OSCILLATIONS
FOR DELAY SYSTEMS




[ Introduction

0
x(6) = j x(t — 7(6)) d[v(6)]
~1
% x(t) € RY,

& r(0) is a real positive continuous function on [—1,0],

& v(0) is a matrix of bounded variation.



[ Introduction }

The 1nitial value problem we define

0
x(t) = J x(t —1r(0)) d[v(0)], t>0
-1
x(t) = ¢(t), t [—=llrll, 0]
C o)

© lrll = gé{@ffo] r(6), v" Exist only one solution x(t) for the initial value problem.

d
© ¢(0) € C([~I7ll, 0], R%) v' x(t) is exponentially bounded

S ¢0(0) = [°, 9(—r(8))d[v(6)]

N >




Oscillatory behaviour

In a interval ]a, +oo[, we will say a function satisfies (C) frequently or persistently whenever for every
t, > a there exists at > t, such that f(t) verifies (C).
On the contrary, if there exists a t, > a such that f (t) verifies (C) for every t > ¢,, it is said to satisfy (C)

eventually or ultimately.

Example:

a) f(x)—-a if Ve>0:|f(x)—a|< ¢ eventually;

b) f(x)» aif Fe>0:|f(x)—a|l = ¢ frequently.



Oscillatory behaviour

& A function f(t) = [f(¢), ..., f4(t)]T is said oscillatory componentwise if each function f(t) is

frequently nonnegative and frequently nonpositive.
& If for some k € {1, ... d} exist f,(t) is either eventually positive or eventually negative, f(t) is said

a nonoscillatory componentwise function.

S A function f(t) = [f(t), ..., f,(t)]T is said weakly oscillatory if there exista k € {1, ..., d} such that

the function f,(t) 1s frequently nonnegative and frequently nonpositive.
& If for each k € {1, ..., d} the function f(t) is either eventually positive or eventually negative, is

said a weakly nonoscillatory function .



Oscillatory behaviour

The system 1is:
G oscillatory componentwise if all solutions are oscillatory componentwise

& weakly oscillatory if all solutions are weakly oscillatory



Oscillatory behaviour

U AsetKeRMisaconeifforeachu,v € K,u # 0,anda > 0,b > 0 we have

au+bveK and —-u ¢ K.

%, Example: In R?

v



Oscillatory behaviour

% Considering ), = max{r(6): —1 < 6 < 0}, a continuous function x:[—r,,, +o[—> R, is
K-nonoscillatory if there is T = 0 and a closed cone K € R™ such that
x(t) € K{0} for all t>T.
% Otherwise, it is called K-oscillatory.

& Whenever all solutions are K-oscillatory we will say that the system is an K-oscillatory system.



{ Oscillatory behaviour
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& weakly nonoscillatory = nonoscillatory (K)

% weakly nonoscillatory = nonoscillatory componentewise



Oscillatory behaviour

An equation 1s
oscillatory componentwise
weakly oscillatory
K-oscillatory

if the characteristic equation has no real zeros.



[ Characteristic equation }

Theorem: Every solutions of

0
x(€) = f_lx(t — 7(6)) d[v(6)]

oscillate 1f and only if the characteristic equation

0
det (l —j e_’”(e)d[v(é’)]> + 0

-1

VA € R.



Logarithmic norm

Each induced norm, ||-||, on M;(R), we associate a logarithmic norm,

) 11(0)= b {(‘kk T Z |Cjk|]

. | Cl|l—-1 e
4(C) = lim 17+ yCI j#k
y—>0* Y
4 I-lOO(C)—lmaX {CJJ+ZIC]kI}
b k#j
-1 0 -1
Example: Let thematrix C =10 -1 3
-3 0 2

% u(€)=max{-1+0+|-3|, 0+ (-1)+0, [-1|+3+2}=6

% p (C)=max{-1+0+|-1], 0-1+3,]-3| +0+ 2} =5.



Logarithmic norm

For a finite sequence, Cj, ..., Cp, on My(IR), we define the matrix measure

a(Cx) = (_i ) b(Ck)=y(iC,-)

i=k
a(Cy) =a(Cy) = u(Cy) B(Cy) = b(Cv) = u(Cy)
a(Ck) = a(Ck) —a(Cr-1) B(Ck) = b(Ck) — b(Cr+1)

See: J. Kirchner and U. Stroinsky, Explicit oscillation criteria for systems of neutral equations with
distributed delay. Differential Equations and Dynam. Systems 3: 101-120 (1995)



[ Logarithmic norm

Y Re o(C) € [—u(—=C), u(C)], with (C) = {A: A eigenvalue C};

