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Structured Populations

Not all individuals in a population are equal and have the same chances of
survival and reproduction.

Demographic characteristics are dependent on population structure. Individuals
differ in many ways and some of these differences result in variations in fertility
and survival rates.

Classical demographic analysis is based on an age-specific survival and
reproduction “tabulation” system known as the life table.

The basic information needed to study changes in density and growth or
decrease rates is contained in the life table.

The most usual model to study this populations are the Leslie Matrix.



Structured Populations

We consider:

>
>
>
>
>
>
>
>

there are an equal number of males and females
the life limit of the species is m years

the incubation time is d years

the population is fertile until death

n is the age group to which a given female belongs

x,(t) is number of females in age n months at the beginning of year ¢t
s, is the survival rate in age group n

[, is the fertility rate in age group n



Leslie Matrix

The Leslie matrix is given by

_fO fl f2 fm—l fm_

s 0 0 0 0
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To find the number of individuals in each age group we have

" xo(t)] " xo(t—1)7 [ x0(0) ]

a@®|  |a-1 x1(0)

X () = L x(t—1) =L x2(0) — X(t) = LF1X(0)
@) Lo - 1), % (0).

The growth rate is given for the largest absolute eigenvalue of the matrix L, i.e,

is the largest absolute root of the characteristic equation

A= fo+sg il +s051 fobA72 4+ SpS1 . Sp—1 fnA™™



Leslie Matrix

Consider an elephant's community in Botswana

such that:

> the life limit of the species is 60 years

» the incubation time is 2 years
> So=5,=5,=09 s;=5,=..=5;=0,965
Se1 =S5 = .. =S50=0,8

> [1=f=w=fe=0 f10=f11=f12=012 fy3=..=fg =021




Leslie Matrix

The characteristic equation is given by
A~ 0,068111719 + 0,0657917 1 + 0,063481712 + 0,107211 13 + 0,103451714
+0,09983171> + 0,09634116 + 0,092971717 + 0,089711718 + 0,086571~1
+0,08354172% + 0,080621721 + 0,077817%2 + 0,075071723 + 0,072451 724
+0,06991172° + 0,06746172% + 0,06511727 4+ 0,06282172 + 0,0606312
+0,0585173% + 0,05646173! + 0,054481732 + 0,05257173 + 0,05073173
+0,04896173° + 0,047241736 + 0,04559173 + 0,04399173 + 0,04246173
+0,04097174% 4 0,039541~* + 0,038151% + 0,036821*3 + 0,035531~%*
+0,0342817%> + 0,03308146 + 0,031931"% + 0,030811748 + 0,029731~4°
+0,0286917°0 + 0,0276917°1 + 0,0221517°2 + 0,01772A7°3 + 0,014181>4
+0,0113417>> + 0,0090717°6 + 0,0072617>7 + 0,0058117>8 + 0,004641~>°
+0,00372176°



Leslie Matrix

The biggest root of the characteristic solutionis 4 = 1,0376.

This is a grow of 3,76% by year.

If we change the survival rates from

So =5:=5,=09 s3=5,=..=85,=0,965
Sg1 =S5 = .. =540=0,8

to

So=S;, =5, _09 s3=5,_ _S59_09
S10 =" = S50 _ 08 S5 == 54 _ 07

we obtain 1 ~ 0,955. EEEEEEEEp Extinction!



Interactions between species

» Neutralism
Negative Interactions
» Direct Competition
» Indirect Competition
» Amensalism

» Parasitism

» Predation
Positive interactions
» Commensalism

» Protocooperation

» Mutualism

Neither species affects the other.
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Predator-prey models

> y(t) the number of predators at a given time t

> x(t) the number of prey at that time.

We consider:

> the prey population x(t) is the total supply of food available to predators,
> the total food consumed by predators is proportional to the number of

predator-prey encounters.

So, ighoringfor now socialphenomena, we get the equations:

x' = Ax — Bxy
Predator-prey - , _ Social phenomena
Lotka-Volterra equations y =—-Dy+Cxy P

where A, B, C and D are positive constants.



Predator-prey models

Equilibrium points are given by
x'=0 Ax — Bxy — Ax? =0
, &
y =0 —Dy + Cxy —uy? =0

So
x=0andy =0,
or
A—By—Ax = 0andy =0, (x=A4/42 andy =0)
or
x=0and Cx — D — uy = 0, (impossible because y > 0)
or

A—By—Ax =0 and Cx—D—Ay = 0.



Predator-prey models

Thelines A — By —Ax = 0 and Cx — D — uy = 0 do not intersect.

(




Predator-prey models

Thelines A — By —Ax = 0 and Cx — D — uy = 0 intersect.




Predator-prey models

Oscillation of prey and predator densities according to the Lotka-Volterra

Model: The prey is in blue and its highs precede those of the predator (in red).
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Competition models

There is competition between organisms whenever one has a negative effect
on another, either by consuming or controlling access to a resource whose
availability is limited.

