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Preface

The 11th International Conference on Mathematical and Numerical Aspects of Waves Propagation is
jointly organized and supported by ENIT-LAMSIN, ENSTA and INRIA. This conference is the main
venue where significant advances in the analysis and computational modeling of wave phenomena and
exciting new applications are presented. This book summarizes the works that have been selected for
presentation at the conference and is composed of extended abstracts for invited plenary talks, two-
pages abstracts for invited minisymposia talks and two-pages abstracts for selected contributed talks.
The selection has been done based on reports by members of the scientific committee and we are very
grateful for their valuable help with this issue.
These contributions cover major themes related to waves, that include forward and inverse scattering,
nonlinear wave phenomena, fast computational techniques, high performance computing, numerical
analysis, absorbing layers and approximate boundary conditions, analytic and semi-analytic techniques
for wave problems, domain decomposition, guided waves, periodic and random media etc... We believe
that they provide a rather complete and up-to-date overview of the state of the art in the domain.
The organization of the meeting was done in a full coordination between the organizing committee and
the local organizing committee. We thank all of them for their contribution to the success of this event.
A special thank goes to Skander Belhaj who set up the web page, to Ibrahim Trabelsi who did the
technical editing of the book of abstracts and to Sonia Fliss who took care of all technicalities related to
elaborating the conference program.

Nabil Gmati and Houssem Haddar
On behalf of the organizing committee.
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Explicit Local Time-Stepping Methods For Wave Propagation
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Abstract

Semi-discrete Galerkin formulations of transient
wave equations, either with conforming or discontin-
uous Galerkin finite element discretizations, typically
lead to large systems of ordinary differential equa-
tions. For any explicit time integration method, the
time-step will then be constrained by the smallest
elements in the mesh, possibly very high a price to
pay. Explicit local time-stepping schemes (LTS) per-
mit to overcome the crippling effect of locally refined
meshes without resorting to implicit methods.

For wave equations without damping, leap-frog
based LTS methods lead to high-order explicit LTS
schemes, which also conserve the energy. For damped
wave equations, Adams-Bashforth or Runge-Kutta
based LTS methods lead to efficient LTS schemes
of arbitrarily high accuracy. When combined with
a finite element discretization in space with an es-
sentially diagonal mass matrix, the resulting time-
marching schemes are fully explicit and thus inher-
ently parallel. Numerical experiments with contin-
uous and discontinuous Galerkin finite element dis-
cretizations validate the theory and illustrate the use-
fulness of these local time-stepping methods.

Finite Element Discretization

Consider the (damped) wave equation

utt + σut −∇ · (c2∇u) = f in Ω× (0, T ) , (1)

with appropriate initial and boundary conditions in
a bounded domain Ω ⊂ Rd. Here the damping co-
efficient, σ = σ(x) ≥ 0, is non-negative but possi-
bly zero, the speed of propagation, c = c(x) > 0, is
piecewise smooth and strictly positive, and f(x, t) is
a known source term. Spatial discretization of (1)
with continuous finite elements (with mass lumping)
[1] or discontinuous Galerkin (DG) methods [6], [8]
leads to the second-order system of ordinary differ-
ential equations

M
d2U

dt2
(t) + Mσ

dU

dt
(t) + KU(t) = R(t) , (2)

or to the alternative first-order system

M
dQ

dt
(t) + MσQ(t) + CQ(t) = R(t) , (3)

both with an essentially diagonal mass matrix M.
Thus, when combined with explicit time integration,
the resulting fully discrete scheme for the solution of
(1), or any other similar wave equation from electro-
magnetics or elasticity, will be truly explicit.

Local Time Stepping

Locally refined meshes impose severe stability con-
straints on explicit time-stepping methods for the nu-
merical solution of (1). Local time stepping (LTS)
methods overcome that bottleneck by using smaller
time-steps precisely where the smallest elements in
the mesh are located.

In the absence of damping, that is σ = 0, explicit
second-order LTS integrators for (2) were proposed
in [2], [3], which are based on the standard leap-frog
scheme. By combining these time-stepping schemes
with the modified equation approach, the resulting
LTS methods achieve arbitrarily high (even) order of
convergence.

In the presence of damping, LTS methods based
on Adams-Bashforth multi-step schemes for (3) were
derived in [4], which achieve arbitrarily high ac-
curacy while remaining fully explicit. In contrast
to Adams-Bashforth methods, Runge-Kutta (RK)
methods are one-step methods; hence, they do not re-
quire a starting procedure and easily accommodate
adaptive time-step selection. Although RK meth-
ods do require additional evaluations per time-step,
that additional work is compensated by a less strin-
gent CFL stability condition. Recently, LTS meth-
ods based either on classical RK or low-storage RK
methods were derived for (3) in [5]. In particular, the
resulting LTS-RK schemes achieve the same rate of
convergence as the original classical or low-storage
RK methods; hence, they also yield efficient LTS
methods with optimal stability properties.

Since the above LTS methods are truly explicit,
their parallel implementation is straightforward; in
particular, it requires no adjacency or coherence in
the numbering of the degrees of freedom nor any spe-
cial data structures. In the presence of multi-level
mesh refinement, each local time-step in the fine re-
gion can itself include further local time-steps inside
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Figure 1: The error at T = 10 vs. the mesh size
h = hcoarse is shown for the LTS-RK4(p) method
with p = 2, 5, 11 and either continuous (top) or

nodal DG (bottom) P3 finite elements.

a smaller subregion with an even higher degree of lo-
cal mesh refinement. The explicit local time-stepping
schemes for the scalar (damped) wave equation im-
mediately apply to other wave equations from elec-
tromagnetics or elasticity [4]; in fact, they can be
used for general linear first-order hyperbolic systems.

Numerical Experiments

Convergence Study

To validate the optimal convergence rate of the
RK4 based LTS scheme, for instance, we now con-
sider (1) in one space dimension with constant wave
speed c = 1 and damping coefficient σ = 0.1 on the
interval Ω = [0, 6]. The initial conditions are chosen
to yield the exact solution uex(x, t) = cos(t) ·sin(πx).
Next, we divide Ω into three equal parts. The left and
right intervals, [0, 2] and [4, 6], are discretized with an

Figure 2: Merapi volcano: the initial triangular
mesh is shown. The green triangles near the surface

belong to the “fine” mesh.

equidistant mesh of size hcoarse, whereas the interval
[2, 4] is discretized with an equidistant mesh of size
hfine = hcoarse/p. Hence, the two outer intervals cor-
respond to the coarse region and the inner interval
[2, 4] to the refined region. For each time-step ∆t in
the coarse region, we take p local time-steps of size
∆τ = ∆t/p.

For spatial discretization, we consider either a
standard H1-conforming FE or a nodal DG dis-
cretization with P3 elements. For a sequence of
meshes, we monitor the L2 space-time error in the nu-
merical solution until the final time T = 10. Indepen-
dently of the number of local time-steps p = 2, 5, 11,
we observe the expected overall fourth-order conver-
gence with respect to the L2-norm, see Fig. 1.

Two-Dimensional Example

To illustrate the versatility of our approach, we
now consider a 2D model of the Merapi volcano (In-
donesia) which requires a highly refined mesh near
the surface of the Earth, as shown in Fig. 2. We
set c = 1 on its Eastern and c = 2 on its West-
ern ridge. At the surface, we impose a homogeneous

MARCUS J. GROTE 4



Figure 3: Merapi volcano: the numerical solution
is shown at times t = 0.2, 0.5, 1, 1.6, 1.9, 3.5.

Neumann condition, whereas at the lateral and lower
boundaries we truncate the computational domain
with an efficient PML formulation for second-order
wave equations [7].

For the spatial discretization we use standard H1-
conforming P2 elements whereas for the time dis-
cretization, we choose the third-order LTS-RK3
scheme. Thus, the numerical method is third-order
accurate both in space and time with respect to the
L2-norm. Since the typical mesh size inside the re-
fined region is about twelve times smaller than that
in the surrounding coarser region, we take p = 12 lo-
cal time steps of size ∆τ = ∆t/p for every time step
∆t inside the coarser region.

In Fig. 3 we display snapshots of the numerical
solution as the initial Gaussian pulse propagates up-
wards and impinges on the discontinuity in the ve-
locity field. At the lateral and lower boundaries, the
waves leave the computational domain without any
spurious reflection.
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Abstract

We consider the problem of imaging in heavy clut-
ter, i.e., strongly backscattering media in which the
echoes from the objects that we wish to image are
overwhelmed by the background medium reflections.
In such regimes the signal (coherent echoes) to noise
(incoherent backscatter) ratio (SNR) of the data is
very low and because of this coherent imaging fails.
One solution is to assume that there is no coher-
ence left in the data and use incoherent methods
which rely only on intensities [3]. Incoherent imaging
however, has very low resolution unless a priori in-
formation is available or very large arrays are used.
Alternatively, we propose the use of data process-
ing techniques that enhance the SNR of the coherent
echoes by filtering out the clutter backscatter. We re-
view here such an approach which adaptively selects
the time-frequency windows that contain the coher-
ent echoes [1], [9], and present some recent develop-
ments towards its application to the case of multiple
reflectors.

1 Array imaging

1.1 Problem setup

In array imaging the data is the array response ma-
trix P(t) whose elements are the traces P (t, ~xr, ~xs).
They are obtained by emitting probing pulses f(t)
from sources located at ~xs, s = 1, . . . , Ns, and by
recording the medium response at the array receivers
~xr for r = 1, . . . , Nr. We assume here that sources
and receivers are collocated and Ns = Nr = N . To
model the data we consider the scalar acoustic wave
equation in an open, unbounded domain Ω,

1

v2(~x)

∂2p(t, ~x)

∂t2
−∆p(t, ~x) = f(t)δ(~x− ~xs),

p(0, ~x) = 0,
∂p(0, ~x)

∂t
= 0.

(1)

Each element of the response matrix, P (t, ~xr, ~xs),
equals p(t, ~xr), the solution of (1) for a point source

located at ~xs emitting the pulse f(t), where

f(t) = e−iω0tfB0(t),

and with Fourier transform

f̂(ω) =

∫ ∞

−∞
ei(ω−ω0)tfB0(t)dt = f̂B0(ω − ω0), (2)

supported in the frequency interval centered at ω0

with bandwidth B0.
In (1), v(~x) is the wave speed that can be decom-

posed as,

1

v2(~x)
=

1

c2(~x)

(
1 + εµ

(
x

`
,
z

`z

)
+ ν(~x)

)
, (3)

Here z denotes the direction of propagation, or range,
and x the cross-range. The reflectivity of the object
that we wish to image is the unknown ν(~x). Our goal
in imaging is to determine the support of ν(~x) given
the array data P(t) and assuming that we know c(~x),
which is the smooth part of the velocity.

To model clutter we introduced, in (3), µ(x` ,
z
`z

), a
statistically homogeneous random process with zero
mean. This expresses our uncertainty about the in-
homogeneities in the propagation medium, which are
not known and cannot be estimated in detail. The
strength of the inhomogeneities is controlled by the
parameter ε, and the scale of the inhomogeneities is
given by the correlation length ` which can be differ-
ent in the range and cross-range directions.

1.2 Coherent imaging methods

The simplest coherent imaging method is Kirchhoff
migration (KM) which can be written as,

J KM(~ys) =
N∑

r=1

N∑

s=1

∫
dωQ̂(~ys;~xs, ~xr, ω), (4)

where Q̂(~ys;~xs, ~xr, ω) are the backpropagated traces
at point ~ys,

Q̂(~ys;~xs, ~xr,ω) = P̂ (~xr, ~xs, ω)×
exp [−iω(τ(~xr, ~y

s) + τ(~xs, ~y
s))] .

(5)
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KM forms the image at points ~ys in the imaging win-
dow, by summing over the array elements the back-
propagated traces. The back-propagation from the
receiver, ~xr, to the image point, ~ys, and then back
to the source, ~xs, is done approximately, with travel
times τ computed in a fictitious medium with sound
speed c(~x), which is the smooth part of v(~x).

