An intrinsic PGD for parametric elliptic problems

Azaiez Mejdi Institut Polytechnique de Bordeaux

with : T. Chacón (US) and M. Gómez (US)

CIMPA2019, Sciences des données

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

In PGD for parametric symmetric elliptic problems

- Existence of PGD solution
- A deflation algorithm to compute the solution.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- Numerical tests.
- Oncluding remarks.

Best Data tensorisation

Let V a Hilbert space, \mathcal{A} a bilinear form on V and \mathcal{L} a linear form on V. Let

$$\forall u, v \in V, \quad \mathcal{A}(u, v) = \mathcal{L}(v) \tag{1}$$

Let $\mathcal{S} = \{z(x_1, ..., x_n) = \prod_{i=1}^n X_i(x_i)\}$ and $\mathcal{S}_m = \{v = \sum_{j=1}^m z_j, z_i \in \mathcal{S}\}.$

Problem

- \Rightarrow Find the best approximation $u_m \in S_m$ of u solution of eq. (1).
 - Additional constraint : orthogonality (otherwise ill-posed for $d \ge 3$).
 - Normalise all modes w_i^j but one.

Post-processing : data reduction

Let $\mathcal{A}(u, v) = \int uv$ and $\mathcal{L}(v) = \int fv$. The problem reads :

$$u_m \in \arg\min_{u^* \in S_m} \|f - u^*\|_2$$

(2)

Parametric elliptic problems

Let

- A separable Hilbert space $(H, (\cdot, \cdot))$.
- A measure space $(\Gamma, \mathcal{B}, \mu)$, with standard notations, so that μ is σ -finite.
- A form $a \in L^{\infty}(\Gamma, B_{s}(H); d\mu)$ uniformly elliptic and coercive on H.
- A data function $f \in L^2(\Gamma, H'; d\mu)$

We are interested in solving the variational problem:

Find $u(\gamma) \in H$ such that

 $a(u(\gamma), v; \gamma) = \langle f(\gamma), v \rangle_{H'-H}, \quad \forall v \in H, \ d\mu\text{-a.e.} \ \gamma \in \Gamma,$ (3)

This is a common situation in many engineering problems when the properties of the media are parameter-depending.

M. Azaïez et al, A new Algorithm of proper generalized decomposition for parametrics symmetric elliptic problems. SIAM J. MATH. ANAL. Vol. 50, No. 5, pp. 5426–5445 (2018)

Examples

Case 1 : $H = H_0^1(\Omega)$ and $\gamma \in [0, 1]$

 $-\Delta u + \gamma u = f$, on Ω , u = 0 on $\partial \Omega$,

Case 2: $H = H_0^1(\Omega)$ and $\gamma \in [0.01, 1]$

 $-\nabla \cdot (\nu(x, \gamma) \nabla u) = f$, on Ω , u = 0 on $\partial \Omega$, $\Omega = [0, 1]^2$

with

$$\nu(x,\gamma) = \begin{cases} 1 & \text{if } 0 \le x \le 1/2\\ \gamma & \text{if } 1/2 < x \le 1 \end{cases}$$

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ⊙

Parametric elliptic problems

Considering the problem :

Find $\tilde{u} \in L^2(\Gamma, H; d\mu)$, $\bar{a}(\tilde{u}, v) = \int_{\Gamma} \langle f(\gamma), v(\gamma) \rangle d\mu(\gamma), \ \forall v \in L^2(\Gamma, H; d\mu)$, (4)

where

$$\overline{a}(v,w) = \int_{\Gamma} a(v(\gamma), w(\gamma); \gamma) \, d\mu(\gamma), \quad \forall v, w \in L^2(\Gamma, H; d\mu)$$
 (5)

It follows $\tilde{u} = u$ $d\mu$ -a.e. $\gamma \in \Gamma$, and then $u \in L^2(\Gamma, H; d\mu)$

Proper Generalized Decomposition

The PGD searches a tensorized decomposition to Approximate

$$u(\gamma) \simeq \sum_{k\geq 1} \Phi_k(\gamma) w_k, \ w_k \in H.$$

PGD computes the w_k online and iteratively.