There are two ways in which an organism uses space to consume its fair

share of available resources:

» Collectivist - individuals move more or less freely throughout the area,
gathering resources as they move. In this case, individuals are only harmed
by consuming resources that would otherwise be available to others. The
negative effects are therefore indirect.

» Monopolist - An essential resource is obtained by occupying a portion of

space more or less exclusively.



Competition models

There is another criterion for classifying competition types, widely used by
most environmentalists. In this criterion, the classification is made according to
the type of competing entities.

» Intra-specific if it occurs between individuals of the same species.

> Inter-specific if it occurs between individuals of different species.



Competition models

The most obvious (and most investigated) case of interspecific competition
is one in which populations of two species (say A and B) compete.

The effect of Aon B is rarely equal to the effect of B on A.

At one extreme it will be the same, a situation of perfect reciprocity, but at the
other extreme the effect of A on B is so dominant that the consequences of B
presence for population A are negligible, a situation of asymmetric
competition.

In nature, however, a population is affected by many populations (of different
species) sharing the same resources. The term diffuse competition was
introduced to designate the cumulative effect of these competitors on the

population of interest. In this case it is assumed that no particular competitor.



Competition models

Consider now two species x, y that compete with each other for the same food
supply.
Instead of analyzing specific equations, we follow a different procedure:
we consider a very broad class of equations, about which we assume only
some qualitative characteristics. In this way a large generality of equations is
obtained.
Growth equations of two species are written as follows.
x'=M(x,y)x
{y’ = N(x,y)y

where M and N are continuum functions on the nonnegative variables x, y.



Competition models

We stablish the following assumptions:

> if one species increases the other decreases;

> if either population is very large, none of the species can increase

> in the absence of one of the species, the other has a positive growth rate

to a certain population level and a negative growth rate thereafter.



Competition models

The lines M (x,y) and N(x,y) do not intersect.




Competition models

The lines M(x,y) and N(x,y) intersect
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Competition models

Let

'aM( ) aM( )
d0x Y dy Y

A, y) =y AN
_a (x,y) @ (x, }’)_

and 1, and 4, the eigenvalues of matrix A(x*, y*) where (x*,y*) is an

equilibrium point.



Competition models
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Competition models

y

Singular Node /
_ Stable ?//

Unstable -

xY

O ,
\
\\\
X

/11=/12€]R_ /11=/1261R+
matrix n)c/)‘\diagonalizable matrix no diagonalizable
YA
Focus s

xY

K//§\ N _Stable | ////f
& Unstable \\\

A =udlivu e R™ A=utiv,u€eR"

&)

S




Competition models




Competition models
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Competition models

Conclusion

The populations of two competing species always approach one of a finite
number of possible limit populations.

Examining the equilibrium points for stability, we find the following result:

» A vertex in which curves have opposite slopes is asymptotically stable;

» The other equilibrium points that are asymptotically stable are (0, b) and
(a, 0);

» All other points are unstable,

» There must be at least one asymptotically stable equilibrium point.

» Any trajectory approaches a balance.



A mMRNA and BMAL1 model

Let us to “travel” to the nucleus of a cell and analyze 2 important proteins:

MRNA and BMAL1

DNA

Consider the system NN

{x’ =rx(1—-x)—(1—e" %)y
y' =yl(1—e"%) - D]

where;

» x represents the population of mMRNA protein

(x(0) = 0)

Cell membrane

» y represents the population of BMAL1 protein

(y(0) = 0)



A mMRNA and BMAL1 model

The equilibrium points are

> E,(0;0)4mmm always exist
> Ej(1; 0),- always exist

> E(x*,y*), where x =Zln(5) and y =%x (1—x%)
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A mMRNA and BMAL1 model

The linearization of the system
x'=rx(1—x)— (1 —e )y
{y’ =yl(1—e™*) - D]
IS given by
! * a * *

u =r[1—2x 5 (1—x )]u—Dv

v'=a(l1-D)y*u
The characteristic equation is given by A2 — (TrA)A + detA = 0
and system will be stable if Re(1) < 0

a
o) 1—2x*—5x*(1—x*)< 0




Tumor growth cancer model

Consider the system

YV VYV

YVV VYV YV V V VYV

(x' =1+ a;x(1 —x) —kyxy — k,x - density of tumor cells

y' = a,yz—azy —ks;xy <@ density of hunting predator cells
\Z' = a4z(1 —z) — asyz — agz — kyxz _ density of resulting cells
a, is the growth rate of tumor cells,

a, represents the conversion rate of the resulting cells to hunting
predator cells,

a; is the specific loss rates of hunting predator cells,

a, represents the growth rate of resting cells,

ac is the conversion rate of resting cells to hunting predator cells,

a is the specific loss rates of the resting cells,

k, is the rate of killing of tumor cells by hunting cells,

k. is the specific loss rates of tumor cells,

k4 represents the rate of killing of hunting predator cells by tumor cells,
k, represents rate of killing of resting cells by tumor cells.