Kirchhoff migration works well in smooth media
when there is no clutter or the clutter is weak. It
does not give satisfactory results in clutter, however,
where the KM images become noisy and statistically
unstable, i.e., they change unpredictably with the re-
alization of the clutter [4]. This is because the effect
of the random inhomogeneities on the waves prop-
agating through clutter is cumulative, and, for long
distances of propagation, the traces have long and
noisy codas even when ε in (3) is small (∼ 2-3%).

To image in such regimes, we developed the coher-
ent interferometric (CINT) methodology [4], [5], [6],
[7], [8]. CINT forms images by superposing time de-
layed, local cross-correlations of the array traces, in-
stead of the traces themselves. The cross-correlations
are computed over time windows of width 1/Ωd and
over source and receiver offsets that do not exceed
Xd. The two parameters that control the size of
the windows are the decoherence frequency (Ωd) and
length (Xd) and depend on the random medium and
the distance of propagation. The decoherence length,
Xd, depends on the frequency as well [4],

Xd(ω) =
c0

ωκd
. (6)

Both Ωd and Xd (i.e., κd) can be estimated adap-
tively during the image formation process (cf. [5]).
The CINT imaging functional is given by

J CINT(~ys; Ωd, κd) =

∫ ∫

|ω−ω′|≤Ωd

dωdω′
N∑

r=1

N∑

r′=1

|~xr−~xr′ |≤Xd

(
ω+ω′

2

)

N∑

s=1

N∑

s′=1

|~xr−~xr′ |≤Xd

(
ω+ω′

2

)

Q̂(~ys;~xs, ~xr, ω)Q̂(~ys;~xs′ , ~xr′ , ω′)

with Q̂(~ys;~xs, ~xr, ω) defined in (5).

2 Illustration of heavy clutter effects on co-
herent imaging

We consider here imaging in heavy clutter, that
we model by allowing ε in (3) to take large values

of the order of 10-20%. For moderate clutter (ε ∼ 3-
5%), the SNR of the coherent signal is relatively high
and imaging can be done successfully with coher-
ent interferometry (CINT) [4], [6]. In heavy clut-
ter, however, CINT does not work well. To illus-
trate this, let us consider the configuration depicted
in Figure 1, where two small scatterers are embed-
ded in a strongly scattering medium. Remark that
the second reflector is hidden behind the first one
and this makes its detection and imaging quite chal-
lenging. We choose the simulation parameters so as
to be in a regime that is typical in ultrasonic non-
destructive testing experiments [2]. The velocity of
the background medium fluctuates around the con-
stant c(~x) = 1Km/s. The strength of the fluctu-
ations is ε = 10% and the medium is obtained by
combining an isotropic random medium with corre-
lation length ` = `z = λ0/4 and a layered medium
with `z = λ0/50.

x
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Figure 1: Two reflectors embedded in a strongly
scattering medium. The array is on the top. The
velocity of the medium fluctuates around the con-
stant c(~x) = 1Km/s. The horizontal axis is cross-
range and the vertical is range, measured in units of
λ0 = 0.1mm.

To obtain the array response matrix we solve nu-
merically the wave equation (1) in the heterogeneous
medium with velocity v(~x) shown in Figure 1. The
pulse f(t) is a second derivative of a Gaussian with
central frequency f0 = 10MHz. The reflectors are
small disks of diameter λ0/2 and are modelled as
soft scatterers, i.e., the acoustic field is zero at their
boundary. Length is measured in units of the central
wavelength λ0 = 0.1mm.
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Figure 2: Data traces obtained on the array for
a pulse emitted by the central array element for the
configuration shown on Figure 1. It is impossible to
distinguish in the traces any coherent echo arriving
from the scatterers we wish to image.

The data traces obtained when the pulse is emitted
from the central array element are shown on Figure
2. We cannot observe in the traces any coherent echo
arriving from the scatterers we wish to image. That
is why coherent imaging methods fail to produce a
good image in that setup.
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Figure 3: KM (left) and CINT (right) images ob-
tained for the data shown on Figure 2. The true
location of the scatterers is shown with black circles.

The Kirchhoff migration and CINT images are
shown on Figure 3. CINT is computed with κd =
0.05 and Ωd = 3MHz. We observe that both images
are very noisy and have maxima (red pixels in the
picture) at several locations that do not correspond
to the reflectors. As a result, we cannot distinguish
the objects we wish to image from the background
noise.

To improve these results and be able to image with
coherent techniques in heavy clutter we follow the
approach of [9] that consists in detecting the presence
of the coherent signal and then amplifying its SNR
by adequate filtering.

3 Adaptive time-frequency filtering

Our filtering algorithm is the one proposed in [9]
and is based on the following remark: the coherent

echoes due to a reflector take the form of a hyperbola
whose support is limited and contained in a small
time window. The question is how to find this win-
dow in the noisy data traces without having any a
priori information on the location of the reflector.

We perform the window search on a binary tree
(see Figure 4). Each node of the tree is associated
with the local cosine coefficients of the response ma-
trix. Our detection is based on the behavior of the
singular values of this matrix. Starting from the root,
we seek for an anomalous behavior of the largest sin-
gular values. Once a window is selected, it is re-
fined by continuing the search to its children, and so
on. Filtering consists in zeroing the LC coefficients
in all other windows but the selected ones, and in
projecting the matrix of LC coefficients on to the
low rank subspace associated with the singular val-
ues with anomalous behavior.

l = 1 j = 0 j = 1

l = 2

l = 0

j = 0

j = 0 j = 1 j = 2 j = 2 −1
l

Figure 4: Illustration of the time windowing seg-
mentations of the array data traces at different tree
levels l. The schematic on the left illustrates the bi-
nary tree. On the right we show the segmentation
of the data traces in the time windows indexed by j,
with j = 0, 1, . . . , 2l−1, at tree levels denoted by l.

The input of the algorithm is the array response
matrix P(t), for time t ∈ [To, Tf ], sampled on a mesh
with NT = 2m points. We also need to specify the
maximum level of the tree, D ≤ m, to be used in the
LCT. This is chosen so that we have enough samples
of the signal at each level of the tree. The detection
and filtering algorithm consists of the following steps.

T.1 LCT of the response matrix. At first we com-
pute the binary tree of the local cosine coeffi-
cients of the response matrix. At each level l of
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the tree, with 0 ≤ l ≤ D, we compute the real
N × N matrices of coefficients P̂l(tlj , ωln) given
by

P̂l(tlj , ωln) =
{
P̂ l(tlj , ω

l
n, ~xr, ~xs)

}
r,s=1,...,N

, (7)

with

P̂ l(tlj , ω
l
n, ~xr, ~xs) =

∫
dt P (t, ~xr, ~xs)

√
2

∆tl
×

χ

(
t− tj
∆tl

)
cos[ωln(t− tj)].

Here tlj are the mesh points that define the width
and location of the time windows at level l,

tlj = j∆tl =
jT

2l
, j = 0, 1, . . . , 2l, (8)

and ωln are the frequencies associated with the
decomposition in the smooth windows χ,

ωln =
π (n+ 1/2)

∆tl
, n ∈ N. (9)

This is the usual LCT algorithm and more in-
formation about it can be found in [11].

T.2 Singular value decomposition of the local co-
sine matrices of coefficients. For each l and tlj
we compute the SVD of P̂l(tlj , ωln), frequency by

frequency. Let us denote by σl,jq (ωln) the singular
values, for q = 1, . . . N .

We then form the matrices of the first Q nor-
malized singular values,

Sl,j =
{
σ̃l,jq (ωln)

}
1≤q≤Q,n∈N l

,

where σ̃l,jq (ωln) =
σl,jq (ωln)

max
n′

σl,jq (ωn′
l
)
,

over the set of frequency indices

N l =
{
n = 0, 1, . . . , NT /2

l − 1, s.t. ωln ∈ B
}
,

with cardinality |N l|.
We then compute the SVD of matrices Sl,j , for
j = 0, . . . , 2l − 1 and l = 0, . . . , D, and calculate

λl,j = γl,j2 /γl,j1 , (10)

where γl,jq , for 1 ≤ q ≤ min{Q, |N l|}, are the
singular values of Sl,j .

T.3 Detection and Filtering. We select the time
window of interest as follows:

For l = 0 : D
If λl,j has a maximum above a predetermined
threshold, let l0 be this l and stop.

Next, initialise jl0? = arg max
j

λl0,j .

For l = l0 + 1 : D
Compute jl? = argmax

j∈{2jl−1
? ,2jl−1

? +1}
λl,j .

If jl? is a maximum of λl,j above a predeter-
mined threshold, for j in the vicinity of jl?,
continue. Otherwise, set l = l − 1 and stop.

Select the window at tl
jl?

.

In the selected time window, define the filter
F jl? , that sets to zero the LC coefficients in the
windows that have not been selected, at level l,

F jl?P̂l(tlj , ωln) = 0, for j = 0, 1, . . . , 2l − 1,

j 6= jl? and n = 0, 1, . . . NT /2
l − 1.

Additional filtering is done by the filter Q, which
projects F jl?P̂l(tlj , ωln) on the subspace of low
rank matrices with singular vectors correspond-
ing to the “anomalous” top singular values. The
projection is done for frequency indices n in the
set N l. All other coefficients are set to zero.

The output of the algorithm is the filtered response
matrix in the time domain which is obtained by the
inverse LCT of the entries QF jl?P̂l(tlj? , ωln), at the
selected tree level l.

This algorithm was presented in detail in [9] to-
gether with several results for imaging one reflector
in various types of clutter. Its theoretical analysis
has been carried out in [1] in the case of finely lay-
ered media. The key idea is to detect an anomaly
pattern in the singular values of P̂l(tlj? , ω

l
n) (the ma-

trix of LC coefficients) that suggests the presence of
a coherent echo in the data.

Indeed, in the windows that contain only clutter
echoes, the top singular values follow a similar pat-
tern and they are clustered across frequencies. This
observation was analytically proven in the layered
case [1], and seems to hold for more general random
media. It implies, in particular, that the matrices
Sl,j of normalized singular values have almost rank
one in these windows.

The rank of Sl,j is expected to change and be-
come at least two in windows that contain detectable
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coherent echoes. More precisely, a reflector is de-
tectable by our algorithm when the largest singular
value of P̂l(tlj? , ω

l
n) can be bound away from those

due to clutter. In this case Sl,j has at least rank two
and that is why in our selection criterion we seek for
a maximum of λl,j , the ratio between the second and
the first singular value of Sl,j . We call the singu-
lar values associated to the coherent echoes “anoma-
lous” as they have a different behavior compared to
the other ones that correspond to clutter (and are
clustered together).

Remark that the time window refinement is cru-
cial: a reflector might become detectable at a lower
level in the tree although it is not detectable at higher
levels. Indeed, in heavy clutter, at higher tree levels,
the reflector is not detectable because the energy of
the coherent signal is small compared to the energy
of the clutter echoes. As we go to lower levels in the
tree the coherent energy remains the same while the
one associated to the clutter diminishes, that is why
the reflector can now be detected and imaged.

After the time-window selection step is finished,
our filtering consists in removing the contributions
of all the windows except the selected ones. It also
projects the matrix of coefficients, in the selected
windows, on the subspace of low rank matrices with
singular vectors corresponding to the “anomalous”
singular values. The projection is done with the trun-
cated SVD.

There are two parameters in the algorithm that
we have to choose. The number of singular values
Q and the frequency band B. Typically we should
have 2M ≤ Q ≤ N , where M is the number of scat-
terers we are searching for, and N is the dimension
of the response matrix. The results of the algorithm
are not very sensible to the value of Q and we take
Q = 10 in practice. The bandwidth B is the part of
the frequency spectrum on which the scatterers are
detectable and this is usually the lower part of the
spectrum.

