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  is a real positive continuous function on ,

 is a matrix of bounded variation.

Introduction



The initial value problem we define
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Introduction

 Exist only one solution x(t) for the initial value problem.

 x(t) is exponentially bounded



In a interval , we will say a function satisfies (C) frequently or persistently whenever for every

0 there exists a 0 such that verifies (C). 

On the contrary, if there exists a 0 such that verifies (C) for every 0,  it is said to satisfy (C)

eventually or ultimately.

Example:

a)     if     eventually;

b)     if     frequently.

Oscillatory behaviour



 A function 1 𝑑
𝑇 is said oscillatory componentwise if each function 𝑘 is

frequently nonnegative and frequently nonpositive. 

 If for some exist 𝑘 is either eventually positive or eventually negative, is said

a nonoscillatory componentwise function.

 A function 1 𝑑
𝑇 is said weakly oscillatory if there exist a such that

the function 𝑘 is frequently nonnegative and frequently nonpositive. 

 If for each the function 𝑘 is either eventually positive or eventually negative,  is

said a weakly nonoscillatory function .

Oscillatory behaviour



The system is:

 oscillatory componentwise if all solutions are oscillatory componentwise

 weakly oscillatory if all solutions are weakly oscillatory .

Oscillatory behaviour



Oscillatory behaviour

 A set KRn is a cone if for each , and we have 

 and    .

 Example: In ଶ

K1K2

K4K3



 Considering 𝑀 , a continuous function  𝑀  , is

K-nonoscillatory if there is and a closed cone ௡ such that 

for all  . 

 Otherwise, it is called K-oscillatory.

 Whenever all solutions are K-oscillatory we will say that the system is an K-oscillatory system. 

Oscillatory behaviour



 weakly nonoscillatory  nonoscillatory (K) 

 weakly nonoscillatory  nonoscillatory componentewise

Oscillatory behaviour



An equation is 

oscillatory componentwise

weakly oscillatory

K-oscillatory

if the characteristic equation has no real zeros.

Oscillatory behaviour



Theorem: Every solutions of 
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oscillate if and only if the characteristic equation
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.

Characteristic equation



Each induced norm, , on ௗ , we associate a logarithmic norm,

Example: Let the matrix 

 1   

      .

Logarithmic norm



For a finite sequence, ଵ ℓ, on Md(IR), we define the matrix measure

See: J. Kirchner and U. Stroinsky, Explicit oscillation criteria for systems of neutral equations with

distributed delay. Differential Equations and Dynam. Systems 3: 101-120 (1995)

Logarithmic norm



 , with ;

 , with 𝑖 𝑖 ;

 1 2 1 2 1 2 ;

 , for every ;

 ;

 if odd;

 if even;

Logarithmic norm



 if is nonincreasing and positive, then 
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 if is nondecreasing and positive, then
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Logarithmic norm



It is possible to prove that for
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the equation 
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is oscillatory if and only if

Oscillations



 If 

• is nonincreasing         and        is nondecreasing 

then the delay system is oscillatory independently of the monotonic delays on .

 Let a function on ା
1 2 . 

• 2 1 , 

• 1 , for  1 , 

• 2

 
, for  2

and
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then the delay system is oscillatory.

Some results
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 If

• is nondecreasing on 1 , 

• is nonincreasing on 2 , 

and

1 1 2 2 , 

then the delay system is nonoscillatory for every delays on ା
1 2 .

Some results
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 If

• 1 is nonincreasing on 1 , 

• 2 is nondecreasing on 2 , 

and 

1 1 2 2

then the delay system is nonoscillatory for every delays on ା
1 2 .

Some results
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The delay system
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include the important class the delay difference systems
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when 

   ௞ ௞
ℓ
௞ୀଵ , where is the Heaviside function,

 1 𝑖 
, 

 is a continuous and positive function on such that 𝑘 𝑘, for .

A particular case



The characteristic equation of the delay difference systems

௞ ௞
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is given by

௞
ିఒ௥ೖ
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and the system is oscillatory is and only if the characteristic equation has no real roots. 

A particular case



 If

• ௜ , for every , 

then the difference system is oscillatory for every monotonic families of the delays ଵ ℓ  ା
ℓ .

 If for 

• ௜

• ௜ ,

then the difference system is oscillatory for every monotonic families of the delays ଵ ℓ  ା
ℓ .

Some results
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 Let 

• 1 2 ℓ

•

•

Then the difference system is oscillatory if

𝑖
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Some results
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 Let 

• 1 2 ℓ

• 𝑖

• .

Then the difference system is oscillatory if

𝑖
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௜

Some results
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with 

ଵ ଶ ଷ

We have: 

• 1 1 1 , 

• 2 1 1 2 , 

• 3 1 1 1 2 3

• 2 1 2 3

• 3 1 3

• 2
௥

ଶ

௥
ଵ

3
௥

ଷ

௥
ଶ

An example

Then the 
difference system 

is oscillatory
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