- This is done by partial Galerkin problems.
- For instance, the first summand $u_1(\gamma) = \Phi_1(\gamma) w_1$, with $\Phi_1(\gamma) \in L^2(\Gamma, d\mu)$ and $w_1 \in H$ is a solution of

 $\begin{aligned} a(\Phi_1(\gamma) w_1, \Phi_1(\gamma) v) &= \langle f(\gamma), \Phi_1(\gamma) v \rangle, \ \forall v \in H, d\mu\text{-a.e. } \gamma \in \Gamma; \\ \int_{\Gamma} a(\Phi_1(\gamma) w_1, w_1) s(\gamma) d\mu(\gamma) &= \int_{\Gamma} \langle f(\gamma), w_1 \rangle s(\gamma) d\mu(\gamma), \ \forall s \in L^2(\Gamma, d\mu). \end{aligned}$

• These problems are (can be) solved by a power-iteration algorithm

Proper Generalized Decomposition

The following term

$$u_k(\gamma) = \sum_{j=1}^k \Phi_j(\gamma) w_j, = u_{k-1} + \Phi_k(\gamma) w_k w_k \in H.$$

is computed by a deflation algorithm, i. e., the same but replacing f by the current residual, $r_{k-1}(\gamma) = f(\gamma) - A(\gamma)u_{k-1}$.

- The PGD has been characterized as a descent method for elliptic problems (Falcó and Nouy, 2016).
- A. Falcó and A. Nouy, Proper generalized decomposition for nonlinear convex problems in tensor Banach spaces. Numer. Math. 121 (2012), 503–530.

Optimal sub-spaces of finite dimension

Problem targeted: Find the best subspace W of H of dimension $\leq k$ that minimizes the mean quadratic error between $u(\gamma)$ and $u_W(\gamma)$ with respect to the norm generated by the form $a(\cdot, \cdot; \gamma)$. That is, W solves

(P)
$$\min_{Z \in \mathcal{S}_k} \int_{\Gamma} a(u(\gamma) - u_Z(\gamma), u(\gamma) - u_Z(\gamma); \gamma) \, d\mu(\gamma), \qquad (6)$$

where S_k is the family of subspaces of H of dimension $\leq k$ and $u_Z(\gamma) \in Z$ is Galerkin projection of u on Z,

 $a(u_Z(\gamma), z; \gamma) = \langle f(\gamma), z \rangle, \quad \forall z \in Z, \ d\mu$ -a.e. $\gamma \in \Gamma$.

POD and PGD expansions

Some properties -due to the symmetry of $a(\cdot, \cdot)$ -

• For every closed subspace $Z \subset H$, the function u_Z defined as

$$u_Z \in L^2(\Gamma, H; d\mu), \quad \overline{a}(u_Z, z) = \int_{\Gamma} \langle (f(\gamma), z(\gamma)) d\mu(\gamma), \ \forall z \in L^2(\Gamma, H; d\mu)$$

is the unique solution of

$$\min_{z\in L^2(\Gamma,Z;d\mu)}\bar{a}(u-z,u-z).$$

• Moreover, for $d\mu$ -a.e. $\gamma \in \Gamma$, the vector $u_Z(\gamma)$ is the solution of

$$\min_{w\in Z} a(u(\gamma) - w, u(\gamma) - w; \gamma).$$

• The subspace $W \in \mathcal{S}_k$ solves problem (P) if and only if it is a solution of

$$\max_{Z\in\mathcal{S}_k}\int_{\Gamma}\langle f(\gamma),u_Z(\gamma)\rangle\,d\mu(\gamma).$$

A look at the 1D case

When k = 1, problem (P) can be written as

$$\min_{v\in H,\varphi\in L^2(\Gamma;d\mu)}\int_{\Gamma}a(u(\gamma)-\varphi(\gamma)v,u(\gamma)-\varphi(\gamma)v;\gamma)d\mu(\gamma).$$