4 Detection and filtering results

Let us now apply the filtering algorithm previously
described to the array data for the imaging problem
considered in section 2. The first important step is
the selection of the time windows. We show in Figure
5(top) the selection criterion (10) at level l = 4. It
suggests that coherent echoes are present in windows
7 and 9. On the bottom plots of the same figure

we show the normalized singular values σ̃l,jq (ωln) in
these windows. We used Q = 10 and B = [0, 5]MHz.
The number of “anomalous” singular values is 2 for
window 7 and 1 for window 9.
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Figure 5: Time window selection. Top: the selec-
tion criterion (10) suggests that there are two win-
dows that contain coherent echoes, windows 7 and
9. On the bottom left and right plots we display the
first Q = 10 normalized singular values σ̃l,jq (ωln) for
ωln ∈ B = [0, 5]MHz in the selected windows 7 and 9
respectively. Observe that there are two anomalous
singular values at window 7 and one at window 9.
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Figure 6: Imaging results using the filtered data.
On the left we show the KM image and on the right
the CINT image computed with κd = 0.02 and Ωd =
3MHz. On the top row we display the images for
the first reflector (selected window 7 at level 4) and
on the bottom row the ones for the second reflector
(selected window 9 at level 4).
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After selecting the time windows of interest we fil-
ter the data as described in Step T.3 of our algorithm.
We show the images obtained with the filtered data
in Figure 6. The improvement with respect to Fig-
ure 3 is dramatic. The results are now extremely
good, the images have clear peaks on the reflectors
that we wish to image and their location is correctly
estimated. Remark that the detection of the second
reflector is unambiguous (see Figure 5) which results
in its accurate imaging (see Figure 6, bottom row).
One can use either KM or CINT for imaging, the re-
sults of both methods are excellent now as the SNR
of the data has been significantly increased after the
application of our filtering algorithm.

Conclusions

We reviewed in this paper a filtering algorithm that
allows for detecting and imaging reflectors embedded
in strongly scattering media. This is a challenging
problem that appears in applications such as non-
destructive testing of materials [2], land mine detec-
tion [10] and foliage penetrating radar. The algo-
rithm uses the local cosine coefficients of the response
matrix, P̂l(tlj , ωln), on a binary tree. It selects the
level l and the windows j in the tree that contain co-
herent echoes from detectable scatterers by seeking
for a break in the pattern of the singular values of ma-
trices P̂l(tlj , ωln). We refer to [9], for a more detailed
description of the algorithm, and to [1] for its theo-
retical analysis in the case of finely layered media. In
[1], [9], the problem of imaging one reflector in heavy
clutter was considered. Here, the more challenging
problem of multiple reflectors is addressed. In the
oral presentation, the robustness of the algorithm is
illustrated with more results for various configura-
tions of reflectors.
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Abstract

We sketch some of the techniques and results about
time domain boundary integral operators associated
to the acoustic wave equation.

Introduction

In this paper we will describe some of the tech-
niques and results about time domain (retarded)
boundary integral equations for the acoustic wave
equation. The exposition will be limited to the single
layer potential and the associated single layer bound-
ary integral operator in three space dimensions. In-
stead of showing mapping properties of the operators
we will focus on two problems related to Galerkin
semidiscretization in space, studying mapping prop-
erties of the discrete inverse of the single layer re-
tarded integral equation (and, at the same time, of
the continuous inverse), and of the associated error
operator (a sort of Céa estimate for the space semidis-
cretization).

Similar work can be carried out for all the layer po-
tentials and integral operators for the acoustic wave
equation in any space dimension and, with minor
changes, for the elastic wave equations.

In a language very close to the one used here,
these results can be found –with fully detailed
proofs and step by step presentation of all functional
elements– in the lecture notes [8]. The results shown
here are valid for full Galerkin discretization of the
equations as well as for combined Galerkin-in-space
Convolution-Quadrature-in-time discretization. For
the latter, see [3].

The style of the exposition will be narrative, with
results presented in the body of the text. Some prior
knowledge of classical Sobolev spaces is assumed. As
for vector-valued distributions, the only needed facts
are exposed in a final appendix.

1 A very weak layer potential

Let Γ be a closed orientable Lipschitz surface in
the space, separating a bounded region Ω− from its
exterior Ω+. Whenever needed, traces and normal
derivatives from both sides of Γ will be tagged with

a ± superscript, depending on what side of Γ they
are coming from. Let now λ : Γ×R→ R be a causal
function, i.e.,

λ(t) := λ(·, t) ≡ 0 t < 0.

The acoustic (retarded) single layer potential, with
density λ, is formally defined by the integral expres-
sion

(S ∗ λ)(x, t) =

∫

Γ

λ(y, t− |x− y|)
4π|x− y| dΓ(y) (1)

for any x ∈ R3 \ Γ and t ∈ R. Note that it is again
a causal function. This potential can also be under-
stood as a (weak) solution of a transmission problem,
namely u := S ∗ λ is a causal solution of

ü = ∆u (2a)

[[γu]] = 0 (2b)

[[∂νu]] = λ. (2c)

Let us first explain what these equations mean. We
understand u as a distribution with values in the
Hilbert space

H1
∆(R3 \Γ) := {U ∈ H1(R3 \Γ) : ∆U ∈ L2(R3 \Γ)}.

The Laplacian is then understood in the sense of dis-
tributions in R3 \ Γ, and therefore as a bounded op-
erator H1

∆(R3 \ Γ) → L2(R3 \ Γ) ≡ L2(R3). The
double dot in (2a) is second order differentiation
of H1

∆(R3 \ Γ)-valued distributions, and (2a) is an
equation in the sense of distributions with values in
L2(R3 \ Γ). The equation (2b) contains the jump of
the trace

[[γU ]] := γ−U − γ+U,

which defines a bounded operator H1(R3 \ Γ) →
H1/2(Γ). Therefore (2b) is an equation in the sense
of distributions with values in H1/2(Γ). Similarly

[[∂νU ]] := ∂−ν U − ∂+
ν U

is an operator that measures the jump of the nor-
mal derivative for functions in H1

∆(R3 \ Γ), and (2c)
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can be seen as an equation in the sense of H−1/2(Γ)-
valued distributions. We can thus go very far in the
conditions for definition of the layer potential S ∗ λ:
given a causal H−1/2(Γ)-valued distribution λ, S ∗ λ
is a formal causal H1

∆(R3 \ Γ)-valued solution of (2)
(note how the vanishing initial conditions are hidden
in the request of causality).

It is however not clear how (2) has a unique solu-
tion. A simple idea to enforce uniqueness is to re-
duce the set of distributions on which we are allowed
to work. A quite wide family of such distributions is
the set of causal X-valued distributions f (here X is
any Banach space), whose Laplace transform F exists
in

C+ := {s ∈ C : Re s > 0},
and can be bounded as follows

‖F(s)‖X ≤ CF(Re s)|s|µ ∀s ∈ C+,

where µ ∈ R and CF : (0,∞) → (0,∞) is non-
increasing and bounded by a rational function at the
origin. This set of distributions corresponds to the
derivatives of arbitrary order of causal continuous X-
valued functions with polynomial growth at infinity.
We will refer to it as TD(X) (TD as in time-domain).
(Some authors [1] prefer to extend the set of causal
distributions to any distribution having a Laplace
transform. The more restricted setting that we are
going to use does not seem to lose any interesting set
of data and handles the inversion process in a quite
natural way.)

Using standard techniques of Laplace transforms
and resolvent estimates, it can be proved that if
λ ∈ TD(H−1/2(Γ)), then problem (2) has a unique
solution u ∈ TD(H1

∆(R3 \ Γ)). We will refer to it as
u = S ∗ λ. The Laplace domain analysis justifies the
convolutional notation, which we will exploit later
on. We can also define

V ∗ λ := γ(S ∗ λ),

by taking the trace on Γ of the solution of (2). We
thus obtain an element of TD(H1/2(Γ)).

2 An even weaker semidiscrete equation

Let us now deal with the possibility of inverting
the equation

V ∗ λ = β. (3)

One of thew possible aims of this inversion process is
the representation of the solution of a transient scat-
tering problem with an indirect boundary integral

ansatz. Assume that we want to find the scattered
field for a sound-soft obstacle hit by an incoming in-
cident wave:

ü = ∆u, (4a)

γ+u = β := −γuinc. (4b)

The practical way to proceed (the Boundary Element
way) consists of trying to represent the solution of
(4) in the form u = S ∗ λ, and use unique solvability
of (3) to provide the correct density. However, the
analysis of the inverse operator for λ 7→ V ∗ λ works
in quite the opposite direction.

Instead of explaining the invertibility process at
the continuous level, let us use a Galerkin semidis-
cretization in space to study a more general prob-
lem that will be useful at the stage of numerical dis-
cretization as well.

Let Xh be any closed subspace of H−1/2(Γ) and
take β ∈ TD(H1/2(Γ)) as data. We then look for a
distribution λh ∈ TD(H−1/2(Γ)) such that

λh ∈ Xh, (5a)

〈µh,V ∗ λh〉Γ = 〈µh, β〉Γ ∀µh ∈ Xh, (5b)

and postprocess the solution as a single layer poten-
tial

uh = S ∗ λh. (5c)

Once again, we have to read these equations with
some care. Being an element of Xh has to be under-
stood in a weak sense: if Πh : H−1/2(Γ) → Xh ⊂
H−1/2(Γ) is any bounded projection onto Xh, condi-
tion (5a) can be equivalently read as Πhλh = λh,
that is, as a distributional equation in H−1/2(Γ).
Equations (5b) –where angled brackets represent the
H−1/2(Γ)×H1/2(Γ) duality product–, can be under-
stood in the sense of scalar valued distributions (one
equation for each µh ∈ Xh), but they can also be
read in a more compact form

V ∗ λh − β ∈ X◦h, (6)

where

X◦h := {ξ ∈ H1/2(Γ) : 〈µh, ξ〉Γ = 0 ∀µh ∈ Xh},

is the polar set or annihilator of Xh.

What we next do is reverting the order in which
equations (5) are considered. The potential uh takes
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now the lead, as an element of TD(H1
∆(R3 \ Γ)) sat-

isfying:

üh = ∆uh, (7a)

[[γuh]] = 0, (7b)

γ+uh − β ∈ X◦h, (7c)

[[∂νu
h]] ∈ Xh. (7d)

Equations (7) are understood as distributional equa-
tions with values in L2(R3 \ Γ), H1/2(Γ), H1/2(Γ),
and H−1/2(Γ) respectively. The density is then de-
fined as λh := [[∂νu

h]].
If we momentarily forget about the semidiscrete

space Xh (which can be done by setting Xh =
H−1/2(Γ), thus making condition (7d) void), a
Laplace domain analysis of this problem is what ap-
pears in the seminal work of Alain Bamberger and
Toung Ha–Duong [1] (with a second part [2] dealing
with the associated double layer potential operators).
This idea of studying the potential to analyse the in-
tegral operator is behind the development of varia-
tionall tools for boundary integral equations of the
first kind, and can be traced back to another seminal
paper, this time by Jean-Claude Nédélec and Jacques
Planchard [6]. The realization that the semidiscrete
equations are related to the exotic transmission con-
ditions in (7) was part of what I developed in collab-
oration with my then student Antonio Laliena [5].

3 More semidiscrete concepts

The operator β 7→ uh 7→ λh (which in practice is
understood as β 7→ λh 7→ uh) can be considered as a
sort of Galerkin solver for equation (3). These opera-
tors can be easily shown to be convolution operators
and we can thus write

λh = Ghλ ∗ β uh = Ghu ∗ β = S ∗ Ghλ ∗ β, (8)

while realizing that the study is more about β 7→
Ghu ∗ β and that

λh = [[∂ν ·]](Ghu ∗ β).

A related operator is the one that starts with the ex-
act solution of (3) and compares it with the solution
of (5). Let thus λ ∈ TD(H−1/2(Γ)), and consider the
solution of

λh ∈ Xh, (9a)

〈µh,V ∗ (λh − λ)〉Γ = 0 ∀µh ∈ Xh. (9b)

Instead of paying attention to λh and to the potential
S∗λh, it is advantageous to think in terms of the error
of the potential

εh := S ∗ (λh − λ). (9c)

This distribution is a causal H1
∆(R3 \ Γ)-valued dis-

tributional solution of

ε̈h = ∆εh, (10a)

[[γεh]] = 0, (10b)

γ+εh ∈ X◦h, (10c)

[[∂νε
h]] + λ ∈ Xh. (10d)

Once again, we have related convolution operators

εh = Ehu ∗ λ = Ghu ∗ V ∗ λ− S ∗ λ (11a)

= S ∗ (Ghλ ∗ V ∗ λ− λ),

and

Ehλ ∗ λ = Ghλ ∗ V ∗ λ− λ, (11b)

both of them satisfying a sort of Galerkin orthogo-
nality property, namely, if Πh : H−1/2(Γ) → Xh is
any projection onto Xh (for instance, the orthogonal
projection), then

Ehu ∗ (Πhλ) = 0, Ehλ ∗ (Πhλ) = 0, (12)

implying that any bound for the operators

λ 7→ εh and λ 7→ λh − λ = [[∂νε
h]]

is automatically a bound for the difference λ−Πhλ.

