A LINEAR DIFFERENCE EQUATION
OF MIXED TYPE




INTRODUCTION

The aim of this lesson is to study oscillatory and
asymptotic behavior for a scalar linear difference
equation of mixed type

—I—Zak —|—7€)—0 n > ny,
k=—p

Q Axz(n)=xz(n+1)—x(n)is the difference operator
d {ax(n)} are sequences of real numbers

Qp>0,g20



INTRODUCTION

Differential equations with delayed and
advanced arguments occur in many problems:

d Economy

N

past events DECISION potential
future events

A 4

J Biology
d Physics



INTRODUCTION

Why is this kind of equations a challenge?

It is well known that the solutions of these types
’obtained in closed-form.
ow to formulate an initial

e problem for such equations and the

of equations cannot

I not quite clear

stence and uniqueness of solutions becomes a

omplicated issue. To study the oscillation of

solutions of differential equations, we need to
assume that there exists a solution of such

equations on the half line.



INTRODUCTION

The characteristic equation of the equation

q

Ax(t) + z apx(n+k) =0,

k=—p

q

A—1+ Z a Akt = 0.
k=—p

The difference equation is oscillatory if and only if the characteristic

equation has no positive roots.



OSCILLATORY BEHAVIOR

Theorem 1:
3 ax(n) are nonnegative for allk € {—p,...,q} and n > n,,.

Then all solutions of the difference equation

—I—Zak —|—]€)—0 n > ny,

are oscillatory.



OSCILLATORY BEHAVIOR

Draft of the proof:
{z(n)} is eventually positive =====p= {u(n)} is decreasing

O=xz(n+2)—xz(n+1)+ i ap(n+1)z(n+k+1)

> —z(n+1)+ —Z a(n+ Dz(n+k+1)




OSCILLATORY BEHAVIOR

Draft of the proof (cont.):
On the other hand




OSCILLATORY BEHAVIOR

Draft of the proof (cont.):
-1

r;L'('n +1) > Z ai(n+ 1)x(n)
y =P o
r(n+1)<z(n) — Y ak(n)z(n)
\ k=—p
Z ap 'n,—l- Z ak
k=—p k=—p

-1
Z ap(n+1) + Z ar(n Contradition
k=—p k=—p



OSCILLATORY BEHAVIOR

Corollary 1:

3 ax(n) are nonnegative for allk € {—p,...,q} and n > n,,.

d There existam € {—p,..., 0} such that

m

Z ai(n) > 1

k=—p

Then all solutions of the difference equation

—I—Zak —|—]€)—0 n > ny,

are oscillatory.




OSCILLATORY BEHAVIOR

Corollary 2:
3 ax(n) are nonnegative for allk € {-p,...,q}and n > n,.

Q ag(n) 21— pmin{ag(n): k=—p,...,—1}>0

Then all solutions of the difference equation

—I—Zak r(n+k)=0, n>ng,
k=—p

are oscillatory.




OSCILLATORY BEHAVIOR

Corollary 3:
3 ax(n) are nonnegative for allk € {—p,...,q} and n > n,,.

Qa—p(n) <...<a_i1(n) and ap(n)>1— pa_p(n)

Then all solutions of the difference equation

—I—Zak r(n+k)=0, n>ng,
k=—p

are oscillatory.




OSCILLATORY BEHAVIOR

Corollary 4:
3 ax(n) are nonnegative for allk € {—p,...,q} and n > n,,.

Qa_p(n)>...>a_1(n) and ag(n) >1—pa_i(n)

Then all solutions of the difference equation

—I—Zak r(n+k)=0, n>ng,
k=—p

are oscillatory.




OSCILLATORY BEHAVIOR

Example:

+Z "_1 n+ k) +Zbk s(n+k) =0

where:

d n>4

d b (n) is a nonnegative sequence
Qgqg=1

Since
n n n—1 n—1 n—1

1n+2) "3m+2) TAmtl) T 3m+D) 2t D)

forn > 2, by the Theorem 1, we can conclude that equation is
oscillatory.

> 1




OSCILLATORY BEHAVIOR

Theorem 2:

3 ax(n) are nonpositive forall k € {-p,...,q}, g = 2and n > n,.

Then all solutions of the difference equation

—I—Zak —|—]€)—0 n > ny,

are oscillatory.



OSCILLATORY BEHAVIOR

Corollary 1:

3 ax(n) are nonpositive for all k € {—p,...,q} and n > n,,.

1 There existam € {1,..., q} such that

ak(n) < —1
k—1

Then all solutions of the difference equation

—I—Zak —|—]€)—0 n > ny,

are oscillatory.