So, taking the derivative of the functional

$$(\mathbf{v}, \varphi) \in H \times L^2(\Gamma; d\mu) \mapsto \int_{\Gamma} a(u(\gamma) - \varphi(\gamma)\mathbf{v}, u(\gamma) - \varphi(\gamma)\mathbf{v}; \gamma) d\mu(\gamma),$$

we deduce that W = Span(w), where w is a solution of the non-linear eigen-space problem

$$\int_{\Gamma} \frac{a(u(\gamma), w; \gamma)}{a(w, w, \gamma)} a(u(\gamma), v; \gamma) d\mu(\gamma) = \int_{\Gamma} \frac{a(u(\gamma), w; \gamma)^{2}}{a(w, w, \gamma)^{2}} a(w, v; \gamma) d\mu(\gamma),$$

$$\forall v \in H.$$
(7)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

A look at the 1D case

• If a does not depend on γ , statement (7) is equivalent to

$$\mathcal{R}w = \int_{\Gamma} a(u(\gamma), w) u(\gamma) d\mu(\gamma) = \lambda w,$$

where

$$\lambda = \frac{\int_{\Gamma} a(u(\gamma), w)^2 d\mu(\gamma)}{a(w, w)}.$$

i.e. w is an eigenvector of the POD operator \mathcal{R} when the inner product in H is the form $a(\cdot, \cdot)$.

• However, when a depends on γ problem (7) does not correspond to a proper eigenvalue equation: It is a non-linear eigenfunction problem, where no eigenvalues appear.

Then, we are considering a genuine extension of the POD.

Optimal sub-spaces

Theorem

There exists at least a sub-space $Z \in S_k$ that solves problem (P)

• Proof by direct method of the Calculus of Variations + compactness argument.

• Special proof for the 1D case. This problem is equivalent to

$$(\mathsf{P}') \max_{\substack{\Psi \in H \\ \|\Psi\|=1}} \int_{\Gamma} \frac{\langle f(\gamma), \Psi \rangle^2}{a(\Psi, \Psi; \gamma)} \, d\mu(\gamma).$$

Theorem

Problem (P') admits at least one solution.

• Proof by combination of direct method of the Calculus of Variations, compactness in Hilbert spaces, uniform boundedness and ellipticity of forms $a(\cdot, \cdot; \gamma)$ and Fatou's Lemma.

Tensor approximation

Similarly to the PGD, we expand $u(\gamma)$ by the tensor approximation

$$u(\gamma) = \sum_{k\geq 1} \Phi_k(\gamma) w_k, \ w_k \in H.$$

where the w_k are obtained by a deflation algorithm similar to the one followed by PGD:

• Initialization:

$$w_1 = \operatorname{argmin}_{\Psi \in \mathcal{H}} \int_{\Gamma} a(u(\gamma) - u_{\Psi}(\gamma), u(\gamma) - u_{\Psi}(\gamma); \gamma) \, d\mu(\gamma),$$

where u_{Ψ} is the Galerkin solution of the targeted elliptic problem on $span\{\Psi\}$.

• Iteration: Known $u_{k-1}(\gamma) = \sum_{i=1}^{k-1} \Phi_i(\gamma) w_i$, let $e_{k-1} = u - u_{k-1}$.

 $w_{k} = \operatorname{argmin}_{\Psi \in H} \int_{\Gamma} a(e_{k-1}(\gamma) - u_{\Psi}(\gamma), e_{k-1}(\gamma) - u_{\Psi}(\gamma); \gamma) d\mu(\gamma),$

Tensor approximation

• It holds that $w_k = (e_{k-1})_W$, with W a solution of

$$\max_{\Psi \in \mathcal{H}} \int_{\Gamma} \langle f_{k-1}(\gamma), (e_{k-1})_{\Psi}(\gamma) \rangle \, d\mu(\gamma),$$

where $\langle f_{k-1}(\gamma), v \rangle = \langle f(\gamma), v \rangle - a(u_{k-1}(\gamma), v)$ and $(e_{k-1})_{\Psi} \in L^2(\Gamma, Z_{\Psi}; d\mu)$ is the solution of

$$ar{a}ig((e_{k-1})_{\Psi},zig)=\int_{\Gamma}\langle f_{k-1}(\gamma),z(\gamma)
angle\,d\mu(\gamma),\quad orall\,z\in L^2(\Gamma,Z_{\Psi};d\mu).$$

• This allows us to carry out the different iterations without needing to know the function u.