4 Transfer function analysis

As already mentioned, the analysis of the convo-
lution operators (for the Galerkin solver in Section
2 and for the Galerkin approximation error operator
in Section 3) can be carried out by taking Laplace
transforms. For the Galerkin solver, what we need
to study is the influence of the parameter s in the
operator that takes B ∈ H1/2(Γ), solves the equation

Λh ∈ Xh, (13a)

〈µh,V(s)Λh − B〉Γ = 0 ∀µh ∈ Xh (13b)

(see (5)), and then builds

Uh := S(s)Λh. (13c)
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In (13) we are using the single layer potential for the
resolvent Laplace equation (defined for x ∈ R3 \ Γ
and any s ∈ C)

(S(s)Λ)(x) :=

∫

Γ

e−ı s|x−y|

4π|x− y|Λ(y)dΓ(y),

which is the Laplace transform of (1). We are also us-
ing the associated single layer operator V(s) = γS(s).
Denoting

Λh = Gh
λ(s)B, Uh = Gh

u(s)Λh = S(s)Gh
λ(s)B,

the Laplace domain analysis yields bounds of the
form

‖Gh
u(s)‖H1/2(Γ)→H1(R3) ≤ CΓ

|s|3/2
σ σ3/2

, (14a)

‖Gh
λ(s)‖H1/2(Γ)→H−1/2(Γ) ≤ CΓ

|s|2
σ σ

, (14b)

where

s ∈ C+, σ := Re s, σ := min{1, σ}.

(From now on, the constant CΓ is a generic constant
depending on the domain Γ but not on the particular
subspace Xh.) An analysis of the associated Galerkin
error operators

Ehλ(s) := Gh
λ(s)V(s)− I, Ehu(s) := S(s)Ehλ(s),

yields

‖Ehu(s)‖H1/2(Γ)→H1(R3) ≤ CΓ
|s|
σ σ2

, (14c)

‖Ehλ(s)‖H1/2(Γ)→H−1/2(Γ) ≤ CΓ
|s|3/2
σ σ3/2

. (14d)

The bounds given in (14) imply that the convolu-
tion operators (8) and (11) correspond to convolu-
tions with elements

Ghλ ∈ TD(B(H1/2(Γ), H−1/2(Γ) )),

Ehλ ∈ TD(B(H−1/2(Γ), H−1/2(Γ) )),

Ghu ∈ TD(B(H1/2(Γ), H1(R3) ),

Ehu ∈ TD(B(H−1/2(Γ), H1(R3) ),

where B(X,Y ) is the space of bounded linear op-
erators from X to Y . This means that behind the
actual operators are operator-valued causal distribu-
tions. There is actually more information that can

be extracted from (14). For instance, careful inver-
sion of the Laplace transform leads to the following
bound [4]: if a ∈ TD(B(X,Y )) and its Laplace A
satisfies

‖A(s)‖X→Y ≤ CA(σ) |s|µ, µ ≥ 0, ∀s ∈ C+,

then for sufficiently smooth causal input g, the convo-
lution operator g 7→ a ∗ g can be bounded as follows:

‖(a ∗ g)(t)‖Y ≤ 2µCε(t)CA(t−1)

∫ t

0
‖(Pkg)(τ)‖Xdτ,

where

k := bµ+ 2c, ε := k − (µ+ 1) ∈ (0, 1],

Cε(t) :=
1 + ε

πε

tε

(1 + t)ε

and

(Pkg)(t) :=
k∑

`=0

(
k

`

)
g(`)(t).

This abstract (black-box) result delivers time-domain
bounds for the convolution operators associated to
the Galerkin solver and error operator. Note that
(12) means that we can actually obtain bounds of
the form

‖uh(t)− u(t)‖H1(R3) ≤ α(t)Bλ(t), (15a)

where

α(t) :=
4CΓ

π
t min{1, t2} t

1 + t
(15b)

and

Bλ(t) :=

∫ t

0
‖P3λ(t)−ΠhP3λ(t)‖H−1/2(Γ)dτ. (15c)

5 Time domain analysis

We now sketch an alternative form of studying the
above convolution operators. The techniques shown
in this section are distilled from recent work in [4], [7]
and [3]. For simplicity we will focus on the problem
(10), which deals with the Galerkin approximation
error at the level of the potential. (The arguments
for the discrete inverse, a.k.a., the Galerkin solver,
are slightly more involved.) The first thing we do is
to cut off the domain far enough from Γ. In order to
do that we choose R > 0 such that

Γ ⊂ B(0;R) := {x ∈ R3 : |x| < R},
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and consider the truncated domain BT := B(0;R +
T ). We then study a cut-off smooth version of (10)
looking for εT : [0,∞)→ H1

∆(BT \ Γ) such that

ε̈T (t) = ∆εT (t) ∀t ≥ 0, (16a)

γT εT (t) = 0 ∀t ≥ 0, (16b)

[[γεT (t)]] = 0 ∀t ≥ 0, (16c)

γ+εT (t) ∈ X◦h ∀t ≥ 0, (16d)

[[∂νεT (t)]] + λ(t) ∈ Xh ∀t ≥ 0, (16e)

εT (0) = ε̇T (0) = 0. (16f)

Some explanations about (16) are in order. The sym-
bol γT is used for the trace operator γT : H1(BT \
Γ)→ H1/2(∂BT ). Differentiation in (16a) and in the
second initial condition in (16f) is strong (classical).
In principle, we are looking for a solution of (16) that
is twice continuously differentiable with values in the
space where (16a) takes place, e.g., in L2(BT \ Γ)
and at least continuous with values in H1

∆(BT \Γ) so
that all other conditions can be imposed pointwise in
time.

The next step is the identification of an abstract
setting for a second order problem associated to (16).
We need three spaces

H := L2(BT ),

V := {v ∈ H1
0 (BT ) : γ+v ∈ X◦h},

D(A) := {v ∈ V : ∆u ∈ L2(BT \ Γ), [[∂νv]] ∈ Xh},

and the operator A := ∆ : D(A) → H. The non-
homogeneous transmission condition (16e) does not
allow the solution to be in the domain of A, so we
proceed to lift it by solving time-independent prob-
lems

u0(t) ∈ V,
(u0(t), v0)H1(BT ) = 〈λ(t), γv〉Γ ∀v ∈ V.

We then look for v0 : [0,∞)→ D(A) such that

v̈0(t) = Av0(t) + f(t) ∀t ≥ 0,

v0(0) = v̇0(0) = 0,

where f := u0 − ü0 : [0,∞) → V . The sum εT :=
u0 + v0 is the solution of (16) and some careful work
allows us to bound

‖εT (t)‖H1(BT ) ≤CΓ

(
‖λ(t)||H−1/2(Γ) (17)

+ cTB(λ, t)
)

∀t ≥ 0,

where c2
T := 1 + T 2 and

B(λ, t) :=

∫ t

0
‖λ(τ)− λ̈(τ)‖H−1/2(Γ)dτ.

The difficulty at this moment is recognizing that
εT = εh in BT for a limited time interval. This is
done in several steps. If δ := dist(∂B0,Γ), we first
show that

∂νεT (t) = 0 in H−1/2(∂BT ), ∀t ≤ T + δ.

Note that this can be easily hand-waved with a
causality argument, but that this is quite similar to
proving finite speed of propagation of compactly sup-
ported initial data in the solution of a wave equation
written with separation of variables. (It is true, but
the property is invisible in the formula.) Once this
has been established, the next step is to compute the
jump of the normal derivative on Γ with a simul-
taneous propagation of the T -dependent dynamical
system (16),

εhλ(T ) := [[∂νεT (T )]], T ≥ 0,

and then show that

εhλ(t) = [[∂νεT (t)]], 0 ≤ t ≤ T + δ.

The function εhλ is extended by zero to negative values
of the time variable and used to construct a potential
εh := S ∗ εhλ. This has to be compared with

εT (t) :=

{
εT (t), in BT ,

0, in R3 \ Ω−,

providing the identification

εT (t) = (S ∗ ελ)(t) 0 ≤ t < T + δ.

This necessary (and quite cumbersome) work on com-
parison of strong and weak solutions is needed to en-
sure that we are not producing solutions that some-
how cannot be ‘smoothly’ extended to negative times
or to the exterior domain (at least for a finite amount
of time) and thus identified with the layer potentials.
Once these details have been settled, we can use the
bound in (17) and (12) to obtain a bound

‖uh(t)− u(t)‖H1(R3) ≤ C
(
‖λ(t)−Πhλ(t)‖H−1/2(Γ)

+ ctB(λ−Πhλ, t)
)
,
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which is definitely a tighter bound than (15). We
can even make this look somewhat better by using a
shifting argument that hides the constant c2

t = 1 + t2

in a bound of the form

‖uh(t)− u(t)‖H1(R3) ≤ C H(∂−1(λ−Πhλ), t)

where

H(ξ, t) :=

2∑

`=0

∫ t

0
‖ξ(τ)‖H−1/2(Γ)dτ,

and

∂−1ξ(t) :=

∫ t

0
ξ(τ)dτ.

Appendix

A Vector-valued distributions

Let X be a Banach space and D(R) be the space of
infinitely often differentiable functions with compact
support, endowed with its usual concept of conver-
gence. An X-valued distribution is a sequentially
continuous map D(R) → X. If f : R → X is a
continuous function, then the Bochner integral

∫ ∞

−∞
ϕ(t)f(t)dt

defines a distribution with values in X. If f is an X-
valued distribution, then we can define its derivative

〈ḟ , ϕ〉 := −〈f, ϕ̇〉,

which is a distribution as well. If f is an X-valued
distribution and A : X → Y is linear and bounded,
then Af defines a Y -valued distribution. A distribu-
tion is said to be causal when 〈f, ϕ〉 = 0 for all ϕ with
support in (−∞, 0). A distribution is said to be tem-
pered when it can be extended to act on the elements
of the Schwartz class S(R). Given a causal tempered
distribution f , its Laplace transform is defined as

F(s) = L{f}(s) := 〈f, exp(−s·)〉 s ∈ C+.

The Laplace transform F : C+ → X is an holomor-
phic X-valued function. In some conditions on the
decay of an holomorphic X-valued function F : C+ →
X, we can define the functions

f(t) :=
1

2πı

∫ σ+ı∞

σ−ı∞
es tF(s)ds,

show that they are independent of σ > 0, and that
they define a causal continuous tempered function
whose Laplace transform is F.
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In this talk we seek stability estimates in the
inverse problem of determining the potential or
the velocity in a wave equation in an anisotropic
medium from measured Neumann boundary obser-
vations. This information is enclosed in the dynami-
cal Dirichlet-to-Neumann map associated to the wave
equation. We prove in dimension n ≥ 2 that the
knowledge of the Dirichlet-to-Neumann map for the
wave equation uniquely determines the electric po-
tential and we prove Hölder-type stability in deter-
mining the potential. We prove similar results for the
determination of velocities close to 1.
Keywords: Stability estimates, Hyperbolic inverse
problem, Dirichlet-to-Neumann map.

