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Introduction

I Bioreactor model{
ṡ = D(sin − s) − kµ(s)x
ẋ = (µ(s) − D)x

(1)
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Introduction

{
ṡ = D(sin − s) − kµ(s)x
ẋ = (µ(s) − D)x

I V volume, q throughput, constant volume
D(t) = q/V dilution rate CONTROL

I s substrate, x biomass VARIABLES
I sin input concentration for substrate, µ growth rate, k yield
I µ(s) may be increasing (Monod model, µ(s) = a s

K+s ) or
have a maximum (Haldane model)



Introduction

in a chemostat
polymer input
cells cleaves polymers into small monomers
optimize the output of small monomers
near this optimum, the model is unstable (washout)
control to obtain a robust optimal equilibrium



The process

in a bioreactor (CSTR)
plant pathogenic bacterium Dickeya dadantii
releases plant cell wall-degrading enzymes such as pectate
lyases (Pels)
these enzymes cleave pectin polymers (polygalacturonate
(PGA)) into small unsaturated oligogalacturonates (UGA)
UGA is of interest because it is a precursor of biofuels
optimize the output of UGA (also used for growth)



The process

Kepseu, W. D., Sepulchre, J. A., Reverchon, S., Nasser, W.
(2010). Toward a quantitative modeling of the synthesis of the
pectate lyases, essential virulence factors in Dickeya dadantii.
Journal of Biological Chemistry



The process



The process



The model
Variables s PGA, z UGA, ρ bacterial biomass
Input si PGA flux, D controlled dilution

ds
dt

= −α(s)ρ+ D(si − s)

dz
dt

= 2α(s)ρ− γµ(z)ρ− Dz (2)

dρ
dt

= (µ(z) − D)ρ

α(s) = ᾱ
s

Km + s
and µ(z) = µ̄

z
Kz + z

.

α(s)ρ represents the conversion of PGA s into UGA z,
catalyzed by the biomass ρ
µ(z)ρ: the cell grows on the z substrate
The number 2 means that PGA is cleaved into two UGA (for
simplicity)



The model

this model has three variables
it is nonlinear, with Michaelis-Menten (Monod) functions
the variables are nonnegative
global study could be difficult...



The model



The model



Dynamical study

Washout equilibrium E0 for ρ = 0 and s = si , z = 0
depends on dilution rate D (µ(z) = D last equation)
E0 is always locally asymptotically stable, and is globally stable
if it is the only equilibrium
It may exist another unstable equilibrium Eu and a stable one
Es, with some basin of attraction. the separatrix is the stable
manifold of Eu
Bifurcation diagram wrt. D



Equilibria



Dynamical study

reduction to two dimensions
w = z + 2s + γρ
then ẇ = 2Dsi − Dw
so w converges toward 2si
we can reduce the system in two dimensions
(there could be some proofs with the help of theory of
asymptotically autonomous systems, Thieme...)



Dynamical study

with new variables w = z + 2s + γρ and b = z + γρ
3 variables b, ρ,w
the system is cooperative (the Jacobian matrix is off diagonal
positive)
the partial order of the flow is conserved
strong properties of convergence (n dimensions)
no stable periodic orbits
global study



Dynamical study

same model in Tang Wolkowicz J Math Biol 1992



Optimization
output to optimize: Dz with control D
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Control

control is needed for robust stability
The control is D
but we also need measurements for this control (feedback) for
robustness
the measure is biomass ρ(t)
we have to design a law of control depending on ρ



Control

D(t) = δρ(t), (3)

where δ is a positive fixed design parameter. The new
equilibrium is:

− α(s) + δ(si − s) = 0,
2α(s) − γµ(z) − δz = 0,

µ(z) − δρ = 0.

Theorem
Control law (3) globally stabilizes System (2) towards the
non-trivial equilibrium E∗(δ) := (z∗(δ), s∗(δ), ρ∗(δ)).



Control

new system

ds
dt

= ρ [−α(s) + δ(si − s)]

dz
dt

= ρ [2α(s) − γµ(z) − δz] (4)

dρ
dt

= ρ [(µ(z) − δρ)]

time change will simplify ρ...
if you prove that ρ is lower bounded by a positive number... not
difficult...



Control

ds
dt

= [−α(s) + δ(si − s)]

dz
dt

= [2α(s) − γµ(z) − δz] (5)

dρ
dt

= [(µ(z) − δρ)]

we obtain a system with triangular structure which is globally
stable around his equilibrium (with good justifications)
δ is chosen so that E∗(δ) corresponds to optimal yield (it is
possible)



Choice of δ



Simulation of control



A fragmentation model

enzymatic decomposition could have several steps

more complex model



A fragmentation model
similar treatment
equations



A fragmentation model
similar results for a control D = δρ(t)
equations



Conclusions

I control is needed for optimization of the output for optimal
yield in a bioreactor

I we are able to obtain global stability in the whole space
I very robust optimal point (with control)
I extension with a second substrate (glucose)
I extension with a more detailed model
I robustness
I real implementation?
I adaptive control is possible...
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