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Introduction

Why use wastewater treatment ?

B The Lack of access to safe drinking water for 40 % of world
population : United-Nations.

B The impact of pollutant on receiving environments and
ecosystems.

B climate change and water scarcity.
@ A. Lipponen et N. Bonvoisin,

Enhancement of water resources 2016. Technical report.
United Nations Educational, Scientific and Cultural Organization, 2016.
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Wastewater treatment station

Figure — Activated sludge station diagram.
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Introduction

Activated sludge process

Effluent apres
traitement
primaire
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Figure — Activated sludge station diagram.
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Stability
. {: s .

Stability Concept
Consider a dynamical system

©9)1{ Yoy g AT e

and X an equilibrium point : f(x) = 0.

We say that x is stable provided that for each ¢ > 0, there exists
6> 0st.if |xg —X|| <éthen||x(t) — x| <e.

We say that x is asymptotically stable if moreover

lim ||x(t) — X|| = 0.

t—+o0

The stability becomes global if it’s fulfilled for any initial condition x.
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Anaerobic Wastewater treatment
: $ = :
i \‘ﬁ"’ - ;

Anaerobic activated sludge process

Three phenomenas are considered :

B Substrate degradation (S).

B Bacteria growth in the aerator (X).

B The recycle of bacteria biomass from the settler (X;).
Assumptions :

» All solid components will settle and concentrate at the bottom of
the settling tank.

» The sedimentation of soluble organic matter is not significant.
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Anaerobic Wastewater treatment

Mathematical model

The mass balance of the various constituents gives the following
dynamical system model

d_? - —V(i)x ~(1+r)Ds+Dsj, ;  s(0) = s
(S) _’; =u(s)x—(1+rDx+mx, ;  x(0)=x
g =v(1+rnNDx—v(w+r)Dx, ;  x(0) = X
Whergw v Q. a ms
w:Q—m,v:Vs,D:Va,r:Q—mandy(s) = Kts
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apility
Anaerobic Wastewater treatment
: $ = :

Kﬁi}

Equilibria
The system (S) always has a boundary equilibrium Py = (1S$r' 0,0).
On the other hand,
If
(1+r)D < () 2.2)
wHr 14r
Then, there exists an interior equilibrium point Py = (s*, x*, x;) such
that
14r 1w+r. s _
* * ® in_ ax * 1
=W Ty [1—|—r s1. 8" =p <(1+r)Dw+r)
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Global stability

;* J

Stability of Py

Examine firstly, the global stability of Py, whenever the condition (2.2)
is not fulfilled.

Theorem

If condition 2.2 is not fulfilled then the equilibrium point P, is globally
asymptotically stable.

The idea of proof is based on the following Lyapunov function :

Xr

V(s x, X;) = Y/ (1——S))d§+ X+ —t

p(©) v(w +)

Where § := —>n_|
1+4+r
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Global stability
: FY :

Stability of P

Suppose now that the condition is fulfilled.

Under the condition

(1+r)D Sin_y 2.3)

1+r"

u(

Py is instable and P; is globally asymptotically stable.

w+r

The idea of the proof is based on the following Lyapunov function :

o VS L HE
Xp+
i v x,*( B )
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Global stability

Figure — Global stability of interior

equilibrium. Figure — Global stability of boundary

equilibrium.
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Robustness

u and S;, not well known

What is about "stability theorem™" whenever full information about
growth function i and s;, is not available ?

Indeed, due to metabolic variations and the influence of many
physic-chemical factors (PH, Temperature, oxygen, ...),

It's very hard to have an accurate idea of u.

We expect that there exist a domain of stability instead a unique
stable equilibrium point.
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Robustness

i
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Figure — p not well known and its
bounds
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apility
Robustness
: S :

New assumptions

Hy— D, r, w and v are positive constants.

H,— There exist two functions u and 7 satisfying the hypothesis A,
such that -
i(s) < p(s) <H(s), ¥s>0.