1 Introduction

In this talk, we are interested in the following
inverse boundary value problem: on a Riemannian
manifold with boundary, determine the potential or
the velocity — i.e. the conformal factor within a con-
formal class of metrics — in a wave equation from the
vibrations measured at the boundary. Let (M, g) be
a compact Riemannian manifold with boundary ∂M.
All manifolds will be assumed smooth (which means
C∞). We denote by ∆g the Laplace-Beltrami opera-
tor associated to the metric g. In local coordinates,

g(x) =
n∑

j,k=1

gjk(x)dxj ⊗ dxk,

∆g is given by

∆g =
1√

det g

n∑

j,k=1

∂

∂xj

(√
det g gjk

∂

∂xk

)
. (1.1)

Here (gjk) is the inverse of the metric g and
det g = det(gjk). Let us consider the following initial
boundary value problem for the wave equation with

bounded electric potential q ∈ L∞(M)





(
∂2
t −∆g + q(x)

)
u = 0, in (0, T )×M,

u(0, ·) = 0, ∂tu(0, ·) = 0 in M,

u = f, on (0, T )× ∂M,
(1.2)

where f ∈ H1((0, T ) × ∂M) such that f(0, ·) =
0. Denote by ν = ν(x) the outward normal vec-
tor field to ∂M at x ∈ ∂M, normalized so that∑n

j,k=1 gjkν
jνk = 1 if ν =

∑n
j=1 ν

j ∂
∂xj

. We may de-

fine the dynamical Dirichlet-to-Neumann map Λg, q

by

Λg, qf =

n∑

j,k=1

νjg
jk ∂u

∂xk

∣∣∣
(0,T )×∂M

(1.3)

where the νj =
∑n

k=1 gjkν
k are the coefficients of the

outward conormal.

It is clear that one cannot hope to uniquely de-
termine the metric g = (gjk) from the knowledge of
the Dirichlet-to-Neumann map Λg, q. As was noted in
[23], the Dirichlet-to-Neumann map is invariant un-
der a gauge transformation of the metric g. Namely,
given a diffeomorphism Ψ : M → M such that
Ψ|∂M = Id one has ΛΨ∗g, q = Λg, q where Ψ∗g de-
notes the pullback of the metric g under Ψ. The
inverse problem should therefore be formulated mod-
ulo the natural gauge invariance. Nevertheless, when
the problem is restricted to a conformal class of met-
rics, there is no such gauge invariance and the inverse
problem now takes the form: knowing Λcg,q, can one
determine the conformal factor c and the potential q?

Belishev and Kurylev gave an affirmative answer
in [3] to the general problem of finding a smooth
metric from the Dirichlet-to-Neumann map. Their
approach is based on the boundary control method
introduced by Belishev [2] and uses in an essential
way an unique continuation property. Unfortunately
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it seems unlikely that this method would provide sta-
bility estimates even under geometric and topological
restrictions. Their method also solves the problem of
recovering g through boundary spectral data. The
boundary control method gave rise to several refine-
ments of the results of [3]: one can cite for instance
[19], [18] and [1].

The importance of control theory for inverse prob-
lems was first understood by Belishev [2]. He used
control theory to develop the first variant of the
boundary control (BC) method. Later, the idea
based on control theory were combined with the ge-
ometrical ones. The importance of the geometry for
inverse problems follows the fact that any elliptic
second-order differential operator gives rise to a Rie-
mannian metric in the corresponding domain. The
role of this metric becomes clearer if we consider
the solutions of the corresponding wave equation.
Indeed, these waves propagate with the unit speed
along geodesics of this Riemannian metric. These
geometric ideas where introduced to the boundary
control method in [19], [18].

In this , the inverse problem under considera-
tion is whether the knowledge of the Dirichlet-to-
Neumann map Λg, q on the boundary uniquely de-
termines the electric potential q (with a fixed metric
g) and whether the knowledge of the Dirichlet-to-
Neumann map Λg = Λg,0 uniquely determines the
conformal factor of the metric g within a conformal
class. From the physical viewpoint, our inverse prob-
lem consists in determining the properties (e.g. a dis-
persion term) of an inhomogeneous medium by prob-
ing it with disturbances generated on the boundary.
The data are responses of the medium to these dis-
turbances which are measured on the boundary, and
the goal is to recover the potential q(x) and the veloc-
ity c(x) which describes the property of the medium.
Here we assume that the medium is quiet initially,
and f is a disturbance which is used to probe the
medium. Roughly speaking, the data is ∂νu mea-
sured on the boundary for different choices of f .

In the Euclidian case (g = e) Rakesh and Symes
[21], [20] used complex geometrical optics solutions
concentrating near lines with any direction ω ∈ Sn−1

to prove that Λe,q determines q(x) uniquely in the
wave equation. In [21], Λe,q gives equivalent in-
formation to the responses on the whole boundary
for all the possible input disturbances. Ramm and
Sjöstrand [22] extended the results in [21] to the case

of a potential q depending both on space x and time
t. Isakov [15] considered the simultaneous determi-
nation of a potential and a damping coefficient. A
key ingredient in the existing results, is the construc-
tion of complex geometric optics solutions of the wave
equation in the Euclidian case, concentrated along
a line, and the relationship between the hyperbolic
Dirichlet-to-Neumann map and the X-ray transform
plays a crucial role.

Regarding stability estimates, Sun [25] established
in the Euclidean case stability estimates for poten-
tials from the Dirichlet-to-Neumann map. In [23] and
[24] Stefanov and Uhlmann considered the inverse
problem of determining a Riemannian metric on a
Riemannian manifold with boundary from the hyper-
bolic Dirichlet-to-Neumann map associated to solu-
tions of the wave equation (∂2

t −∆g)u = 0. A Hölder
type of conditional stability estimate was proven in
[23] for metrics close enough to the Euclidean metric
in Ck, k ≥ 1 or for generic simple metrics in [24].

Uniqueness properties for local Dirichlet-to-
Neumann maps associated with the wave equa-
tion are rather well understood (e.g., Belishev [2],
Katchlov, Kurylev and Lassas [18], Kurylev and Las-
sas [19]) but stability for such operators is far from
being apprehended. For instance, one may refer
to Isakov and Sun [17] where a local Dirichet-to-
Neumann map yields a stability result in determining
a coefficient in a subdomain. As for results involving
a finite number of data in the Dirichlet-to-Neumann
map, see Cheng and Nakamura [10], Rakesh [20].
There are quite a few works on Dirichlet-to-Neumann
maps, so our references are far from being complete:
see also Cardoso and Mendoza [9], Eskin [12]-[13]-
[14], Uhlmann [26] as related papers.

The main goal of this paper is to study the stability
of the inverse problem for the dynamical anisotropic
wave equation. The approach that we develop is a dy-
namical approach. Our inverse problem corresponds
to a formulation with boundary measurements at in-
finitely many frequencies. On the other hand, the
main methodology for formulations of inverse prob-
lems involving a measurement at a fixed frequency,
is based on L2-weighted inequalites called Carleman
estimates. For such applications of Carleman in-
equalities to inverse problems we refer for instance
to Bellassoued [4], Isakov [16]. Most papers treat the
determination of spatially varying functions by a sin-
gle measurement. As for observability inequalities by
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means of Carleman estimates, see [5], [6], [7].

Our proof is inspired by techniques used by Ste-
fanov and Uhlmann [24], and Dos Santos Ferreira,
Kenig, Salo and Uhlmann [11]. In the last reference,
an uniqueness theorem for an inverse problem for
an elliptic equation is proved following ideas which
in turn go back to the work of Calderón [8]. The
heuristic underlying idea is that one can (at least
formally) translate techniques used in solving the el-
liptic equation ∂2

t + ∆g (which is the prototype of
equations studied in [11]) to the case of the wave
equation ∂2

t − ∆g by changing t into it. Our prob-
lem turns out to be somehow easier because we don’t
need to construct complex geometrical solutions, but
can rely on classical WKB solutions.

Our problem turns out to be easier because geo-
metrical optics solutions interact with the interior of
M in the dynamical case but not in the elliptic case.
The main idea is to probe the medium by real geo-
metric optics solutions of the wave equation, concen-
trated along a geodesic line, starting on one side of
the boundary, and measure responses of the medium
on other side of the boundary.
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Abstract

In order to solve the mysteries of the solar dynamo,
we must understand the plasma motions that main-
tain the magnetic field in the solar interior. Helio-
seismology, the science of solar oscillations, can in
principle enable us to see inside the sun and provide
this information. I will review the basic methods of
helioseismology and discuss important findings based
on observations from the SOHO and SDO satellites.
Methods of local helioseismology, which rely on the
two-point correlations of the wave field, enable us to
probe vector flows in three dimensions and subsurface
magnetic structures. A new method is presented to
compute the spatial sensitivity of helioseismic travel
times to weak perturbations to a background solar
model.

1 Solar Oscillations

Solar seismic waves are continuously excited by
turbulent motions in the upper layers of the con-
vection zone. Oscillations of the solar atmosphere
with periods near five minutes can be measured as
fluctuations in the solar spectrum, either in veloc-
ity (Doppler shift of absorption lines) or in inten-
sity. Since the mid 1990’s dedicated observatories
from space (SOHO) and from the ground (global
network GONG) have provided time series of spa-
tially resolved images of the visible solar hemisphere.
The most recent experiment is the Helioseismic and
Magnetic Imager onboard NASA’s SDO spacecraft.
HMI/SDO data consist of full-disk Doppler velocity
images of 40002 pixels recorded at a cadence of 45
seconds, which give access to the full spectrum of
solar seismic waves, from global acoustic oscillations
of the entire solar volume to short-lived near-surface
waves.

2 Probing the Solar Dynamo

The propagation of acoustic waves is sensitive to
the local conditions of the solar plasma, e.g. sound
speed and density, and is affected by the plasma flow
velocity, e.g. rotation, meridional circulation, and
large-scale convective velocities. Waves also interact

Figure 1: Left: Line-of-sight component of
velocity (HMI Dopplergram). The east-west

gradient across the image is due to solar rotation
(∼ 2 km s−1); the fine details are due to solar

oscillations and convective motions. Right:
Line-of-sight component of the magnetic field (HMI

magnetogram). The strong concentrations of
magnetic field at mid latitudes is due to magnetic

active regions and sunspots.

with the magnetic field, particularly strong in active
regions and sunspots. The goal of helioseismology
is to retrieve as much information as possible about
the solar interior from the surface observations of so-
lar oscillations, on time scales ranging from days to
years. One of the most important question in solar
physics is the origin of the solar magnetic field. Why
does solar magnetic activity change with a period of
eleven years? What are the processes that lead to
the formation of sunspots? In order to answer such
questions, one should probe the internal flows that
maintain the solar dynamo.

3 Methods of Helioseismology

Methods of helioseismology are organized accord-
ing to two classes: global and local. Global helio-
seismology is the interpretation of the frequencies of
the normal modes of oscillation, extracted from the
power spectrum of solar oscillations. Starting from
a 1D reference solar model, one asks how the model
should be perturbed in order to have frequencies of
oscillations that are consistent with the observed fre-
quencies. This linear inverse problem is solved using

23 WAVES 2013



standard techniques. Global mode helioseismology
has been extremely successful, in particular to infer
the angular velocity as a function of radius and (un-
signed) latitude. However, global helioseismology is
limited as it cannot provide information about flows
in the north-south direction nor can it tell us about
structural heterogeneities in all three dimensions. In
order to overcome these limitations, techniques of lo-
cal helioseismology are being developed. The most
basic quantity in local helioseismology is the cross-
covariance between two locations on the solar sur-
face,

C(r1, r2, t) =
1

T

∫ T

0
dt′ φ(r1, t

′)φ(r2, t
′ + t), (1)

where φ is the observed wavefield, i.e. the Doppler
velocity. In terms of the wave displacement ξ(r, t),
we have φ = ` · ∂tξ, where ` is a unit vector in the
direction of the line of sight. The duration of the
observations, T , may be hours to weeks depending
on the application. The cross-covariance function is
a fundamental quantity as it is closely related to the
Green’s function and gives the travel time of wave
packets between r1 and r2. In practice, a large set of
travel times are measured and then inverted for 3D
solar structure and vector flows. This last operation
is not trivial as the 3D kernel functions that give the
spatial sensitivity of travel times to a solar model are
not straightforward to compute.

In the following sections an overview of the for-
malism used in local helioseismology is presented as
well as a new, convenient method to solve the linear
forward problem.