L s(C) < u(C) < |IC|l, with s(C) = sup{ReA, : A, eigenvalue C};
O u(Cy) —pu(=C) < u(C+ Cy) < pu(Cy) +u(Cy);

S uyC) = yu(C), forevery y = 0;

L u(—C) <0 = det(C) = 0;

L u(C) <0 = det(C) < 0ifd odd;

& u(C) <0 = det(C) = 0ifd even;



[ Logarithmic norm

& if @ € C([a, b]; R) is nonincreasing and positive, then

b b
u(j <p(9)d[n(9)])sj @(0)du(n(0) —n(a))

& if @ € C([a, b]; R) is nondecreasing and positive, then

b

b
u(j <p(9)d[n(9)]> < —j o(0)du(n(b) —n(0))



|

Oscillations

It 1s possible to prove that for

the equation

is oscillatory if and only if

0

M) = j e O d[y ()],

-1

0
x(€) = f_lx(t — 7(6)) d[v(6)]

L [-u(-M@),n(MD)]



Some results

G If
* u((@) —v(—1)) is nonincreasing and u(v(0) —v(0)) is nondecreasing
then the delay system is oscillatory independently of the monotonic delays on [—1,0].

% Let r(0) a function on D (64, 0,).
+ u(v (@) —v()) <0, /—\
¢ p(vO) —v(®) <0, u(v(®) —v(-1) =0, forbe[-1,6,], [*
« u(v(®) —v(6)) <0, u(v(0)—v(H)) =0, for Hc[6,,0], 008 06 04 02 00

and

0 0
f ,u(v(@) — v(—l)) d ln(r(@)) — f M(V(O) — v(@)) d ln(r(@)) <e
-1 -1

then the delay system is oscillatory.



Some results

S If

. ‘u(v(—l) — V(H)) is nondecreasing on [—1, 8], m

T04

0.2

. ,u(v(@) — v(O)) is nonincreasing on [8,,0],

and

#(V(_l) — V(91)) + #(V(91) — V(ez)) + H(V(ez) — V(O)) < -1,

then the delay system is nonoscillatory for every delays on D*(6,,6,).



Some results

S If

. ‘u(v(H) — v(@l)) is nonincreasing on [—1, 8], m

T04

0.2

. ,u(v(@z) — v(@)) is nondecreasing on [6,,0],

and
u(v(=1) = v(8)) + u(v(8,) —v(6)) + u(v(8,) —v(0)) < —1

then the delay system is nonoscillatory for every delays on D*(6,,6,).



A particular case

The delay system

0
x(¢) = j x(t = 7(6)) d[v(6)]

-1

include the important class the delay difference systems

y
x(t) = Z Px(t — 1)
k=1

when

S ov(0) = f;:l H(6 — 6;)P,, where H is the Heaviside function,
L -1 <0, < <0, <0,

Y r(0) is a continuous and positive function on [—1,0] such that r(6,) = r,, fork =1, ...



A particular case

The characteristic equation of the delay difference systems
¢
x(t) = Z Px(t — 1)
k=1
1s given by

¢
det| I1 — Z P.e ™k | =0
k=1

and the system 1s oscillatory 1s and only 1f the characteristic equation has no real roots.



Some results

G If
e u(P;) < 0,foreveryj=1,...,%,

then the difference system is oscillatory for every monotonic families of the delays (73, ..., 7p) € RY.

i i-1 )
a(P) =p Z P |—u Py
& Iffori =1,..,%, k=1 k=1 Y
. a(P) <0 ( d d A
B(P) =wu ZPR — U Z Py,
* p(P) =0, —_ =i k=i+1 )

then the difference system is oscillatory for every monotonic families of the delays (13, ..., 75) € R%.



[ Some results

L Let i
T > T, > > T, a(Py) =“<z P")

k=1

 a(Pi)<0

?
e = 0 ( ﬁ(Pi>=u<ZPk>

BN k=i

Then the difference system is oscillatory if

Ti—1

b(P,) ln( fi ) > —e.



Some results

G Let
<1y, << T,
« a(P)=0
« b(Pi) < 0.

Then the difference system is oscillatory if

a(P;)In (rHl) <e

i




An example

7 3 5
x(t):Plx(t_z)+P2x<t—z)+P3x(t—Z)

O e I O T B A

with

We have:

* a(Py) =m,(P) = -2, ( 6
* a(Py) =P+ Py =-1, Then the
©a(Py) =b(Py) =P+ Py +P3) =0 difference system
* b(P,) =u, (P, +P3;)=5 is oscillatory

* b(P3) = Hipy =3

* b(P)In (%) + b(P3) In (%) ~—-132> —e
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