Hz— sjp(t) is a not well known time varying function but bounded by :
s, < sip(t) < s, vt>0

where s, and siﬁ are a given positive constants.
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Robustness
: FI :

Consider now the two following systems
5= ——ng)x— (14 r)Ds+ Ds;;
(5+) X =7(s)x — (1 +r)Dx + rDx;
Xr =v(14+r)Dx —v(w+r)Dx,
and

s
5 iy)x—ﬁ +r)Ds + Ds;,
X =u(s)x — (14 r)Dx + rDx,

)’(r :V(1 +I’)DX—1/(W+I’)DXr

(S-)

Systems (S, ) and (S_) fulfill Assumptions A; and A,, so,

» (S.) admits an unique global equilibrium point P, = (sT, x*, x;")
and (S_) admits an unique global equilibrium point
P_=(s",x",x ).
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Robustness
. s N .

Idea : prove that trajectories of system S remain in the domain
bounded by the equilibrium points Py = (s, x*, x;") and
P_=(s",x",x ).

Theorem (Serhani, Gouzé and Raissi)

Any trajectory (s, x, x;) of system (S) starting in Q) converges
towards the domain U := {(s,x, X)) € Q : s- —A<s<
xt —x—

st+A, x  <x<x", x; <x < x},where A:= -

The idea of proof is based on the variable change z := x + Ys and
properties of cooperative and monotone dynamical systems.
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Robustness

Stability domain

T

Figure — Stability domain.
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Stabilization

Problem

The reactions inside the bioreactor are often nonlinear, not well
known and are subject external perturbations

Consequence :

B S;, and u are not well known and are subject disturbances.

H I|dea : Invoke the stabilization concept.
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Stabilization

Stabilization Concept

Consider a controlled dynamical system

o9 { g e T ey

We say that (DS) is stabilizable if there exists a feedback control
u:RR" — u(x) € U such that the ODE

x(t) = g(x(1))

is globally asymptotically stable (GAS).
where g(x) := f(x, u(x)).
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Stabilization

In case of discontinuous control, use the differential inclusion

oo {9l e

the set valued map F must satisfy some assumptions (Multifunction
of Marchaud) to guarantees the existence.

W Filippov set-valued map :
FF(X) = ﬂA(N):O Ns>0 Ef(x, U(X + (5B\ N)), Vx € R”

B Krasovskii set-valued map : Fx(x) := Ng=oCof (X, u(x +6B)),
Vx € R"
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Stabilization

Aerobic activated sludge process

Wastewater treatment station

Transfert liquid/air of oxygen

X WD,
. M OT ¢ Settler
Purified water
S, X, Do Effluent flow Qe

Qint+Q1)S; (Qin+Q)X

Sin, Do
Influent flow Qin - [ X WDomax

00
Transfer air/liquﬁ/{M oog Va

of oxygen <— Waste (containing bacteria)
\Oxygenation
(Qr+Qu)Xr Waste (containing bacteria) flow
Qe Qu Xr
Va: Aerator volume ~ Recycled waste (containing bacteria) ~ Discharged waste (containing bacteria)
Vs : Settler volume  with flow Qr with flow Qu

Figure — Activated sludge station diagram.
Mustapha SERHANI, Nadia Raissi Mathematics modeling in ecolog




Stabilization

Aerobic activated sludge process

Mathematical model

(S2) : | as(t)

dDo(t) _ _KOV(X(t)v DO(t))X(t) — D(t)(1 4 r)Do(t) + D(t) Do+
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Stabilization

Aerobic activated sludge process

Hypotheses for activated sludge problem

The biological constraints may be expressed mathematically with the
following assumptions :

B S et Do are the known (accuracy estimated) states .
B x et x; are the unknown states.

B S, (1) < Sp(t) < Sf(h)

B Do, (t) < Dojs(t) < Doj (1)

B (@) <wu (&) <pu(td) <pt(té) <u(@),vt>0,V¢ eR?
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Stabilization

Aerobic activated sludge process

Consequence

B x, x, are difficult to estimate accurately.