A




Tumor growth cancer model

The equilibrium points of the system
(1
X

=1+4+a;x(1—x)—kixy —ky,x
1Y = azyz —azy — kaxy
z'=a,z(1 —2z) —asyz — agz — kyxz

\

are:
> E,(0,0,0)

1 K ko\2 | 4]
> E1(x;,0,0) wherexlzzl( —a—j)+\/( —a—j) o (a; > k)

_ _
» E,(x5,0,z,) where x, =% ( —z—i) + \/( —z—i) +ai1 and
Z2=1—Z_Z—Z_zx2 (a1>k2 and a4>a6+k4x2)

> E3(x3,y3,23) Where y; = 115 (1-%3) ka3 4 7, =85 (g S )

k1X3 ar



Tumor growth cancer model

The equilibrium point E5(x3, v3, z3) is globaly asymptotically stable

Example: E5(1.3213, 0.5656, 0.1186)
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Tumor growth cancer model

The equilibrium point E5(x3, y3, z3) is locally asymptotically stable if
> ayas(1+ a;x3) > kix3(asks + ayk,)
> a2k4x3Z3 > (1 + alxg)k3

Example: [T I " | o
a; = 0,6 =a,) - Jl mrs I"..
a, = 0,99 """
Cl3 — 0,1 "‘v;“-, , _. ‘ yyuvuvvevs

as = 0,06 BECE R
0 = 0118 > E3(1.3213, 0.5656, 0.1186)
k;=0,9
k, =0,5
ks, = 0,854 SUVVVVVUVUIY

k,=002 i w e s a

VV VY VYV VY V VYV




Biolarvicide vs malaria model

Consider the system
(x' = a— Bxm; —dx + vy
y'=pxm;—(v—a—-d)y

me+m
m's = OM (1 _ = T I) — 6y + 0,B)mg — Amgy
m'; = Amyy — (64 + 6,B)m,

B
B' = ]/B (1 _E) + yl(ms + mI)B

x represent the susceptible humans

A

\

y represent the infected humans
mg represent the susceptible mosquitoes

m; represent the infected mosquitoes

v VvV VYV VYV V

B represent the biolarvicide population



Biolarvicide vs malaria model

‘ Bk ? The direction of each solid line
s T represents movement of population
@+6BM, | S @ glong that line within the same species.

] M T 1 M, | Example: fxm; is a removal from x

population and an addition to y

: ‘ population.
> A . . . .
Y | X <~ The bi-directional dotted lines between
(ax+d)Y /)’XMI daXx . . .
, boxes indicates a mass-action

interaction.
The single directional dotted line

indicates increase of bacteria population.



Biolarvicide vs malaria model

The equilibrium points of the system

. _ Disease free
> EO(E,O,O,O,O) Unstable

a L(6-6,) — Disease free
> El(d,0,0, ) ’0) Unstable

s B (% 000K Disease free
2 (5/0.0.0.K) = nstable if =9

01
7 By (xymimi,0) qumm S0

a . . Disease free
> By (d'o' ms, 0, B ) = Stable under conditions

> Es (x%,y*,mg,m;,B") < Endemic
5 v Stable under conditions

>k




References

Ll V. Volterra, Variazioni e fluttuazioni del numero d'individui in specie

animali conviventi. Mem. R. Accad. Naz. dei Lincei. (1926) Ser. VI, vol. 2.

Ll A. J. Lotka, Elements of physical biology. Baltimore: Williams & Wilkins
Co. (1925).

L R. Arditi. and H.R. Akgcakaya, Underestimation of mutual interference of
predators, Oecologia (1990) 83:358-361.

L P. Yodzis, Introduction to Theoretical Ecology. Harper & Row, NY, NY,
USA (1989).

Ll R. K. Colegrave and E. M. Lungu, What is happening to the elephants in
Botswana?, Bio-Math 118 (1992), 49-55.



References

H. Chi, J. Bell and B. Hassard, Numerical solution of a nonlinear
advance-delay-diffferential equation from nerve conduction theory, J.
Math. Biol. 24 (1986), 583-601.

K. Das, N. H. Gazi, S. Singha and S. Pinelas, Non-linear Dynamics of
Expression of BMAL1: A Mathematical Study, International Journal of
NONIlinear Studies, Vol. 25, No. 1, 2018, pp. 223-240.

K. Das, M. N. Srinivas, N. Gazi e S. Pinelas, Stability of the Zero
Solution of Nonlinear Tumor Growth Cancer Model Under the Influence
of White Noise, International Journal of Systems Applications,

Engineering & Development, Volume 12, 2018, 12-27



References

L. S. Wu and D. B. Botkin, Of elephants and men a discreet, stochastic
model for long-lived species with complex life stories, American Naturalist
116 (1980), 831-849.

A. M. Starfield and A. L. Bleloch, Building models for conservation and

wildlife management, MacMillan (1986), New York and London.

S. Pandey, S. Nanda, A. Vutha and R. Naresh, Modeling the impact of
biolarvicides on malaria transmission, Journal of Theoretical Biology 454
(2018) 396409



