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Structured Populations
Not all individuals in a population are equal and have the same chances of

survival and reproduction.

Demographic characteristics are dependent on population structure. Individuals

differ in many ways and some of these differences result in variations in fertility

and survival rates.

Classical demographic analysis is based on an age-specific survival and

reproduction “tabulation” system known as the life table.

The basic information needed to study changes in density and growth or

decrease rates is contained in the life table.

The most usual model to study this populations are the Leslie Matrix.



We consider:

 there are an equal number of males and females

 the life limit of the species is years

 the incubation time is years

 the population is fertile until death

 is the age group to which a given female belongs

 𝒏 is number of females in age months at the beginning of year 

 𝒏 is the survival rate in age group 

 𝒏 is the fertility rate in age group 

Structured Populations



The Leslie matrix is given by 
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The growth rate is given for the largest absolute eigenvalue of the matrix , i.e,

is the largest absolute root of the characteristic equation
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Consider an elephant's community in Botswana

such that:

 the life limit of the species is years

 the incubation time is years

 𝟎 𝟏 𝟐 𝟑 𝟒 𝟓𝟎 

𝟓𝟏 𝟓𝟐 𝟔𝟎 

 𝟏 𝟐 𝟗 𝟏𝟎 𝟏𝟏 𝟏𝟐 𝟏𝟑 𝟔𝟎 

Leslie Matrix



The characteristic equation is given by
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ିଷ଴ ିଷଵ ିଷଶ ିଷ ିଷ

ିଷହ ିଷ଺ ିଷ ିଷ ିଷ

ିସ଴ ିସ ିସ ିସଷ ିସସ

ିସହ ିସ଺ ିସ ିସ଼ ିସଽ

ିହ଴ ିହଵ ିହଶ ିହଷ ିହସ

ିହହ ିହ଺ ିହ଻ ିହ଼ ିହଽ

ି଺଴

Leslie Matrix



The biggest root of the characteristic solution is 

This is a grow of by year.

If we change the survival rates from

𝟎 𝟏 𝟐 𝟑 𝟒 𝟓𝟎 

𝟓𝟏 𝟓𝟐 𝟔𝟎 

to

𝟎 𝟏 𝟐 =  𝟑 𝟒 =  …  =  𝟗 =  

𝟏𝟎 𝟓𝟎 =  𝟓𝟏 𝟔𝟎 =  

we obtain .

Leslie Matrix
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 Neutralism                       Neither species affects the other.

Negative Interactions

 Direct Competition          Mutual predation, etc.

 Indirect Competition        Limited resource common to both species

 Amensalism Secretion by species 1 of harmful substances to 2

 Parasitism                       Species 1, parasitic and require the presence of 

specie 2, the host, harming it.

 Predation                         Predator species 1 consumes prey species 2.

Positive interactions

 Commensalism               The commensal species 1 benefits from the

presence of specie 2, which is not affected

 Protocooperation            Both species favor each other, but survive without

the presence of the other.

 Mutualism                       The two species favor each other and require the

presence of the other.

Interactions between species



 the number of predators at a given time t

 the number of prey at that time.

We consider: 

 the prey population is the total supply of food available to predators,

 the total food consumed by predators is proportional to the number of

predator-prey encounters.

So, ignoring for now social phenomena, we get the equations:

ᇱ ଶ

ᇱ ଶ

where and are positive constants.

Predator-prey
Lotka-Volterra equations

Social phenomena

Predator-prey models



Equilibrium points are given by
ᇱ

ᇱ

ଶ

ଶ

and ,

or

and and )

or

and , (impossible because )

or

and .

Predator-prey models



The lines  and do not intersect.

Predator-prey models



The lines  and intersect.

Predator-prey models



Oscillation of prey and predator densities according to the Lotka-Volterra

Model: The prey is in blue and its highs precede those of the predator (in red).

Predator-prey models

Oscillatory behavior 
about the 

equilibrium point 



There is competition between organisms whenever one has a negative effect

on another, either by consuming or controlling access to a resource whose 

availability is limited.

There are two ways in which an organism uses space to consume its fair

share of available resources:

 Collectivist - individuals move more or less freely throughout the area,

gathering resources as they move. In this case, individuals are only harmed

by consuming resources that would otherwise be available to others. The

negative effects are therefore indirect.

 Monopolist - An essential resource is obtained by occupying a portion of

space more or less exclusively. 

Competition models



There is another criterion for classifying competition types, widely used by

most environmentalists. In this criterion, the classification is made according to

the type of competing entities.

 Intra-specific if it occurs between individuals of the same species.

 Inter-specific if it occurs between individuals of different species.

Competition models



The most obvious (and most investigated) case of interspecific competition

is one in which populations of two species (say A and B) compete. 

The effect of A on B is rarely equal to the effect of B on A.