B Very hard to build a feedback stabilizing control law with these
states.

Solution
B Construct observer intervals to missing states.

W Build a feedback control with these observers stabilizing the
system around a suitable level.
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Stabilization

Observer Intervals

Mustapha SERHANI, Nadia Raissi

Observer Intervals
The model (S,) can be reformulated as :

% = C1 R(t)X1(t) +A11(t)X1(t)
(872) ) P2 = GaR(1)X; (1) + Aea(1)Xelt) + B (1) 33)
Y = HX(t)
with
() ok (&) 00 e (3 )
D(t)Si,
and By(t) =

D(t DO‘ +0€WDO
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Stabilization

Observer Intervals

Idea : Use a formulation free of kinetic function.
B Define a new state Z by

where N € M 4(R).

M Choose N = (N; Np): de becomes a function of Z and X; :

az

= = BiZ(1) + BoXe(t) + N.B(1)

with B(t) = ( Bgo(t) ) and B4, B, depend on parameters and
N.
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Stabilization

Observer Intervals

Consider the systems

az+* + +
o B1Z7 (1) + B Xo(t) + N2 B,
Zt(0) = Nat
and
az~ _ _
i B1Z (1) + B Xo(t) + N2B,
Z (0) = Na~

where a~, at € RY.
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Stabilization
Observer Intervals
. T 2 .

Let 1 1
X = (Z" = NoXo) and X" = (27 — NaXo).

X; (t) and X, (t) define an observer interval of X; in the sens that for
alla™ < X(0) < at.

X7 (1) < X (1) < X[F(t), Vt>0.

The proof is based on the cooperative dynamical systems :

B Prove that X; () — X;(t) < 0 and X,"(t) — Xi(t) > 0 by invoking
the monotony property of cooperative systems.
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Stabilization

Robust stabilisation

Robust stabilization
Consider the pair of controls Dy (t) = (14 r)D(t) and Dy (t) = a W(t).

Goal : stabilize the output states : Y = (y1, y2) = (S(t), Do(t))
around a suitable level Y9 = (S9, Do?).

The output becomes :

d .
% = —Ri(X.y) + Di() (" = )

(SI’3) : J
S22 = —Re(X1,y. D1) + Da(t) (Y™ ~ 1)
W'ith Sin(t i Doy (1
A0 = 0, P = 5P and (D) = Domas




Stabilization

Robust stabilisation

but
Ri(X1,y) = V(};%X1 ; Ro(Xq,y.Dy) = Koy(yT)fX1 —Di(y5' - y2)
Hence, consider the upper and lower bound of R;, i = 1
Ry (X" y) = %)f(ﬁ(t); Ry (X;.y) = %):1(’)
and
Ry (X".y.Dy) = KO%W Dy (Y — )

o —(HX;(t ;
Ry (X{,y.Dy) = Ko%;()—[%(}’éM—}@)
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Stabilization

Robust stabilisation

The following feedback controls

RIXT =AM Gil) g n<yd
» o B -
Dt Xy X0 ) = mog e pove
y1ln+,y1 1 1
and
Ay (X[ y.D1)-A3Goye) yo < s
Do(t, X7, X y) = o .
XX REOT D)6 ) o
yénaerfy2 2 2

(3.5)
stabilize exponentially the output yaround y9.
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Stabilization

Robust stabilisation

where
1 — exp_gi(yi) i
Gly)=——"—7—i=12
Y yi—y?

—_

9ilyi) = §(Yi —y)?