Normal Modes of Oscillation

Stellar oscillations are described by the displace-
ment ξ(r, t) of a fluid element originally at position r
and t in the unperturbed fluid. The linearized equa-
tions of conservation of momentum, mass and energy
can be combined into a single equation:

L(ξ) = S, (2)

where L = ∂2t +H and

ρH(ξ) = −∇(ρc2∇ · ξ)

+(∇ · ξ)∇p+ (ξ ·∇)∇p−∇(ξ ·∇p)

−ρ∆g′ − ρ∆(F /ρ)′ (3)

for adiabatic oscillations and no background flow.
The quantities ρ, c and p are the background (time-
independent) density, sound speed and pressure. The

Figure 2: Observed power spectrum of solar
oscillations as a function of frequency and

horizontal wavenumber kx at fixed ky = 0, showing
surface-gravity waves (f modes) and acoustic waves
(p modes). The radial order, n, corresponds to the
number of nodes of the eigenfunctions. The power

below 1.5 mHz is due to solar convection.

last two terms in H account for the wave perturba-
tions to the gravitational and magnetic forces. The
source term, S(r, t) on the right-hand side of the
wave equation, describes the random forcing by tur-
bulent convection; it is a realization drawn from a
random process. The wave equation is (often) sup-
plemented by a free-surface boundary condition at
the top of the solar model.

Modes of free oscillation, sα(r)e−iωαt, solve the
eigenvalue problem H(sα) = ω2

αs
α. Eigenfunctions

are often normalized according to 〈sα, sα〉 = 1, where
the inner product is defined by 〈u,v〉 =

∫
� u
∗·v ρd3r.

For a non-rotating 1D solar model, the eigenmode
α = (l,m, n) is of the form

slmn(r) = T lnr [Ylm(r̂)] (4)

where Ylm are spherical harmonics and

T lnr = Rln(r)r̂ +
Hln(r)√
l(l + 1)

∇⊥, (5)

where R(r) and H(r) are the radial and horizon-
tal eigenfunctions and ∇⊥ = θ̂∂θ + φ̂(sin θ)−1∂φ in
a spherical-polar coordinate system where θ is co-
latitude and φ is longitude.

Modes have finite lifetimes due to their interac-
tion with turbulence and/or to radiative damping,
both difficult to model. Traditionally, ad-hoc at-
tenuation is introduced in the wave equation, (∂t +
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Figure 3: Map of horizontal flows (arrows) in the vicinity of a sunspot obtained by local helioseismology.
The depth is 1 Mm and the observation time is T = 1 day. The background colors show the line-of-sight

component of the magnetic field at the surface for context.

γ)2ξ +H(ξ) = 0, where γ represents the half width
at half maximum of a Lorentzian line profile in the
power spectrum. With this correction, the modes
of oscillation of the damped equation have that the
same eigenfunctions but complex frequencies σα =
ωα − iγα.

4 Formulation of Linear Forward Problem

Here we ask how the cross-covariance function is
perturbed by a small change in the solar model, for
example a localized change in the sound speed, δc(r),
or the presence of a flow, U(r). This change in the
solar model is implemented as a change in the wave
operator, L → L + δL. Note that we consider only
steady perturbations, so that the problem may be
solved at fixed temporal frequency, ω.

4.1 Zero-Order Problem

Let us define the Fourier transform of the displace-
ment vector by

ξ(r, ω) =
1

2π

∫ ∞

−∞
dt ξ(r, t)eiωt. (6)

In Fourier space,

Lξ(r, ω) = S(r, ω), (7)

where L = −ω2 + H is the unperturbed (or zero-
order) wave operator. In general, the solution to the
above equation can be written in the form

ξ(r, ω) = 2π

∫

�
d3rs G

j(r, rs, ω)Sj(rs, ω), (8)

where the sum over repeated indices j ∈ {x, y, z}
is implicit and Gj(r, rs, ω) is the displacement at r
that results from a delta-function source at rs acting
in the j-th direction:

LrGj(r, rs, ω) =
1

2π
êj(rs)δ(r − rs). (9)

The Green’s tensor may be computed either numer-
ically or using a normal mode expansion:

G(r, rs, ω) =
1

2π

∑

l

2l + 1

4π

∑

n

T lnr T
ln
rsPl(cos ∆)

ω2
ln − (ω + iγln)2

.

(10)
where ∆ is the great circle distance between source
rs and receiver r.

Defining the observable by φ = −iω` · ξ := Obs(ξ)
and the observed Green’s function by G = Obs(G),
then the zero-order wave field is given by

φ(r, ω) = 2π

∫

�
d3rs Gj(r, rs, ω)Sj(rs, ω). (11)
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4.2 Perturbation to the Cross-Covariance Function

In frequency space, the expectation value of the
cross-covariance between two points at the surface is

C(r1, r2, ω) =
2π

T
E[φ∗(r1, ω)φ(r2, ω)]. (12)

A change in the solar model (through δL) causes a
change in the observable, δφ = Obs(δξ). To first
order, the perturbation to the cross-covariance is

δC(r1, r2, ω) =
2π

T
E[δφ∗(r1, ω)φ(r2, ω)]

+(1↔ 2)∗, (13)

where the second term is obtained from the first by
exchanging r1 and r2 and taking the complex conju-
gate. Using the first Born approximation,

L(δξ) = −δL(ξ), (14)

we obtain

δφ(x, ω) = −2π

∫

�
d3r Gj(x, r, ω) {δL ξ(r, ω)}j .

(15)
Hence, the first-order perturbation to the cross-
covariance can be written

δC(r1, r2, ω) =

−2π

∫

�
d3r Gj∗(r1, r, ω) {δL∗rX(r, r2, ω)}j

+(1↔ 2)∗ (16)

where

X(r, r2, ω) :=
2π

T
E[ξ∗(r, ω)φ(r2, ω)] (17)

is the cross-covariance between ξ(r) and φ(r2).

4.3 Example Perturbation: Flows

Let us consider the case of a steady flow, U(r).
Under the assumption that the flow amplitude is
smaller than the wave speed, it is reasonable to ex-
pect that first-order perturbation theory will work.
The flow-wave interaction is described by

δLξ(r, ω) = −2iωρ(r)U(r) ·∇ξ(r, ω), (18)

which consists of a Doppler shift. Inserting δL
in equation (16), the perturbation to the cross-
covariance becomes

δC(r1, r2, ω) =

∫

�
d3rU(r) ·K(r, r1, r2, ω) (19)

where the vector-valued sensitivity kernel is defined
by

K(r, r1, r2, ω) =

−4πiωρ(r)Gj∗(r1, r, ω)∇rXj(r, r2, ω)

+(1↔ 2)∗. (20)

The kernel K provides the connection between he-
lioseismology observables (cross-covariance or wave
travel times) and internal flows. Two intermediate
quantities are needed to compute K, i.e. the Green’s
function Gj and the cross-covarianceXj . The Green’s
function can be computed either numerically or us-
ing a normal mode expansion, see equation (10).
Notice that the seismic reciprocity theorem implies
Gj(r1, r) = −iωGij(r, r1)`i(r1), which depends on
the response to a source at r1 pointing in the `(r1)
direction. The computation of Xj relies on a realiza-
tion of the random wave field ξ, which may be ob-
tained from a realistic simulation of solar convection
or approximated by normal-mode summation. The
approach described here for solving the linear forward
problem maybe called ’computational local helioseis-
mology’. Until now, only semi-analytical methods
have been used, which are not very flexible and in-
volve many more steps.
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The analysis of shifted Laplace and related preconditioners for finite element approximations of
the Helmholtz equation
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Abstract

There has been much recent research on precon-
ditioning (discretisations of) the Helmholtz operator
∆+k2 with the inverse of a discrete version of the so-
called “shifted Laplacian” ∆+(k2+iε) for some ε > 0.
(In practice this inverse is replaced with a cheaper ap-
proximation, such as a multigrid V-cycle, to obtain
a practically viable preconditioner.) Despite many
numerical investigations there has been no rigorous
analysis of how one should chose the shift for the
type of Helmholtz problems arising in applications.
In this talk we give sufficient conditions on ε so that
the shifted matrix is a good preconditioner for the
original matrix as k →∞. The results hold for finite
element discretisation of both the interior impedance
problem, and the sound-soft scattering problem (with
radiation condition imposed as a far-field impedance
boundary). We also investigate the properties of clas-
sical domain decomposition methods with coarse grid
and local solves for approximating the inverse of the
shifted problem, and analyse explicitly how this de-
pends on ε and k. The talk contains results obtained
in collaboration with Paul Childs, Martin Gander,
Douglas Shanks, Euan Spence and Eero Vainikko [4],
[5], [9], [10].

1 Overview

As a model problem for high-frequency wave scatter-
ing, we study the boundary value problem

{ −∆u− k2u = f in Ω,
∂u
∂n − iku = g on Γ,

(1)

where either (i) Ω is a bounded domain in Rd with
boundary Γ or (ii) Ω is the exterior of a bounded
scatterer, Γ denotes an appropriate far field bound-
ary and the problem is appended with a Dirichlet
condition on the boundary of the scatterer. Linear
systems arising from finite element approximations
of this problem for high wavenumber k are notori-
ously hard to solve. Because the system matrices are
non-Hermitian and generally non-normal, general it-
erative methods like preconditioned (F)GMRES have
to be employed. Analysing the convergence of these

methods is hard, since an analysis of the spectrum
of the system matrix alone is not sufficient to permit
any conclusions to be drawn.

Quite a lot of recent research has focussed on pre-
conditioning the discrete counterpart of (1) using the
discrete countarpart of the problem

{ −∆u− (k2 + iε)u = f in Ω,
∂u
∂n − iηu = g on Γ,

(2)

for some η which depends on k and ε. It is gen-
erally observed that if the “absorption” parameter
ε > 0, is taken sufficiently large, then standard itera-
tive methods for (2) start to work, but ε needs to be
sufficiently small for (2) to still provide a good pre-
conditioner for (1). However to date there is only a
rudimentary analysis of this question, e.g. for simple
1D or 2D problems, always using Fourier analysis,
and assuming Dirichlet - rather than impedance -
boundary conditions.

The use of absorption in preconditioning has been
studied in various contexts by several authors. Let
Aε denote the system matrix arising from the finite
element approximation of (2). Then, for example,
Erlangga, Vuik & Oosterlee [6] sought to precondi-
tion A0 with a multigrid approximation of A−1

ε and
typically used ε ∼ k2. Ernst and Gander [7] used
Fourier analysis in 1D to show that ε needs to be
taken to be O(k) for Aε to be a good preconditioner
for A0 but needs to be O(k2) for multigrid applied
to Aε to have a convergence factor less than unity.
However the model problem considered in [7] was a
very simplified one. Engquist and Ying [8] essentially
used ε = O(k) to enhance the performance of their
sweeping preconditioner. However none of these ref-
erences give rigorous information on how ε should be
chosen in general to obtain the best performance for
preconditioning.

In this talk we give a new rigorous analysis which
firstly provides sufficient conditions for convergence
of GMRES for discretisations of problem (1) precon-
ditioned by problem (2). The analysis developed to
do this also allows us to then also analyse rather stan-
dard domain decomposition algorithms for (2) explic-
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itly in k and ε and this analysis provides the ingredi-
ents for a fairly robust solver which is well disposed
to parallel implementation.

The convergence theory for GMRES (see, e.g. [2]
or [1]) tells us that k−independent convergence will
be achieved for a system with matrix A0 when pre-
conditioned by A−1

ε , provided as k → ∞, the condi-
tions :

(G1) ‖A−1
ε A0‖ is uniformly bounded,

and

(G2) dist(0,W (A−1
ε A0)) ≥ C > 0,

are satisfied, where W (T ) is the numerical range of
the matrix T : {(Tx,x) : x ∈ CN , ‖x‖ = 1}. Both
these conditions can be attained if ‖I −A−1

ε A0‖ can
be made sufficiently small. The simple estimate

‖I −A−1
ε A0‖ ≤ ‖A−1

ε ‖ ‖Aε −A0‖ (3)

then suggests the separate estimation of each of the
norms on the right-hand side of (3). The second
term is straightforward (in fact it reduces to ε‖M‖,
where M is the domain mass matrix, when η = k).
Our approach to bounding the harder first term is
by first estimating the norm of the solution opera-
tor for the undiscretised problem (2) explicitly in k
and ε, and then using this information and the vari-
ational theory of the finite element method to bound
‖A−1

ε ‖. Bounding the solution operator requires a
certain amount of PDE theory.

2 PDE Theory and Matrix Bounds

The following theorems are proved in [9]. The
proof of Theorem 2.1 essentially uses Green’s iden-
tity, while Theorem 2.2 uses classical multiplier the-
ory (due to Morawetz and co-authors and sum-
marised, e.g. in [3]). Here, for simplicity, we restict
to the case η = k in (2).