At one extreme it will be the same, a situation of perfect reciprocity, but at the

other extreme the effect of A on B is so dominant that the consequences of B

presence for population A are negligible, a situation of asymmetric

competition.

In nature, however, a population is affected by many populations (of different

species) sharing the same resources. The term diffuse competition was

introduced to designate the cumulative effect of these competitors on the

population of interest. In this case it is assumed that no particular competitor.

Competition models



Consider now two species , that compete with each other for the same food

supply. 

Instead of analyzing specific equations, we follow a different procedure: 

we consider a very broad class of equations, about which we assume only

some qualitative characteristics. In this way a large generality of equations is

obtained.

Growth equations of two species are written as follows.

 

where and are continuum functions on the nonnegative variables , .

Competition models



We stablish the following assumptions:

 if one species increases the other decreases;

 if either population is very large, none of the species can increase

 in the absence of one  of the species, the other has a positive growth rate

to a certain population level and a negative growth rate thereafter.

Competition models



The lines and do not intersect.

Competition models



The lines and intersect

Competition models



Let

and ଵ and ଶ the eigenvalues of matrix ∗ ∗ where ∗ ∗ is an

equilibrium point.

Competition models
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Conclusion

The populations of two competing species always approach one of a finite

number of possible limit populations.

Examining the equilibrium points for stability, we find the following result:

 A vertex in which curves have opposite slopes is asymptotically stable;

 The other equilibrium points that are asymptotically stable are and

;

 All other points are unstable,

 There must be at least one asymptotically stable equilibrium point.

 Any trajectory approaches a balance.

Competition models



Let us to “travel” to the nucleus of a cell and analyze 2 important proteins:

mRNA and BMAL1

Consider the system
ᇱ ି௔

ᇱ ି௔௫

where:

 represents the population of mRNA protein

( )

 represents the population of BMAL1 protein

( )

A mRNA and BMAL1 model



The equilibrium points are

 ଴ , 

 ஺ ,

 ∗ ∗ , where   ∗ ଵ

௔

ଵ

ଵି஽
and       ∗ ௥

஽
∗ ∗

always exist

always exist

Exist if ∗ and ି௔

Stable solution for parameter values

A mRNA and BMAL1 model



The linearization of the system
ᇱ ି௔௫
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is given by

∗ ∗ ∗
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The characteristic equation is given by ଶ

and system will be stable if 

∗ ∗ ∗∗ ∗ ∗

A mRNA and BMAL1 model



Consider the system
ᇱ

ଵ ଵ ଶ
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ଶ ଷ ଷ
ᇱ

ସ ହ ଺ ସ

 ଵ is the growth rate of tumor cells,

 ଶ represents the conversion rate of the resulting cells to hunting

predator cells, 

 ଷ is the specific loss rates of hunting predator cells, 

 ସ represents the growth rate of resting cells, 

 ହ is the conversion rate of resting cells to hunting predator cells, 

 ଺ is the specific loss rates of the resting cells,

 ଵ is the rate of killing of tumor cells by hunting cells,

 ଶ is the specific loss rates of tumor cells, 

 ଷ represents the rate of killing of hunting predator cells by tumor cells, 

 ସ represents rate of killing of resting cells by tumor cells. 

density of tumor cells
density of hunting predator cells

density of resulting cells

Tumor growth cancer model



The equilibrium points of the system
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Tumor growth cancer model



The equilibrium point ଷ ଷ ଷ ଷ is globaly asymptotically stable

Example: ଷ

Tumor growth cancer model



The equilibrium point ଷ ଷ ଷ ଷ is locally asymptotically stable if

 ଶ ହ ଵ ଷ
ଶ

ଵ ଷ
ଶ

ସ ଷ ଶ ସ

 ଶ ସ ଷ ଷ ଵ ଷ
ଶ

ଷ

Example:

 ଵ ସ

 ଶ

 ଷ

 ହ

 ଺

 ଵ

 ଶ

 ଷ

 ସ

ଷ 1.3213, 0.5656, 0.1186

Tumor growth cancer model



Consider the system
ᇱ

ூ
ᇱ

ூ

ௌ
ௌ ூ
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ூ ூ ଴ ଵ ூ

ᇱ
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 represent the susceptible humans

 represent the infected  humans

 ௌ represent the susceptible mosquitoes

 ூ represent the infected mosquitoes

 represent the biolarvicide population

Biolarvicide vs malaria model



The direction of each solid line

represents movement of population

along that line within the same species. 

Example: ூ is a removal from 

population and an addition to 

population.

The bi-directional dotted lines between

boxes indicates a mass-action

interaction. 

The single directional dotted line

indicates increase of bacteria population. 

Biolarvicide vs malaria model



The equilibrium points of the system

 ଴
௔
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ௗ
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Disease free
Unstable

Disease free
Unstable

Disease free

Unstable if 
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Disease free
Stable under conditions

Endemic
Unstable

Endemic
Stable under conditions

Biolarvicide vs malaria model
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