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The first part of this work is dedicated at the oscillatory behavior of the mixed type

difference equation with variable coefficients

where:
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 ௜ is the delay term 

 ௜

 ௜


௡⟶ାஶ

௜

 ௜ and ௝ are real functions.

 ௝ is the advance term

 ௝

The results was developed with Nedjem E. Ramdani

and Ali Fuat yenicerioglu: 

International Journal of Dynamical Systems and 

Differential Equations



The second part of this work is dedicated at the oscillatory behavior of the mixed type

differential equation with variable coefficients

where:

 ௜ is the delay term 

 ௜

 ௜


௧⟶ାஶ

௜

 ௜ and ௝ are real functions
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 ௝ is the advance term

 ௝



Difference equations



The equation

was intoduced in J. M. Ferreira and S. Pinelas, Oscillatory mixed difference systems.

Adv. Differ. Equ. 2006, 1–18 (2006), where it has established the oscillatory criteria

for the oscillatory behaviour of such equation.

This work is concerned with the behavior of the solutions of autonomous linear mixed type

difference equations and the results will be obtained via an appropriate positive real root of

the corresponding characteristic equation.
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The equation 

has been adequately introduced in

L. Berezansky and S. Pinelas, Oscillation Properties for a Scalar Linear Difference

Equation of Mixed Type, Math. Bohemica, (2016); 141(2): 169-182. 

S. Pinelas, Asymptotic Behavior of a Scalar Linear Difference Equation of Mixed

Equations, UPI Journal of Math. and Biostatistics, (2018); 1(1): 13-21.
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The equation 

has been studied in:

 R. D. Driver, G. Ladas and P. N. Vlahos; Asymptotic Behavior of a Linear Delay

Difference Equation, Proceedings of the American Mathematical Society, Vol. 115, No.

1, (1992), 105-112

 M. Pituk; The limits of the solutions of a nonautonomous linear delay difference

equation, Comput. Math. Appl. 42 (2001), 543-550
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The equation 

has been studied in:

 Ch. G. Philos and I. K. Purnaras; An asymptotic result and a stability criterion for

linear nonautonomous delay difference equations, Arch. Math. (Basel) 83 (2004),

243-255

 Ch. G. Philos and I. K. Purnaras; Asymptotic behavior and stability to linear 

nonautonomous neutral delay difference equations, J. Differ. Equations Appl. 11

(2005), 503-513
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A particular case of the equation 

is the linear autonomous mixed type difference equation

J. M. Ferreira and S. Pinelas; Oscillatory mixed difference systems, Advances in

Difference Equations, (2006) 1-18.

A. F. Yenicerioglu, S. Pinelas, and Y. Yan; On the behavior of the solutions for linear

autonomous mixed type dierence equation, Rend. Circ. Mat. Palermo II.,

Ser 69, 787–801 (2020).
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A solution of the equation  

is said to be nonoscillatory if it is either eventually positive or eventually negative.

Otherwise it is oscillatory. 

An equation is called oscillatory if all its solutions are oscillatory.
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Theorem 1

Let ௜ and ௝ non negative sequences. If

then

is oscillatory.
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Proof

is nonoscillatory

is increasing
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Corollary

Let ௜ and ௝ non negative sequences. If

then

is oscillatory.
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Example (cont.)
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Example (cont.)
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By Theorem 1, all solutions of equation oscillate!



Theorem 1

Let ௜ and ௝ non negative sequences. If

then

is oscillatory.

Difference EquationDifference Equation
Theorem 2



Proof

is increasing   
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Proof (cont)

Inequality of arithmetic 

and  geometric means
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Proof (cont)

On the other hand…
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Proof (cont)
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Corollary

Let ௜ and ௝ non negative sequences. If

then

is oscillatory
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Example 
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By Theorem 2, all solutions of equation oscillate!



Theorem 3

Let ௜ and ௝ non positive sequences. If

then

is oscillatory.
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Corollary

Let ௜ and ௝ non positive sequences. If

then

is oscillatory.

Difference EquationDifference Equation



Example 
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Example (cont.)

Difference EquationDifference Equation

By Theorem 3, all solutions of equation oscillate!

?



Theorem 3

Let ௜ and ௝ non positive sequences. If

then

is oscillatory.
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Theorem 4



Corollary

Let ௜ and ௝ non positive sequences. If

then

is oscillatory.
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Example 

Difference EquationDifference Equation

By Theorem 4, all solutions of equation oscillate!



Lets now to considerer a particular case of the difference equation with constant coefficients:

where:

 ௜ and ௝ are real numbers,

 and are positive integers

 is the forward operator
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The characteristic equation is given by

We say that the characteristic equation has the Property A if
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Theorem 1: Let ଴ be a positive real root of the characteristic equation with the

Property A.

Then, for any
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Theorem 2: Let ଴ be a positive real root of the characteristic equation with the

Property A.

Then, for any

Moreover, the solution of the mixed type difference equation

is:

i. uniformly stable if ଴ 1 

ii. uniformly asymptotically stable if ଴

iii. unstable ଴
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Lemma: Let 

Then, in the interval
୰

୰ାଵ

୰ାଵ

୰
the characteristic equation

has a unique positive root ଴ , and this root satisfies the Property A.
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Proof: Define
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Proof:

Then is incresing

has an unique solution in the interval
௥

௥ାଵ

௥ାଵ

௥
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Proof:
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Corollary: Let 

Then the solution of the equation

is:

 asymptotically stable if

 unstable if
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Example 1:

By the Theorem 2, the solution is uniformly stable
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Example 2:

By the Theorem 2, the solution uniformly asymptotically stable

Don’t verify the Property A

Verify the Property A

By the Corollary and 

The solution uniformly asymptotically stable
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Recalling the mixed type differential equation with variable coefficients

where:

 ௜ is the delay term 

 ௜

 ௜


௧⟶ାஶ

௜

 ௜ and ௝ are real functions
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 ௝ is the advance term

 ௝



Theorem 1

Let ௜ and ௝ non negative sequences. If

then

is oscillatory.
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Differential EquationDifferential Equation
Theorem 3

Let ௜ and ௝ non positive sequences. If

then

is oscillatory.



Differential EquationDifferential Equation
Theorem 2

Let ௜ and ௝ non negative sequences. If

then

is oscillatory.
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