with Michaelis-Menten (Monod) functions
the variables are nonnegative

global study could be difficult...
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The model
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The model

? —sp—sp-" , XFS)
dP
—7=—PD +XF(s) — XQ(P)
(2.1)
W@ xp+ XQ(P)
dT "~ ’

5(0) =0, PO)=0, X(0)>0,
where

S(T) = concentration of nutrient (in the chemostat) at time T,
P(T) = concentration of intermediate product at time 7T,
X(T) = concentration of microorganisms at time 7,
F(S) = per-capita production rate of intermediate product as a function of the
concentration of the nutrient,
Q(P) = per-capita growth rate of microorganisms as a function of the concentra-
tion of the intermediate product,
y = yield constant for conversion from nutrient to intermediate product,
n = yield constant for consumption of intermediate product,
S° = concentration of nutrient supply in the feed bottle of the chemostat,
D = dilution rate. (Species specific death rates are assumed to be negligible
compared to the dilution rate.)
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Dynamical study

Washout equilibrium Egforp=0and s =s;,z=0

depends on dilution rate D (u(z) = D last equation)

Ey is always locally asymptotically stable, and is globally stable
if it is the only equilibrium

It may exist another unstable equilibrium E, and a stable one
E;, with some basin of attraction. the separatrix is the stable
manifold of E,

Bifurcation diagram wrt. D
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Equilibria
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Figure 1. The bifurcation diagrams of the chemostat steady states show the existence of a limit point.

The dashed curves are unstable equilibria, whereas the plain curves are stable equilibria. For the monomer variable, the non-zero
stable and unstable equilibria are superposed on the same curve. The limit value D, is computed from the approximation (5) and

the corresponding limit points are drawn with symbols “x.” Parameters used in hl’i 1
galacturonate decomposition by Dickeya dadantii'® and are the following: =12 h™', H
107 M, K;=0.14 M, n = 2. [Color figure can be viewed at wileyonlinelibrary.com]

are partly taken from a study on the poly-
17017, 9=7.9 M, 5, = 0.003 M, Kyy=6.8;
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Dynamical study

reduction to two dimensions

W=2z+25+p

then w = 2Ds; — Dw

S0 w converges toward 2s;

we can reduce the system in two dimensions

(there could be some proofs with the help of theory of
asymptotically autonomous systems, Thieme...)
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Dynamical study

with new variables w =z +2s+ypand b=z + yp

3 variables b, p, w

the system is cooperative (the Jacobian matrix is off diagonal
positive)

the partial order of the flow is conserved

strong properties of convergence (n dimensions)

no stable periodic orbits

global study
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Dynamical study

same model in Tang Wolkowicz J Math Biol 1992

Fig. 3.2. Phase plane analysis of (3.9) for different intersections of g(s) and A(s). ——: isoclines g(s)
and /(s), — - —: the stable manifold of each equilibrium transverse to the line g(s), - - - : sample
trajectories. a g(s) and /(s) do not intersect, E, is the global attractor. b g(s) and A(s) intersect exactly
once. The stable manifold of £, forms the separatrix. All trajectories above the separatrix converge
t E,, and those below converge to E,. ¢ g(s) and his) intersect twice, E, and £, are locally
asymptotically stable and E, is a saddle. The stable manifold of E, forms the separatrix. All
trajectories above (below) the separatrix converge to E, (£,). d g(s) and /(s) intersect many times at
E, = (5. ;). Local stability of each equilibrium point is given by (3.10). The stable manifold of the
saddle points and of the semi-stable equilibria partition the space




Optimization

output to optimize: Dz with control D
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Control

control is needed for robust stability

The controlis D

but we also need measurements for this control (feedback) for
robustness

the measure is biomass p(t)

we have to design a law of control depending on p
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Control

D(t) = dp(t), (3)
where § is a positive fixed design parameter. The new
equilibrium is:

—«o(s)+d(si—s) = 0,
20(s) —ypu(z) =6z = O,
w(z)—dp = 0.
Theorem

Control law (3) globally stabilizes System (2) towards the
non-trivial equilibrium E*(0) := (z*(6), s*(4), p*(9)).



Control

new system
O = plea(s) +d(si— 9)
%2~ plea(s) ~yu(z) - 52 @
o l(2) o)

time change will simplify p...
if you prove that p is lower bounded by a positive number... not
difficult...
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Control

ds

F = [—a(s) +6(si — s)]

2~ feals) () - 7] (5)
9~ L)~ o)

we obtain a system with triangular structure which is globally
stable around his equilibrium (with good justifications)

J is chosen so that E*(4) corresponds to optimal yield (it is
possible)
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Choice of 9
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Figure 2. Productivities of the closed-loop controlled
system (8), in function of control parameter 4.
The optimal parameter d, is the abscissa corresponding
to the maximal productivity. System parameters used in

equations are the same as for Fi Figure 1. [Color figure can
be viewed at wileyonlinelibrary.com]
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Simulation of control

Time (h)
Comparison of the controlled (continuous red
lines) and uncontrolled system (dashed blue
lines) when it works at its optimal point in
presence of a fluctuating input s;, of the che-
mostat.
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A fragmentation model

enzymatic decomposition could have several steps
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more complex model
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A fragmentation model
similar treatment

equations
d n o
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A fragmentation model

similar results for a control D = dp(t)
equations
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Figure 4. Bifurcation diagrams of the nontrivial stable steady states of the concentrations of n-polymers, of mono-
mers and biomass in the chemostat, for different values of n.

The symbols represent respectively (+) =2, (x) n=10, (+) n=100. Parameter values as in Figure 1. [Color figure can be viewed
at wileyonlinelibrary.com]

hw--.m, -----



Conclusions
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control is needed for optimization of the output for optimal
yield in a bioreactor

we are able to obtain global stability in the whole space
very robust optimal point (with control)

extension with a second substrate (glucose)

extension with a more detailed model

robustness

real implementation?

adaptive control is possible...
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