Theorem 2.1 Suppose Ω is a Lipschitz domain, and
that, as k → ∞, ε/k is bounded below by a positive
constant and ε/k2 is bounded above. Then for any
k0 > 0 there exists a C > 0, independent of ε, k with

‖∇u‖2L2(Ω) + k2‖u‖2L2(Ω)

≤ C
[
k2

ε2
‖f‖2L2(Ω) +

k

ε
‖g‖2L2(Γ)

]
(4)

for all k ≥ k0.

Theorem 2.2 Suppose Ω is a star-shaped domain
(or the annulus between two star-shaped domains in
the case of the sound-soft scattering problem), and
suppose that ε/k is bounded above as k → ∞, Then
for any k0 > 0 there exists a C > 0, independent of
ε, k with

‖∇u‖2L2(Ω) + k2‖u‖2L2(Ω) ≤ C
[
‖f‖2L2(Ω) + ‖g‖2L2(Γ)

]
(5)

for all k ≥ k0.

Note that Theorem 2.2, which allows ε = 0 (and
thus includes the Helmholtz wave scattering case)
needs a starshaped domain (a special case of a “non-
trapping” domain), whereas Theorem 2.1 has a larger
ε and has no geometric restriction other than Lips-
chitz. “Trapping” is an important concept for scat-
tering problems governed by the Helmholtz equation
in exterior domains but not for problems with ab-
sorption and the theory reflects this.

Moreover Theorem 2.1 illustrates the better regu-
larity properties of the problem with absorption: the
constants which multiply the data in (4) decrease to
zero as k →∞, if ε grows faster thatO(k), while they
are only bounded above in (5). This is important
for the theory on domain decomposition described
briefly below.

Most importantly for our discussion here, the esti-
mate in Theorem 2.2 shows that if u is the solution
to problem (2) then, provided ε/k is bounded above,
we have the L2 estimate:

‖u‖L2(Ω) ≤
C

k

[
‖f‖2L2(Ω) + ‖g‖2L2(Γ)

]1/2
.

When the mesh is chosen so that the Galerkin
method enjoys a quaisoptimality property, this es-
timate can be combined with a scaling argument to
obtain the bound on the matrix inverse ‖A−1

ε ‖ ≤
C/(khd) , where h is the mesh diameter (with the
mesh assumed quasiuniform) and d is the space di-
mension. This estimates the first term on the right-
hand side of (3). Moreover an elementary argument
can be used to bound the second term in the form
Cεhd, and combination of these gives, finally,

‖I −A−1
ε A0‖ ≤ C

ε

k
, (6)

and leads to the theorem:

Theorem 2.3 If ε/k is bounded above by a suffi-
ciently small constant then the number of GMRES
iterations to solve systems with matrix A−1

ε A0 is
bounded independently of k.
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Several remarks are in order here: (i) The assump-
tion of mesh quasiuniformity is not essential. If the
domain contains corners, standard shape-regular lo-
cal refinement may be carried out and the result re-
mains true, provided diagonal scaling as well as pre-
conditioning is performed, i.e. to solve the system
A0x = b with solution x, we instead solve the sys-
tem D1/2A−1

ε A0D
−1/2y = D1/2A−1

ε b, with solution
y = D1/2x where D is the diagonal of the mass
matrix M ; (ii) The assumption of star-shaped do-
mains seems to be important here: in some exper-
iments with trapping domains, the bound above on
‖A−1

ε ‖ (and hence the guarantee of the smallness of
‖I −A−1

ε A0‖) fails; (iii) The first condition (G1) for
the convergence of GMRES holds for all choices of
ε, up to O(k2). However (G2) is much more delicate
and in our theory at present we need ε/k sufficiently
small for its proof. It is an interesting open question
to try to relax this condition; (iv) We should bear
in mind that we work here with sufficient conditions
for the robust convergence of GMRES. These are by
no means necessary and good convergence can some-
times also be achieved when the conditions identified
here are not satisfied. These aspects will be illus-
trated in the talk by various numerical experiments.

3 Domain Decomposition

It is often claimed that the problem (2) becomes
“elliptic” when ε > 0. We clarify this statement by
giving a coercivity result for problem (2). This coer-
civity result is one of the ingredients for a new anal-
ysis of classical additive Schwarz domain decomposi-
tion methods, which use can fairly general subdomi-
ans and coarse mesh. The results give quite explicit
criteria for the coarse mesh in order for the number of
GMRES iterations to be bounded independently of k.
Experiments with this preconditioner will be given in
the talk. Proofs and further discussion will be in [10].
Related work on optimised non-overlapping Schwarz
methods for problem (2) which gives convergence es-
timates explicitly in terms of k and ε will be given in
the talk of Douglas Shanks [5].

In another talk in the conference [4], Paul Childs
will describe the application of domain decomposi-
tion methods with absorption in conjunction with
the sweeping preconditioner [8] providing a practi-
cal parallel 3D Helmholtz solver, and will apply these
methods to substantial 3D problems of industrial sig-
nificance.
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Abstract

Based on the notion of the augmented scattering
matrix and the corresponding criterion of the exis-
tence of trapped modes, an asymptotic procedure
to keep an eigenvalue embedded into the continuous
spectrum of a waveguide is presented. Similar tech-
nicalities and the asymptotic analysis of the stan-
dard scattering matrix provide the construction of
elongated gently sloped obstacles in the cylindrical
waveguide which become invisible at a finite set of
prescribed frequencies.

1 Eigenvalues embedded into the continuous
spectrum of a waveguide

The distinguishing feature of an eigenvalue embed-
ded into the continuous spectrum of a waveguide is
its natural instability, namely a small local perturba-
tion of the waveguide may lead the eigenvalue out-
side the spectrum and turn it into a point of com-
plex resonance. However under a proper but rather
arbitrary choice of the small perturbation the eigen-
value stays in the spectrum. An asymptotic proce-
dure to find out these appropriate perturbations of
the waveguide walls and/or the shape of the obstacle
is developed in [1]–[3] for different problems in mathe-
matical physics. It requires to construct asymptotics
of an artificial object, that is the augmented scat-
tering matrix which becomes an algebraic identifica-
tor of the point spectrum and is determined through
exponential wave packets of incoming and outgoing
waves (see the original paper [4] as well as [1]–[3]).
One may apply the procedure in two ways. First,
cf. [1], to create the embedded eigenvalue near a
fixed threshold point (these points give rise to stand-
ing waves) of the continuous spectrum. Second, cf.
[2] and [3], to detect perturbations of the shape of
an obstacle and/or a wall knob which are known to
support trapped modes.

Let us formulate one of the obtained results for the
two-dimensional acoustic waveguide with hard walls

Π(ε) = {(x, y) : x ∈ (−∞,+∞), εh(ε, x) < y < d},
(1)

where ε is a positive parameter, small in comparison

the width d > 0 (we further set d = 1 and make the
coordinates and geometric parameters dimensionless)
while h(ε, x) is a smooth function in x with a support
in the interval (−l, l) of length 2l > 0. Moreover,
the dependence of h(ε, x) on the parameter ε is real
analytic in a small neighborhood of the point ε = 0.
The pressure p satisfies the Helmholtz equation

−∆p(x, y) = λp(x, y), (x, y) ∈ Π(ε), (2)

and the Neumann boundary conditions

∂np(x, y) = 0, (x, y) ∈ ∂Π(ε), (3)

where ∆ is the Laplace operator, λ is the spectral pa-
rameter proportional to the square of the frequency ω
of harmonic in time oscillations, and ∂n is the deriva-
tive along the outward normal.
The continuous spectrum σc of the problem (1),

(2) coincides with the positive semi-axis [0,+∞) and
is divided into the intervals Υk =

(
π2k2, π2(k + 1)2

)

by the threshold points π2k2; here k = 0, 1, 2, . . . .

Theorem 1. For any nonnegative integer k there
exist εk > 0 and a profile function fk(ε, x) with the
above-mentioned properties such that, for ε ∈ (0, εk],
the interval Υk of the continuous spectrum of the
Neumann problem (1), (2) in the waveguide (1) with
d = 1 includes exactly one eigenvalue λεk while the
corresponding eigenfunction uεk enjoys the exponen-
tial decay at infinity.

Several questions remain open and the list of them
is rather long. For example, it is not clear if it is
possible to create simultaneously two eigenvalues in
two given intervals Υk and Υj with j 6= k.

2 Invisible obstacles.

Asymptotic analysis of the standard scattering ma-
trix, which is quite similar to the above-mentioned
analysis of the augmented scattering matrix, can pro-
vide the construction of the profile function h of the
waveguide wall such that, at given finite set of fre-
quencies, all the propagative waves get only expo-
nentially decaying perturbations after passing by the
knob. In this way the obstacle becomes “invisible”
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at these frequencies. Let us formulate one particular
result in the two-dimensional linear theory of surface
water-waves obtained recently in cooperation with
A.-S. Bonnet-Ben Dhia and J. Taskinen.
We consider the planar channel (1) with the gently

sloped warp described by the equation y = εh(ε, x)
where the profile function keeps the properties men-
tioned above. The velocity potential u(x, y) satisfies
the Laplace equation

−∆u(x, y) = 0, (x, y) ∈ Π(ε), (4)

together with the Neumann (no–flow) condition at
the bottom

∂nu(x, y) = 0, x ∈ (−∞,+∞), y = εh(ε, x),
(5)

and the Steklov (kinematic) condition at the free wa-
ter surface

∂yu(x, d) = λu(x, d), x ∈ (−∞,+∞), (6)

where λ = g−1ω2 with the oscillation frequency ω >
0 and the acceleration g > 0 due to gravity. The
spectrum of the problem (4)–(6) is again absolutely
continuous and coincides with the semi-axis [0,+∞).
However, there is no positive thresholds since, for any
λ > 0, exists only couple of propagative waves

w±(x, y) = e±µix
(
eµy + e−µy

)

where µ > 0 is the unique root of the transcendental

equation µ
(
eµd − e−µd

) (
eµd + e−µd

)−1
= λ.

If the channel bottom is flat, the wave w+ travels
along the channel in the positive direction of the x-
axis. In the case of the warp this wave scatters and
the problem (4)–(6) admits a solution in the form

u(x, y) = χ−(x)w+(x, y)+

+
∑

±
χ±(x)s±w±(x, y) + ũ(x, y),

(7)

where the first term must be regarded as an inci-
dent wave from the left of the channel, the remain-
der ũ(x, y) decays exponentially as |x| → ∞, χ± are
cut-off functions such that χ±(x) = 0 for ±x < l
and χ±(x) = 1 for ±x > 2l. The transmission s+
and reflexion s− coefficients are in the relationship
|s+|2 + |s−|2 = 1. In the straight channel Π(0) =
(−∞,+∞) × (0, d) we just have u(x, y) = w+(x, y)
and hence

s− = 0 and s+ = 1. (8)

Theorem 2. For any λ > 0 there exist ελ > 0
and a nontrivial profile function fλ(ε, x) with the
above-mentioned properties such that, for ε ∈ (0, ελ],
the problem (4)–(6) in the channel (1) admits the
solution (7) with the coefficients (8) and the expo-
nentially decaying remainder ũ(x, y).

The equalities (8) mean that the incident wave w+

from the left in the channel Π(ε) gains only an ex-
ponentially small perturbation on the right of the
channel. This fact ought to be interpreted as the in-
visibility of the warp. It is easy to verify that due to
the evident relation w+(x, y) = w−(x, y) the invisi-
bility property of the warp indicated in Theorem 2 is
kept by the incident wave w−(x, y) coming from the
right of the channel.
Notice that, similarly to embedded eigenvalues,

the latter property is not stable with respect to
small perturbations of the warp shape. However,
the presented approach is able to give a rigorous re-
formulation of numerical simulations in terms of an
appropriate proximity of the profile functions in both
the cases under consideration.
Many other problems of the same type stay open

but can be solved with the help of the developed
method.
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Abstract

We report on a joint work with M. Palombaro and
J. Rauch. We study the homogenization and singu-
lar perturbation of the wave equation in a periodic
media for long times of the order of the inverse of the
period. We consider inital data that are Bloch wave
packets, i.e., that are the product of a fast oscillating
Bloch wave and of a smooth envelope function. We
prove that the solution is approximately equal to two
waves propagating in opposite directions at a high
group velocity with envelope functions which obey a
Schrödinger type equation. Our analysis extends the
usual WKB approximation by adding a dispersive,
or diffractive, effect due to the non uniformity of the
group velocity which yields the dispersion tensor of
the homogenized Schrödinger equation.