Theorem

The approximations u_n provided by the deflation algorithm strongly converge to the solution u of problem (P).

• Proof by orthogonality properties of residuals, consequence of the symmetry of forms a.

Solution of eigen-space problem

Solution of non-linear eigen-spaces problem (1D case)

• We look for the solution of

$$\int_{\Gamma} \frac{a(u(\gamma), w; \gamma)}{a(w, w, \gamma)} a(u(\gamma), v; \gamma) d\mu(\gamma) = \int_{\Gamma} \frac{a(u(\gamma), w; \gamma)^2}{a(w, w, \gamma)^2} a(w, v; \gamma) d\mu(\gamma),$$

 $\forall v \in H$, by the Power-Iteration method,

$$\int_{\Gamma} [\varphi(w^{n}, \gamma)]^{2} a(w^{n+1}, v; \gamma) d\mu(\gamma) = \int_{\Gamma} \varphi(w^{n}, \gamma) a(u(\gamma), v; \gamma) d\mu(\gamma), \forall v \in H,$$

with $\varphi(w, \gamma) = \frac{a(u(\gamma), w; \gamma)}{a(w, w, \gamma)} = \frac{\langle f(\gamma), w \rangle}{a(w, w, \gamma)}.$
• One may prove that

 $\varphi(w^n,\gamma) \neq 0$ a. e. $d\mu(\gamma) \implies \varphi(w^{n+1},\gamma) \neq 0$ a. e. $d\mu(\gamma)$.

Then the iteration method is well defined.

Solution of non-linear eigen-spaces problem

• We are finding an eigen-space of the operator $T: H \mapsto H$ given by

$$\int_{\Gamma} [\varphi(w,\gamma)]^2 a(T(w),v;\gamma) d\mu(\gamma) = \int_{\Gamma} \varphi(w,\gamma) a(u(\gamma),v;\gamma) d\mu(\gamma), \forall v \in H.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Note that $T(\lambda w) = \lambda T(w)$ as $\varphi(\lambda w, \gamma) = \lambda^{-1} \varphi(w, \gamma)$.

We have tested the Algorithm for 2D academic elliptic problems:

Test 1

$$-\Delta u + \gamma u = f$$
, on Ω , $u = 0$ on $\partial \Omega$,

with $\gamma \in [0, 1]$, f = 1.

- \rightarrow The integrals on Γ have been approximated by the mid-point rule.
- The PI Method has been used to solve the eigen-space problem.
- Results:
 - The Power Iteration Method converges with linear rate (\simeq 1/4).
 - The series $\sum_{i\geq 1} \Phi_i(\gamma) w_i(x)$ converges to the solution $u(x, \gamma)$ with spectral rate (the error is roughly divided by 10^4 at each iteration).

Numerical tests

Test 2

 $-\nabla \cdot (\nu(x, \gamma) \nabla u) = f$, on Ω , u = 0 on $\partial \Omega$, $\Omega = [0, 1]^2$

with

$$\nu(x,\gamma) = \begin{cases} 1 & \text{if } 0 \le x \le 1/2 \\ \gamma & \text{if } 1/2 < x \le 1 \end{cases} \text{ with } \Gamma = [0.01,1], \ f = 1.$$

- Results:
 - The Power Iteration Method converges with linear rate ($\simeq 1/2$).
 - The series ∑_{i≥1} Φ_i(γ) w_i(x) converges to the solution u(x, γ) with spectral rate (the error is roughly divided by 430 at each iteration).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Eigenfunctions

(ロト・日本・モン・モン・モー のへの)

Eigenfunctions w_1 , w_2 , w_3 .

Eigenfunctions w₄, w₅.

