Ordinary differencial equations
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Difference equations vs. differencial equations

The seasonal breeders are animal species that successfully mate only during certain times of the year.

The model is given by a difference equation

N¢y1 = AN or Ny =A4"Ng
Polar bear: April/May
An example:

Imagine a population that initially has Ny = 10 individuals and

a growth rate of A = 1.1 per week.

After 52 weeks (approximately 1 year) the equation K

N52 - ASZNO

shows that the population is 1420 and, after 2 years, the population will be 201.762 individuals.



Difference equations vs. differencial equations

The continuous breeders, like humans, that mate year-round.

The differential equation will then be rewritten as

N'(t) = r N(t). Human being

L r =b — dis the S "*\.
.

Malthusian parameter “ \ -
The solution is ™ » B

N(t) = N(t,) e"t0),

N (t,) is the greatness of the population at the beginning of the time.\




Difference equations vs. differencial equations

An exemple: 5 6000 { .
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The population in 1950 was 2520 millions and in 1995 was 5720 millions, so

5720 = 2520e%°" = r = iln @ = 0,018
B 45 7°\2520)
— annual increment rate: 1 = %918 = 1,01859 = 1,859%
In2

How long does the population take to double with such a rate? n = = 37,6 years! (in 2033)

In1,01859



The logistic equation

The logistic differential equation is given by:
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Equilibrium point

We can get information about the status of the dynamical system finding the equilibrium point.
In fact for a differential equation given by

x'(t) = f(x(D), t>tg
We obtain the equilibrium when x'(t) = 0.

So, for example to the logistic equation we get

N'(t)=0 & rN(t)(l—%)—O

& N(t)=0 Vv N(it)=K

lim N(¢t) = lim KN (L)
t-rron ()= l+°°N(t0)+(K N(to))e_rt



Equilibrium point

An example:

N'(t) = 0,5N(t) <1 — M)

20 K=20

4

2

So, the equlibrium points are

N({t)=0 Vv N(t)=20

and e 2
N, = 30
B 20N (ty) N. = 10
N©) = N(ty) + (20 — N(ty))e " NO . T
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Allee effect

For certain populations, it is permissible to have a minimum density below which the likelihood of
effective encounters between individuals (or reproductive cells) of both sexes is so low that the
population cannot return their density to the same value.

This phenomenon is represented by the differential equation.

N'(®) = r (N(®) - E)(1- =2

where E represents the critical minimum density.




Regulated growth models: the Allee effect

If the population grows slightly above E, the likelihood of effective encounters between individuals of
both sexes increases and, consequently, N'(t) > 0. The population then begins to grow to K.

If the population drops to a density slightly below E, the likelihood of encounters decreases sufficiently
that N'(t) < 0, and the population irreversibly tends to extinction.

The solution is

(K—E)(Ny—E)

NG = E+ (Ny-E) + (K — Nye




Regulated growth models: the Allee effect

An exemple:

N(t)

(K—E)(Ny—E)
N'(t) = r(N(t)- E) <1— T) &  N() =E +

(Ny-E)+ (K —NyeTt
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Metapopulations

This theory was based on several assumptions:

» Island communities are poorer in species than equivalent continental communities (S, > S;);
» This wealth increases with the size of the island;

» This wealth decrease with the increasing isolation of the island.

» Islands are not a closed system

S, > S,




Metapopulations: some examples

The Glanville fritillary (Melitaea cinxia) is an endangered butterfly
species that disappeared from Finland in the late 1970s and now

occurs in Finland only on the islands of Aland and a few surrounding

Islands.
One of the best studied metapopulations are the host plants
Plantago and Veronica that occur in dry fields of Filand and

it are the potential habitat patches for Melitaea cinxia.




Metapopulations: Levins's model

Levins's (1969) model is a simple way of describing the habitat occupation dynamics (dp/dt).

o)

In this model: (

> the risk of extinction (e) is considered constant and equal
in all spots;

» the extinction rate at time t is then: eP

» the possibility of colonization is considered proportional to
the proportion of occupied spots (source of colonizers): cP

» the colonization rate at time tis: cP(1 — P)

So P(t)y=cP(1—-P)—eP

Metapopulation reaches equilibrium
P=1-e¢/c.
Metapopulation should be maintained

onlyif c >e

A metapopulation tends to the
extinction if:

» the average size of the fragments
decreases;

» the density of the fragments

\decreases (increased isolation).




Metapopulations: Boorman & Levitt Model

According with the Boorman & Levitt Model (1973), the colonization depends on an external source of

propagules (a “continent”) and extinction is independent of neighboring patches.