Af, (i=1,2and x = +, —), are adjusting positive constants.
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Stabilization

Robust stabilisation

Simulations
m T T
“““““ Sinf)
"y — it
100 T ]
C e

L
(U | T N [

tamnat

Figure — S;, not well known and its
Figure — Kinetic 1 with bounds. bounds.
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Stabilization

Robust stabilisation

Simulations

hiomass: xit)

= Lpper hound: %
5 m—nknon: x B
=== lower bound: %"
0 . . I . L
0 0.5 1 15 2 25 3

Figure — Upper and lower observer of x.
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Stabilization

Robust stabilisation

Simulations

recycled biomass: x[(l)

10H m— et bound: x:

e UNKNON: ¥,

e |0t bound: 3

0 1 1 1 1 L
1} 0.5 1 15 2 25 3

Figure — Upper and lower observer of x;.
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Stabilization

Robust stabilisation

Simulations

091 0.015: 002 0025

0 i i i i H i i i
1} 0m o002 003 004 005 006 0O 008 009
£

Figure — Stabilization towards S? = 2.
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Stabilization

Robust stabilisation

Simulations

0,0
5

u i : 0010020.030040.05

Figure — Stabilization towards DZ = 10.



vViapility
Controllability

5 X)
>

(&

Model with time varying parameters

Let us come back to the anaerobic model (S) and relax the
assumptions by supposing that all parameters are a time varying

functions
5= MK (4 (1) D(t)s + D(D)sin()
X=pu(t,s)x —(14r(t))D(t)x + r(t)D(t)x,
(S3)
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Controllability

New assumptions
(Hy): © visastrictly positive constant.

> D : RY — R is Lebesgue measurable and there exist D, D € R}
such that B
D<D(t)<D forall t>0

> r: RT — R is Lebesgue measurable and there exist r,7 € R}
such that
r<r(ty<rforal t>0

> w: RT — R is Lebesgue measurable and there exists
0 < W € R such that

w(t) <w forall t>0
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vViapility
Controllability I
. *> \\ |
>

(=)

B o s, : RY — R} is Lebesgue measurable and there exist 5, € IR}
such that
0 < sj(t) <5j, forall t>0

(Hg) : p: Rt x Rt — R* is Lebesgue measurable w.r.t. the first
variable and there exists m > 0 such that

u(t,s) <mforallt>0, s>0.

(H3) : Thereexists ¢ : t € R™ — ¢(t) € R} an integrable function
such that

u(t,s) —p(t.s) < p(t)|s—&'|Vs,8" >0
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vViapility
Controllability
i)
-

(-
Controllability

Problem : The output of the activated sludge process station depends
strongly on the influent rate of wastewater which changes according
to several factors :

B the difference of flow between the night and day,
B between summer and winter,
B when it is raining or not.

Can one, using the control parameters, find a curve that stays "close"
to a referential trajectory ?
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vViapility
Controllability
. s Y

\=/

To system (S3) we associate the following perturbed one :

s _P‘("_YSV — (1 + (1)) D(H)s + D(t)sin(t)

x=pu(t,s)x —(1+r(t))D(t)x + r(t)D(t)x
(S3(V)) 4 5 = v(1 + r(8))D(E)x — v(w(t) + r(£)) D(t)x,

s(0) = sp + Vo1, X(0) = X0 + Vo2, Xr(0) = X0 + Vo3

S(T) =s7+ vy, X(T) = x7+ vr2, X,(T) = X7+ v13

where v = (o1, Vo2, Vo3, V71, VT2, vV73) € R® and

(r(t), D(t), w(t), sin(t)) €U



vViapility
Controllability
. 5 4

\=/

We fix a final time T. Let W' := W(]0, T}, R®) be the space of
absolutely continuous functions and L' := L'([0, T],IR*).

We endow L' and W, respectively, with the norm
T T
1yl :/0 ly@llat 5 lyllw: = ||}’(0)||+/0 [yl at.