Computation of PGD modes

The PGD method builds an iterative approximation of the solution of (4) by a deflation approach. It approximates the solution u by a series

$$u(\gamma) = \sum_{i\geq 1} \varphi_i(\gamma) w_i,$$

where the pairs $(\varphi_i, w_i) \in L^2(\Gamma, d\mu) \times H$ are recursively obtained as a solution of the non-linear coupled problems

$$\begin{cases} \bar{a}(\varphi_{i} w_{i}, \varphi_{i} v) = \langle \bar{f}_{i}, \varphi_{i} v \rangle & \forall v \in H, \\ \bar{a}(\varphi_{i} w_{i}, \psi w_{i}) = \langle \bar{f}_{i}, \psi w_{i} \rangle & \forall \psi \in L^{2}(\Gamma, d\mu). \end{cases}$$
(8)

For all $i = 1, 2, \cdots$, all problems (8) fit within the following abstract formulation: Find $(\varphi, w) \in L^2(\Gamma, d\mu) \times H$ solution of

$$\begin{cases} \bar{a}(\varphi w, \varphi v) = \langle \bar{f}, \varphi v \rangle & \forall v \in H, \\ \bar{a}(\varphi w, \psi w) = \langle \bar{f}, \psi w \rangle & \forall \psi \in L^{2}(\Gamma, d\mu). \end{cases}$$
(9)

Computation of PGD modes

To solve (9) we will apply a PI algorithm with normalization. Consider $v \in H$ and denote by $\varphi(v) = \varphi(v, \cdot) \in L^2(\Gamma, d\mu)$ and $z = T(v) \in H$ the solutions of the problems

$$\bar{\mathfrak{g}}(\varphi(\mathbf{v})\,\mathbf{v},\psi\,\mathbf{v}) = \langle \bar{f},\psi\,\mathbf{v}\rangle \quad \forall \psi \in L^2(\Gamma,d\mu); \tag{10}$$

$$\bar{a}(\varphi(v)\,z,\varphi(v)\,u) = \langle \bar{f},\varphi(v)\,u\rangle \quad \forall u \in H.$$
(11)

PI Algorithm with normalization is stated as follows: **Initialization:** Give a non-zero $w^0 \in H$ such that $\varphi^0 = \varphi(w^0)$ is non-zero in $L^2(\Gamma, d\mu)$.

Iteration: Known a non-zero $w^n \in H$ such that $\varphi^n = \varphi(w^n)$ is non-zero in $L^2(\Gamma, d\mu)$, compute

a)
$$\widetilde{w}^{n+1} = T(w^n) \in H \text{ and } w^{n+1} = \frac{\widetilde{w}^{n+1}}{\|\widetilde{w}^{n+1}\|} \in H;$$
 (12)
b) $\varphi^{n+1} = \varphi(w^{n+1}) \in L^2(\Gamma, d\mu).$

Here $\varphi \in L^2(\Gamma, d\mu)$ "is not zero" means is not zero $d\mu_{\exists}a$. e. $\gamma \in \Gamma$.

Error estimates for the PI Algorithm

Let us introduce, for $\varepsilon > 0$, the sets

$$\mathcal{E}_{\varepsilon} = \{\psi \in L^2(\Gamma; d\mu) \text{ s. t. } \|\psi\|_{L^2(\Gamma; d\mu)} \ge \varepsilon \},$$

Define the functions

$$\begin{split} \Phi_{1}(\xi) &= \left(1 + \frac{M}{\alpha} \frac{2 + \xi}{(1 - \xi)^{2}}\right), \ \Phi_{2}(\xi) = \frac{M}{\alpha} \left(1 + \frac{1}{1 - \xi}\right) \ \Phi_{1}(\xi), \\ \sigma(\xi, \zeta) &= \left(\Phi_{1}(\xi) + \frac{\Phi_{2}(\xi)}{1 - \xi} \left(\frac{\zeta}{\alpha \varepsilon}\right)^{2}\right) \left(\frac{\zeta}{\alpha \varepsilon}\right)^{2}, \\ \delta(\xi, \zeta) &= \frac{1}{2} \left(\frac{1}{1 - \sigma(\xi, \zeta) \xi} \Phi_{1}(\xi) + \Phi_{2}(\xi)\right) \left(\frac{\zeta}{\alpha \varepsilon}\right)^{2}; \end{split}$$

where α and ${\it M}$ are the constants of ellipticity and continuity. Note that, if $\xi \neq 1$

$$\lim_{\zeta\to 0}\sigma(\xi,\zeta)=\lim_{\zeta\to 0}\delta(\xi,\zeta)=0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Error estimates for the PI Algorithm