P(t)y=c(1—P)—eP
Equilibrium point: P = c¢/(e + ¢)

» ife=0thenP =1;

C
» ife> 0then P < 1; Q °
) C
» ifc=0then P = 0; ° O
> ifc=1then P < 1. O ° J c




Metapopulations: Hanski's model

In the Hanski's model (1982) is considered the rescue effect.
Decreased risk of extinction due to population increase;

Colonization and extinction depend on regional resources (P)

P'(t) = cP(1— P) — eP (1 — P)

Equilibrium point: ¢ = e forany P

> if then P tends to 1 .e(l_P)
If ¢ > e then P tends to cP?
; C'P\ /
> ifc <ethenPtendsto 0 .* P_,Q
C
Os @

e(1-P)




Metapopulations: Gotelli's Model

For the Gotelli's Model (1991), the colonization depends on an external source of propagules (a

continent) and the extinction dependent on neighboring patches.

P'(t)=c(1—-P)—eP(1-P)

Equilibrium point: P = c/e Q e(1—P) c
> ifc>e then P> 1 . Q

» ifc<e then P<1 Q ) c
» ifc=0 then P=0 e(1—P). 4 c

(contradictory model, because if there is influence neighboring patches on extinction should also be in

colonization)



Metapopulations: Gotelli & Kelley

With Gotelli & Kelley (1993) we reach a more realistic model

P'(t) =(a +BP)(1—P)—(y—6P)P

Where:
» o is the contribution of external propagules, Q

2
> B is the indicator of the colonization force, '{

» v is the intrinsic measure of extinction of

BP
-
a fragment

» 0 is the "saving" effect.

Point and equilibrium: (8 —8)P?+ (y+a—B)P—a = 0




Metapopulations: the cases that should be considerate

In 1997, the concept of metapopulation was expanded to include other types of fragmented populations.
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Difference equation: logistic model

The discrete form of the logistic equation is the difference equation

N(t+1)=N(t)+rN(t) (1 —?)

/

{ AN(t+1) = N(t+1) — N(¢)




Difference equation: Ricker's model

The Ricker’s (1954) model can be used to predict the number of fish that will be present in a fishery

From the solution of the model of the instantaneous variation

li i
of the number “larvae” w by predation |

L'(t) = —(dyN(t) + d3)L(1)

we reach to the difference equation [—/@al mortality

N(t + 1) = bN(t)e~ (@1N®+d2)

And the Ricker’s model

N(t+1) = N(t)er<1_¥>



Difference equation: Hassel's model

Subsequent work has derived the model under other assumptions such as scramble competition,
within-year resource limited competition or even as the outcome of source-sink Malthusian patches linked
by density-dependent dispersal.

The Ricker model is a limiting case of the Hassell model which takes the form

N()

Nit+1)=K
(1+cN®D)°




The delay effect: logistic equation

Population density is unlikely to elicit an instant response to the per capita growth rate.
For example, the effect of food scarcity available to young immatures can only be felt later when they

reach maturity expressing lower fertility rates.

By designating t the delay interval we get the delayed logistic equation:

N(t—1)
N,(t) = TN(t) (1 — T)
2 or
: K—N(t—1)
i N'(£) = TN (D) <K + crN(t — ‘l')) \\,




The delay effect: Nichoson’s blowflies

The delay differential equation
N'(t) = —=8N(t) + PN(t — t)e VD),

was used by Gurney, S. P. Blythe and R. M. Nishbet (1980)

and it was used to describe the dynamics of Nicholson'’s blowflies.

Here:

» P is the maximum per capita daily egg production rate
» 1/a is the size at which the population reproduces at its maximum rate
» 0 is the per capita daily adult death rate

» T is the generation time



The delay effect: Nichoson’s blowflies

The delay differential equation

N'(t) = —8N(t) + PN(t — T)e V(=D

has a unique solution for each initial condition

N(t) = @(b), —T<t<0

For P > § the positive equilibrium point is given by

N*_ll P/
_En(/)'



The delay effect: survival of red blood cells

The delay differential equation

N'(t) = —uN(t) + pe YNE-D),
has been used by Wazewska-Czyzewska and Lasota (1988)
as a model for the survival of red blood cells in an animal.

Here:

» U is the probability of death of a red blood cell

» p and y are positive constants and are related to the production of red blood cells per unit of time

» T is the time required to produce a red blood cell.



The delay effect: survival of red blood cells

The delay differential equation

N'(t) = —uN(t) + pe YNE-D)

has a unique solution for each initial condition

N(t) = @(b), —T<t<0

For P > § the positive equilibrium point is given by

N* = Be"”"*.
u



Fibonacci difference equation

> Fort = 0 we have a couple of baby rabbits

» Fort = 1 the babies grow and are ready to
have bays in one month

> For t = 2 we have a couple of adult rabbits
and a couple of baby rabbits

» Fort = 3 we have the babies grow and the
old couple have 2 one more couple

» Fort = 4 we have the babies grow and the

old couples have 2 one more couple



Fibonacci difference equation

The Fibonacci difference equation is given by

N(t) =N(—1)+N(t —2).

has an oscillatory solution

N(t)=<

and a nonoscillatory solution

N(t)=<
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