OSCILLATORY BEHAVIOR

Corollary 2:

3 ax(n) are nonpositive for all k € {-p,...,q}and n > n,.
Q ai(n) < —1—qgmax{ar(n): k=2,...,q}

Then all solutions of the difference equation

—I—Zak r(n+k)=0, n>ng,
k=—p

are oscillatory.




OSCILLATORY BEHAVIOR

Corollary 3:
3 ax(n) are nonpositive for all k € {-p,...,q}and n > n,.

Qas(n) <...<aqg(n) and a;(n) < —1-—qaqe(n)

Then all solutions of the difference equation

—I—Zak r(n+k)=0, n>ng,
k=—p

are oscillatory.




OSCILLATORY BEHAVIOR

Corollary 4:
3 ax(n) are nonpositive for all k € {—p,...,q} and n > n,,.

Qazx(n) >...>aq(n) and ai(n) < —1—qaz(n)

Then all solutions of the difference equation

—I—Zak r(n+k)=0, n>ng,
k=—p

are oscillatory.




OSCILLATORY BEHAVIOR

Example:

3 (A= _
+ch ”+k)+zk(ek+ =

k=—p k=1

where:
Qn=1

4 Ck( ) IS @ nonpositive sequence

2(e—(m—1) —1
_|_

2 3 4 3
3(e=(m=1) —1)
4
by the Theorem 2, we can conclude that equation is oscillatory.

- < -1




OSCILLATORY BEHAVIOR

Theorem 3:

d Foreach k € {—p,...,q} there exist the limit
lim ag(n) =ar #0

Nn—r o0

- All'roots A4, 1;, ..., A4, Of the equation
q

satisfy |1;| > |4,] > -+ > |A,4,| @and n of them are negative

Then all solutions of thg difference equation

—I—Eak z(n+k)=0, n>ng,
k=—p




OSCILLATORY BEHAVIOR

Draft of the proof:

AL areal negative root of A — 1 + Z ar\® =0

k=—p
Perron Theorem l

—|— Z CLk n‘+‘k)—0 n > ng,
== . ug(n+1)

has a solution such that lim
n—oo Uk(n)

|

the solution is necessarily an oscillatory solution

=\ <0




OSCILLATORY BEHAVIOR

Example:

Ax(n) — 6n - +5n+1’

n -+ 6 n

T A—1-6A245X 1 46-6A+N=0_>




OSCILLATORY BEHAVIOR

Example (cont.):

A—1—6A24+5A"14+6—-61+X =0

M =3 Ay = 2 A3 =1 A= —1

Theorem 3 I

6n w(n—2)+5n+1

n+ 6 n

—n 1\ n
+ 6(e Dx(n+1)+ ]

has an oscillatory solution.

Ax(n) — x(n—1)4+6(e™™ + 1)x(n)

z(n+2) =0,




NONOSCILLATORY BEHAVIOR

On this section, we will study the equation

q
Ax(n) + Z arr(n+k)=0, n>1
k=—p

According to Krisztin in Nonoscillation for functional differential
equations of mixed type. J. Math. Anal. Appl. 245 (2000), 326—
345, the equation

q
Ax(n) + Y apz(n+k) =0
k=—p
is nonoscillatory if there exists LR " such that

q
Yo 1 Z ap\* =0
k=—p




NONOSCILLATORY BEHAVIOR

Theorem 4:
d a_pa, <0

Then .
Ax(n) + Z arr(n+k)=0

k=—p

IS nonoscillatory.




NONOSCILLATORY BEHAVIOR

Draft of the proof:

7~

a_, <0

aqg >0

A— 0O J

By the continuity, there exist A, such that N(\g) = 0




NONOSCILLATORY BEHAVIOR

Example:

Az(n)+ax(n—1)+(1—-3a)z(n)— (1 —3a)z(n+1)
—azx(n+2)=0, n=>1

Since

aA_-1 = a = —ay

Then the equation has a nonoscillatory solution.

=

x(n) =n
> is a nonoscillatory solution <

I\ N




NONOSCILLATORY BEHAVIOR

Theorem 5:

H| ak>0

IS nonoscillatory.



NONOSCILLATORY BEHAVIOR

Draft of the proof:

q
NA)=1-A= ) axA"<1-X <0forA>1

A< 1 =
q q
CN()\)zl—)\— Yo apN >1-A=ATP Y a

k=—p p
Y ]
has a maximum

% )

k=—p

\—




NONOSCILLATORY BEHAVIOR

Theorem 6:

H| ak<0

q —1/(q—1)
amin{ (<0 3 a)
q

k=—p —1/(q—1)
> o)

IS nonoscillatory.