Theorem

Assume that $f \neq 0$. Assume that the sequence provided by the PI Algorithm satisfies $\varphi^n \in \mathcal{E}_{\varepsilon}$, for some $\varepsilon > 0$. Assume that

$$\sigma(r, \|f\|_{L^2(\Gamma, H'; d\mu)}) < r^{-1}$$
 and $\delta(r, \|f\|_{L^2(\Gamma, H'; d\mu)}) < 1$

for some $r \in (0,1)$. Then if $z \in B_H(w,r)$ is such that $\varphi(z) \neq 0$, it holds $\frac{T(z)}{\|T(z)\|} \in B_H(w,r) \text{ and}$

$$\left\|\frac{T(z)}{\|T(z)\|} - w\right\| \le \Delta \|z - w\|.$$
(13)

where $\Delta = \delta(r, ||f||_{L^2(\Gamma, H; d\mu)})$. Consequently the Power Iteration Algorithm to solve problem (9) converges with linear rate to w, the error estimate

$$\|w^{n} - w\| \le \Delta^{n} \|w^{0} - w\| \text{ if } w^{0} \in B_{H}(w, r)$$
(14)

Error estimates for the PI Algorithm

Remark

Note that from Theorem 4, it holds

• The convergence rate of the PI Algorithm is bounded as

$$\Delta \leq C_1 \rho^{-2} + o(\rho^{-2}),$$

where $\rho = \frac{\|f\|_{L^2(\Gamma, H'; d\mu)}}{\alpha \varepsilon}$, and $\lim_{\tau \to \infty} \frac{o(\tau)}{\tau} = 0$, for some constant C_1 .

- If f is changed into cf for some constant c, then the functions φⁿ are changed into cφⁿ. Consequently, ε is changed into |c|ε, and therefore the bound Δ for the convergence rate does not change under re-scaling of the r. h. s. f.
- The Theorem 4 also holds when the form a is non-symmetric, its symmetry is assumed nowhere in its proof.

Numerical experiments

We consider the solution of

$$\begin{cases} -\nabla \cdot (\mu(\gamma) \nabla u) = f & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega; \end{cases}$$
(15)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where

$$\Omega = (0,1)^2 \text{ and } \mu(\gamma)(\mathbf{x}) = \begin{cases} \gamma + \alpha_{\min} & \text{if } 0 \le x \le 1/4, \\ 1 + \alpha_{\min} & \text{if } 1/4 \le x \le 1. \end{cases} \text{ for all } \mathbf{x} \in \overline{\Omega}.$$
(16)

 α_{\min} is a real number to be selected to vary the minimum of $\mu(\gamma)$ (it is right the α in Theorem 4).

In sequel $H = H_0^1(\Omega)$ we have set $\Gamma = [0.01, 1]$ and

$$\gamma_i = 0.01 + \frac{0.99}{N} (i - \frac{1}{2}), \quad i = 1, \cdots, N.$$

Numerical experiments

Numerical experiments : convergence behaviour of the PI

We fix α_{min} such that $\alpha = 1$. As expected the PI Algorithm, converges with linear rate. Table 1 displays the numerical convergence rates, estimated by

$$r = \frac{\|w^{n+1} - w^n\|_H}{\|w^n - w^{n-1}\|_H}.$$
(17)

Iteration	Mode 1	Mode 2	Mode 3
1	75,30	104,44	24,31
2	73,57	22,13	12,04
3	_	22,1	22,09
4	_	_	22,09

Table: Convergence rates of PI Algorithm (12) to compute the three first PGD modes for problem (15).