Consider the set of controls

U:={(r,D,w,sp) ER*: r<r<rF,D<D<D0<w<W0<
S,'n<§,',7}.
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vViapility

Controllability

+ \
i @f‘/
Let y(t) = (5(t), X(t), X-(t)) the solution of (S3) associated to the
control o(t) = (7(t),

+(1)) th
D(t), w(t), 3jn(t)) fulfilling
)

x(t)+x(t) >0Vte[0,T]. (4.1)

The system (S3) is said to be strongly locally controllable at (y, ), if
there exist « > 0 and 8 > 0 such that for all v € R®, with ||v|| < B,
there exist a trajectory y = (s, x, X;) and a control u = (r, D, w, sj,)
for system (S3(v)) such that

1y =Ylwt <allvll and flu—ally <afjv.
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Controllability

= allvll

Y(0)+vo

Perturbation

Figure — Strong controllability at (y, &).
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vViapility

Controllability

Local strong controllability

Theorem

Let the assumptions (H;) and (Hs) be satisfied and (y, &) be a
solution of system (S3) satisfying (H;) and (Hs). Then the system
(S3) is strongly locally controllable at (y, o).

The proof is based on the nonsmooth analysis :
B For a dynamical system (DS)

Z(t) = f(Z(t),u(t)Vtelo,T]
(Z(0),Z(T)) € S:=8 x5,
uty € U.

Under some assumptions if (DS) is Normal = (DS) is Locally
strongly controllable.
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Controllability
. s : ¥ .

g g;;://‘

Definition
The system (DS) is called Normal at Z if any arc p € W fulfilling

p(t) € co{q: (q.0) o= <p().f(.) > +¥u()I(Z(1), u(t)} .
<p(D).f(tZ(t),u(t) > = max <p(t) f(t Z(t),w) > ae

(p(0), p(T)) 3td((2(0), Z(T)); S),

is trivial (p = 0).

m

m

where ¥, (.) is the indicator function, d((Z(0), Z(T)); S) is the metric
from (Z(0), Z(T)) to S, and a* denotes the Limiting Fréchet
subdifferential.

B prove that the system (S;3) is Normal.
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Controllability

Simulations

14
14
Substrate Trajctory1
Substrate Trajectory2 ) :i:i: E:::::Z;
Subetrate T I, Bacteria Trajectory
g’ o 8
5 2
2 8
o 8 ml? o
4 N
LL 4
4
AR
% 2 e
rm,rﬁ,.”wmv
% 1 2 3 4 5 [ 7 8 0 —
TIME 0 1 2 3 4 5 8 7 8
TIME
Figure — Local controllability of Figure — Local controllability of
substrate. bacteria.
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Viability

Viability concept
We are now interested by the problem of the form
aX
— et>
{ o € F(t x(t)) fora.e. t >0 (4.2)
X(t) e K ¥t >0; X(0) = Xp
The goal is to analyze the existence of trajectories remaining in K.

s 7 Va |=mle
N iy 7 K
|:|\'iabf.{|\'
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Viability

Characterization

Definition
We say that a trajectory of (4.2) is viable in K if for all t € [0, T],
x(t) € K,

the set K is a viability domain for F if for all X, € K there exists a
trajectory x(.) of system (4.2) such that x(t) € KV t € [0, T] with
x(0) = xo.
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Viability

kﬁ/ﬁ

Theorem

Suppose that F is a Marchaud set valued map and K a closed
subset, then the following equivalences hold :

B K is a viability domain for F.
B Fx)NTk(x) #0, VxeK.
where Tk (x) = is the contingent cone (Bouligand cone) of K.

_ .. dist(x 4 tw, K)
TK(X)—{WEX-“rtTngf—

0}
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Viability

Viability in the wastewater treatment
The activated sludge model (S) can be rewritten as a general
nonlinear dynamical system

X(0) = (s0. X0, X0) "5 u= ((1+r)D,rD, (w+r)D) € U.

So, by choosing
F(t, X(t)) := {f(t, X(t),u(t)) : u(t)eU}

and considering the viability set

{ % ( X(1),u(t)) == [A(u(t) + u(t X)BIX + Wy(t) forae. t =20 4

K(t):=a(t)+D Vt>0,
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Viability

the activated sludge model (S) becomes the viability problem (4.2).

X
X € F(t,x(t))forae.t>0
f (4.4)

X(t) € K(t) vt >0;
X(0) = Xo
where the functions governing this system fulfill

u: R™ — U C R} measurable with value in a compact set I{.