NONOSCILLATORY BEHAVIOR

Draft of the proof:

NA)=1—-X- Z ap\®>1—-X >0for A< 1
k=—p

2> 1
q
CN()\)zl—)\— Y apA®>1-x- X Zak

k=—p w k=




NONOSCILLATORY BEHAVIOR

Example: p=1

253 oo 1
Ax(n) + 2048;L(n—1)—|-— + —x(n+1)

s12°(") + 555 X
+ —z(n+3)=0

64
Since

q 1/(p+1) 207 .
(p kZ ‘“c) =\ 2048 © z(n) =277

=—p is a nonoscillato ‘
( q )1/(;)—}-1) p+1 297 solution
Ak

=/
oo/~ \ 512 S

k=—p

Then the equation has a nonoscillatory solution.



ASYMPTOTIC BEHAVIOR

Theorem 7:

If x is an eventually posmve solution of

—|—Zak —I—]ﬂ =0, n > ng,

then =

I =0
=R




ASYMPTOTIC BEHAVIOR

Draft of the proof:

v(n) > 0 == Aux(n) < 0 ==» x(n)is decreasing )
w(n) >d <== lim z(n)=d>0

C n— oo
Za;ﬂ n+k) < dZak

k=—p k=—p

r(n+1) < x(ny) dy Yak'n_)oo—oo

i=ny1 k=—p

Contradition




ASYMPTOTIC BEHAVIOR

Theorem 8:

| ak(n) =0

Q) ) ak(n)=-

=D k= Lo

If x is an eventually posmve solution of

—|—Zak —I—]ﬂ =0, n > ng,

then =




ASYMPTOTIC BEHAVIOR

Draft of the proof:
r(n) > 0 ==> Ax(n) > (0 == x(n)isincreasing

q

Ax(n) = — Z ag(n)x(n+ k) =2 —z(n — p) Z ar(n)

k=—p k=—p

w(n+1)>w(n—p)(1— Zn: zq: ak(i)) — o

i=n—pk=—p




ASYMPTOTIC BEHAVIOR

Example:
wa(n)ﬁ-3_l_{2nk-k2”%2n+l)w(n——kﬂ‘///

+3—1—|—(2nl—|—12)/(2n—|—1)$(n+l) =0, n>1

Since
(» @]

2(3—1—(2nk—k2)/(2n—|—1) 4 3—1—}—(2nl—|—l2)/(2n+1)) — ~

n=1

If the equation has a positive solution,

then

it i) =1 . . —n2 2n—+1
LRl 1(n) = 3=/ (n+D)
is a positive solution



ASYMPTOTIC BEHAVIOR

Let us to rewrite the equation as

q

Az(n)+ Y ap(n)z(n—Fk)+» bp(n)z(n+k)=0

where:

d ag (?’1) and by, (?’1) are real sequences

Q p.g>0



ASYMPTOTIC BEHAVIOR

Lemma:
 x(n) is a positive solution

0 Q(n) =%y ar (n)+D25_; b (

Then x(n) satisfy the equation
n—1

z (r) = z(ng) H (1 —Q(j))+

J=no




ASYMPTOTIC BEHAVIOR

Thgc_>rem9 -
STIi-eui+ Y T n-e
J1=ng (=ng j=0+1
p (-1 q 1
SIRCDS (Zm D +3 b un)
n -n.—]‘kz1 t=f—k k=1 3

Then, any solution
converge to zero.




ASYMPTOTIC BEHAVIOR

Draft of the proof:
n—1 n—1

(Tx)(n) = =x(no) [] (1 +Z I] a-@

j=no F ng j=0+1
p - l+k—1
(Zak(f) Z E; Zbk(f{’ Z E, )
k=1 i=0—k

is a contraction == T has afixed point == (7'z)(n) — 0

lim x (n) =0

n—oo



ASYMPTOTIC BEHAVIOR

Theorem 10:

n—1 n—I1
a [ 1-e6)i+ 3 IT h-eo
1=nyg ) (=ng 3= f+1
o ¥ (Da,, 01+ 3 0]
n n—1 Lk=1 i=C—k
+> 1] n-Qu)

F:noq]=F+1 ki1 ; J _
SO S (zmmzwk o) [ =e<
| k=1 i=¢ \k=1 k=1 |

n-nl 91f all solution converge to zero
then,, 1+
D}Igﬂﬂlngg ]I][ | 1—C0X ()] =0 lim
Ji=31%0
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