M. Azaïez, T. Chacón Rebollo and M. Gómez Mármol, *On the computation of PGD modes of parametric elliptic problems*. SEMA, 2010

Numerical experiments : convergence of the PGD series

In this test we study the convergence of the truncated series u_i to the parametric solution $u(\gamma)$. The errors are measured in $L^2(\Gamma, L^2(\Omega), d\mu)$ and $L^2(\Gamma, H_0^1(\Omega), d\mu)$ norms. We observe a spectral convergence, possibly consequence of the analyticity of $u(\gamma)$ as a function of γ with values in H.

Figure: Convergence history of the modes u_i to $u(\gamma)$

・ロト ・ 何ト ・ ヨト ・ ヨト … ヨ

Numerical experiments : effect of the viscosity

This experiment studies the dependence of the convergence rate on the minimum of the viscosity. We fix the values of α_{min} in order to have $\alpha = 1, 2, \text{ and } 4, 16, 32, 1000 \text{ and } 2000$. Table 2 displays the results for the two first modes, also displaying the ratio of convergence rates between consecutive values of α .

α	Mode 1	ratio	Mode 2	ratio
1	75	-	22	-
2	200	2.67	68	3.09
4	630	3.15	230	3.38
8	2200	3.49	854	3.66
16	8200	3.72	3250	3.80
32	31340	3.82	12680	3.90
100	302759	-	-	-
200	1204188	3.98	-	-

Table: Convergence rates of PI Algorithm to compute the 2 first PGD modes vs α . The ratios are the quotient between two consecutive convergence rates.

Numerical experiments : non-symmetric case

We study the convergence rate of the PI algorithm to compute the PGD modes for a non-symmetric parametric elliptic problem. We consider the advection-diffusion equations where the Péclet number acts as the parameter γ in our theory. This problem reads

$$\begin{cases}
\frac{\partial u}{\partial x} - \frac{1}{\gamma} \Delta u = f & \text{in } \Omega; \\
u = 1 & \text{on } \Gamma_1; \\
u = 0 & \text{on } \Gamma_2; \\
\frac{\partial u}{\partial n} = 0 & \text{on } \Gamma_3,
\end{cases}$$
(18)

where

 $\Omega = (0,10) \times (0,1), \ \Gamma_1 = \{0\} \times (0,1), \ \Gamma_2 = \{10\} \times (0,1), \ \Gamma_3 = \partial \Omega \setminus (\Gamma_1 \cup \Gamma_2),$

In this problem Γ_1 and Γ_3 respectively are the inflow and outflow boundaries, as the advection velocity is (1,0).

Numerical experiments : non-symmetric case

This behavior predicted by Theorem 4 is confirmed by our results. Table 3 displays the ratio between consecutive convergence rates. We consider $\Gamma = [\gamma_1, \gamma_2]$, $\gamma_1 = 10^{-2}$ and decreasing values of γ_2 . Note that the minimum coercivity constant of the forms $a(\cdot, \cdot; \gamma)$ when $\gamma \in \Gamma$ is $\alpha = 1/\gamma_2$. We observe that the ratios are close to the theoretical asymptotic value of 4, getting closer as α increases (Theo.4).

α	Mode 1	ratio	Mode 2	ratio
0.064	402	-	520	-
0.128	1926	4.79	3474	6.53
0.256	8974	4.66	10954	4.36
0.512	43876	4.42	44886	4.10
1.024	173226	3.95	179069	3.99
2.048	690860	3.99	728603	4.07

Table: Convergence rates of PI Algorithm to compute the two first PGD modes for problem (18) vs α . The ratios are the quotient between two consecutive convergence rates.

Concluding remarks

 We have constructed an intrinsic tensorized approximation of parameterized elliptic equations (similar to PGD), with optimal approximation of each summand and orthogonality between residuals (similar to POD).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Strong convergence of approximations.
- Very promising results for 2nd order elliptic equations, by power-iteration algorithm.