A : R" — M(R") is a linear operator.
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Viability

# : RT x R" — R* bounded, t—measurable and x—Lipschitz.

W, : Ry — Rl measurable, bounded and Lipschitz with respect u.
B is a real constant matrix and Xy € R".

a:R"™ — a(t) € R"is an absolutely continuous mapping.

D is a closed subset of R".
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Viability

Necessary and sufficient condition of viability

Let T > 0. The following assertions are equivalent
1. There exists a set / C [0, T] of full measure such that

Vte L¥X e K(b), f(t,X) — a(t) € coTg(D, x — a(t))

2. Vitye[0,T]and Xy € K(1), the problem (4.3) admit a viable
solution X(-).
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Viability

The proof is based on
B Prove that F is a Marchaud set valued map
B Prove that K(-) is an absolutely continuous set valued map
B Prove the fact that

f(t,X)—a(t) e coTg(D, x—a(t)) < (1,f) € coTg(graphe(K), (t, x))

and use the viability theorem.
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Viability

Particular case
For the problem (S) , by choosing

D=R3

and
a(t) = («t, Bt yt)
with &, B and «y positives constants

or

a(t) = («, pt, 1t)
we obtain the following schematics :
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Viability

Simulations

v=(x, s) : Trajectoire

K(t0)  K(t1) K(t2)
¥ x
o 8
3 £
k| g
;tg ==}
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Capture Basin

Consider a closed subset C as a target of system (S).

Definition

The capture basin of C is the set of initial states x from which starts
at least one solution of (S) reaching the target at a time T.

Capt(C) = {x € R": Jx(.) soI'n of (S) with x(0) = x, s.t.
x(T) e C}
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Viable-Capture Basin

If the target C C K.
Definition
The Viable-capture basin of C in K is the set CaptX(C) of initial

states x € K from which starts at least one evolution x(.) of (S)
viable in K on [0, T[ until a finite time T when the evolution reaches

the target at x(T) € C.
Capt®(C) = {x € K : 3 x(.) solution of (S) with x(0) = x,

x(t)eK,Vtel0, T[and x(T) € C}
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Viability kernel of K with target C

Definition

The Viability kernel of K with target C of initial states x € K such that
at least one solution x(.) of (S) starting at xg is viable in K for all

t > 0 or viable in K until it reaches C in finite time, Viab(K, C).
Viab(K, C) = {x € K : 3x(.) solution of (S) with x(0) = x,

x(t)e K, Vt>0orx(t)e K, Vte[0, T[and x(T) € C}
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Characterization
Property

Viab(K, C) = Viab(K \ C) U CaptX(C)

Theorem

Assume that F is Marchaud and that the target C C K and K are
closed. The viability kernel Viab(K, C) of the subset K with target C
satisfies

B Viab(K, C) is the largest closed subset D satisfying C C D C K.
B D\ Cis locally viable under F :

VxeD\C, Fx)NTp(x) #@
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Link with HJB equation (H. Zidani et al.)

Let
Sjo,(x) = {x(.) sol'n of (S) s.t. x(0) = x}

and consider a continuous functions g : R” — R and vy : R" — R,
such that

gx)<0exeKandy(x) <0 xeC
Then we introduce the new control problem

V(t.x) = inf  {max(v(x(t))), max (9(x(6)))}

x()ESj0,4 () 0<[0.1
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Link with HJB equation (H. Zidani et al.)

Define the Hamiltonian H(x, p) = maxgef(x)(—p-q). We have :

Theorem
V(t, x) is the unique continuous viscosity solution of the HJB equation

min{oV;(t, x) + H(x, DxV(t,x)), V(t, x) —g(x)} =0,
with V(0, x) = max(vy(x), g(x)).

V (t, x) € [0, +00[xIR".
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Link with HJB equation (H. Zidani et al.)

Using the value function V, we can characterize the capture basin
with target as :

Lemma

We have
Cap®(C.t) = {x €R", V(t,x) < 0}.
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