1 Setting and results

The homogenization of the wave equation in peri-
odic media is a well studied subject (see e.g. [7], [8]).
It is known that, for non oscillating initial data (often
called low frequency data), the homogenized limit is
again a wave equation with effective coefficients that
can be computed as in the static case. On the other
hand, for oscillating initial data in resonance with the
periodic medium (so-called high frequency data), the
usual two-scale asymptotic method breaks down and
one needs to use the famous WKB method (Wentzel,
Kramers, Brillouin) to deduce that the asymptotic
limit of the wave equation is described by geomet-
ric optics, i.e. eikonal equations for the phases and
transport equations for the amplitudes of the waves
(see e.g. [7], [9]).

The present work pertains to the second category,
namely homogenization with high frequency data.
However, the novelty is that we are interested in a
much longer time scale, way beyond the geometric
optic regime. In this new limit regime, called diffrac-
tive or dispersive regime [10], the phase is still the
solution of the WKB eikonal equation but the am-
plitude, or envelope function, is not any longer so-
lution of a transport equation but rather solution of
a Schrödinger type equation (in a moving frame of
reference). Therefore, our homogenized model de-

scribes dispersive properties of the wave equation for
very long times.

There are many applications of wave propagation
in periodic medium, including photonic crystals or
optical fibers with a periodic transverse microstruc-
ture (see [13] and Figure 1).

Figure 1: Cross section of a photonic optic fiber

More precisely, we study the homogenization of the
singularly perturbed wave equation





ε2
∂

∂t

(
ρε
∂uε

∂t

)
− div (Aε∇uε) = 0 in RN × (0, T ) ,

uε(0, x) = u0
ε(x) in RN ,

∂uε

∂t
(0, x) = u1

ε(x) in RN ,

(1)
where T > 0 is a final time, Aε and ρε are oscillating
coefficients of the form

Aε(x) = A0

(x
ε

)
+ ε2A1

(
t,
t

ε
, x,

x

ε

)
,

ρε(x) = ρ0

(x
ε

)
+ ε2ρ1

(
t,
t

ε
, x,

x

ε

)
,

(2)

with ρ0(y) and A0(y), real bounded periodic func-
tions of period (0, 1)N such that the density ρ0 is
strictly positive and the tensor A0 is symmetric
uniformly coercive. The macroscopic modulations
ρ1(t, τ, x, y) and A1(t, τ, x, y) are smooth bounded
functions which are periodic of period (0, 1)N with
respect to y (they also satisfy assumption (7) be-
low). The second order time derivative in (1) has
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been written in conservative form because the den-
sity ρε may depend on time. Of course, if ρε is in-
dependent of time, the inertial term is just equal to
ε2ρε(∂

2uε)/(∂t
2) as usual. There is also an ε2 scal-

ing factor in front of the time derivative which corre-
sponds to very long time. Indeed, upon introduction
of a new time variable τ = ε−1t, the usual wave equa-
tion (without scaling) is recovered. Thus a time t of
order 1 is equivalent to a long time τ of order ε−1.

Figure 2: A wave packet

We consider initial data which are Bloch wave
packets (see Figure 2) with a high-frequency linear
phase

u0
ε(x) = ψn

(x
ε
, θ0

)
e2iπ

θ0·x
ε v0(x) ,

u1
ε(x) =

1

ε2
ψn

(x
ε
, θ0

)
e2iπ

θ0·x
ε v1(x) ,

(3)

where v0 and v1 are sufficiently smooth functions and
ψn is a so-called Bloch eigenfunction, solution of the
following spectral cell equation in the unit torus TN

−(divy+2iπθ)
(
A0(y)(∇y+2iπθ)ψn

)
= λn(θ)ρ0(y)ψn ,

(4)
corresponding to the n-th eigenvalue or energy level
λn(θ). As usual the interpretation of the Bloch pa-
rameter θ is that it is a reduced wave number and the
eigenvalue is the square of a time frequency ωn(θ0)
defined by

ωn(θ0) =
√
λn(θ0).

The derivative of the frequency with respect to the
wave number gives the group velocity

V =
1

2π
∇ωn(θ0) =

1

4π

1√
λn(θ0)

∇λn(θ0) , (5)

and the divergence of the group velocity yields a dis-
persion tensor

A∗ =
1

2π
divθV =

1

4π2
∇θ∇θωn(θ0) . (6)

Our main assumptions is that λn(θ0) is a simple
eigenvalue and that the modulated coefficients ρ1 and
A1 are ”invariant along group lines”, i.e.,

∂ρ1

∂τ
± V · ∇xρ1 = 0 ,

∂A1

∂τ
± V · ∇xA1 = 0. (7)

In truth, we can make a weaker but more technical
assumption than (7). We prove that, as ε goes to 0,
the solution of (1) is asymptotically the sum of two
wave packets

uε(t, x) ≈ e2iπ
θ0·x

ε ψn

(x
ε
, θ0

)(
ei

ωn(θ0)t

ε2 v+

(
t, x+

V
ε
t

)

+e−i
ωn(θ0)t

ε2 v−
(
t, x− V

ε
t

))
,

(8)
in a sense of weak two-scale convergence. The enve-
lope functions v+ and v−, in the right-hand side of
(8), are solutions of two Schrödinger equations





2i
∂v+

∂t
− div

(
A∗∇v+

)
+ γ∗v+ = 0 in RN × (0, T ),

v+(t = 0, x) =
1

2

(
v0(x) +

1

iωn(θ0)
v1(x)

)
in RN ,

and





−2i
∂v−

∂t
− div

(
A∗∇v−

)
+ γ∗v− = 0 in RN × (0, T ),

v−(t = 0, x) =
1

2

(
v0(x) − 1

iωn(θ0)
v1(x)

)
in RN ,

with

γ∗(t, x) =
1

2ωn(θ0)

∫

TN

(
Ã1∇ψn · ∇ψn − λn(θ0)ρ̃1|ψn|2

)
dy

Each of these two waves carries half of the initial
data v0 and opposite contributions in terms of the
initial velocity v1. The fact that the homogenized
equations are of Schrödinger type is classical in the
physics literature and is known in mathematics as
dispersive geometric optics [10]. It is reminiscent of
the so-called parabolic or paraxial approximation for
waves propagating in a privileged direction.

Formula (8) yields a family of approximate travel-
ling wave solutions of (1) with a coherent structure,
even for long times. Remark that, when the group
velocity V is zero (which happens, at least, at the
bottom and top of each Bloch band), (8) is rather
a stationary solution which is trapped by the peri-
odic medium. Experimental exploitation of this phe-
nomenon to slow light is a hot topic [12], [6], [11],
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[5]. It is dreamed that the slow light technologies
are a first step toward an all optical computer. As
is well known there exists no propagating solution of
the type of (8) with a frequency ω when ω2 is in a
gap of the Bloch spectrum, i.e. when ω2 6= λn(θ) for
all n ≥ 0 and θ ∈ TN . This property is a key feature
of photonic crystals.

The fact that the homogenized equations for the
envelope v+ and v− are Schrödinger equations is a
confirmation of the dispersive properties (i.e. the
nonlinear character of the effective dispersion rela-
tion) of periodic composite materials.

We give a weak convergence proof of (8) in [2]
which is based on the notion of two-scale conver-
gence with drift and on a simple, uniform in time, L2

in space, estimate for the solution of (1). A strong
convergence proof (for smooth coefficients), including
the construction of infinite order asymptotic expan-
sion of the solution, is given in a companion paper
[3], while the case of Maxwell equations is treated in
[4].

Eventually, if instead of periodic coefficients as
in (2) we consider modulated coefficients A0

(
x, x

ε

)

and ρ0

(
x, x

ε

)
, completely different results can be ob-

tained. In [1], under very specific stationarity and ge-
ometric assumptions on the Bloch eigenvalue λn(x, θ)
(which now depends on the space variable x), we
prove that Bloch wave packets do not propagate and
even more are exponentially localized.
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Splitting schemes for geothermal processes simulation
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Abstract

A few numerical algorithms for solving the non-
stationary heat transfer equation in terms “temper-
ature - heat flux” are discussed. Thereby, a non-
stationary two- or three-dimensional parabolic prob-
lem in the mixed formulation is considered. Spa-
tial discretization is implemented by the mixed fi-
nite element method with Raviart-Thomas finite el-
ements of lowest order. For the vector equation for
the mesh heat flow a few splitting schemes are ana-
lyzed. For the proposed schemes as long as for the
reference scheme of Crank-Nicolson results of numer-
ical experiments are presented. Special attention is
given to the comparison of accuracy of different split-
ting schemes. Moreover, several application prob-
lems concerning thermochronology of certain geolog-
ical regions are presented.
This work was supported by RFBR (No. 12-01-
31046) and IP No. 76 SB RAS.

1 Problem statement

Consider the following system of first order dif-
ferential equations written in terms “temperature -
heat flux” which describes heat transfer process for
x ∈ Ω ⊂ Rn, n = 2, 3:

{
cpρ

∂T
∂t + div w = f, x ∈ Ω,
1
λw = −∇T, x ∈ Ω.

Here T and w denote the unknown functions of tem-
perature and heat flux, while cp, ρ and λ are the co-
efficients of heat capacity, density and heat conduc-
tivity respectively; function f corresponds to the dis-
tributed heat source in the considered domain Ω. For
this system we have an initial condition and Dirich-
let or Neumann boundary conditions for T . Carry-
ing out some simple manipulations one can obtain a
mixed weak formulation of the problem
{ ∫

Ω cpρ
∂T
∂t χ +

∫
Ω div wχ =

∫
Ω fχ,∀χ ∈ L2(Ω)∫

Ω
1
λw · u =

∫
Ω T∇u −

∫
∂Ω Tu · n,∀u ∈ Hdiv(Ω)

,

where unknown functions T and w are sought for
as elements of functional spaces L2(Ω) and Hdiv(Ω)
respectively.

2 Time and space discretization

Consider a rectangular grid covering the domain
Ω. Space discretization is implemented by the mixed
finite element method based on Raviart-Thomas fi-
nite elements of lowest order (for Hdiv) and piece-
wise constant scalar functions (for L2). Calculating
the corresponding integrals in the mixed weak for-
mulation one can obtain the following semidiscrete
system: {

M dTh
dt + BTwh = fh

Awh = BTh + gh
,

where M is a diagonal mass matrix for temperature,
A - tridiagonal mass matrix for heat flux, B and
BT denote the discrete (mesh) counterparts of op-
erators of gradient and divergence respectively; gh

arises from inhomogenious boundary conditions and
will be omitted further, fh corresponds to the differ-
ential righthand side f . Now it is straightforward to
write the implicit α-weighted scheme in the following
form:
{

(A + ατH)wn+1−wn

τ + Hwn = F n+1+F n

2

M T n+1−T n

τ + BT (αwn+1 + (1 − α)wn) = F n+1+F n

2

where H = BM−1BT approximates the second space
derivatives tensor. To obtain the first equation for
the heat flux only one should ”differentiate” on the
mesh level the Fourier law and make use of the mesh
energy conservation law.

3 Splitting schemes

Taking α = 0 one obtains the conditionally sta-
ble explicit scheme first order accurate in time and
second order accurate in space, α = 0.5 - the sta-
ble second-order accurate in time and space Crank-
Nicolson scheme. Due to the rather complicated
structure of matrix H Crank-Nicolson scheme can
hardly be used for computations, especially in case
of time-dependent coefficients. The first two splitting
schemes proposed [1] are based on approximate fac-
torizations of the operator G = A + ατH. Scheme 1
is based on the alternating-triangular factorization,
scheme 2 - on the factorization of SSOR-type. Other
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splitting schemes are closely connected to the split-
ting schemes for the mesh divergence of the heat flux
with a specific choice of operators of second space
derivatives. Scheme 3 (for n = 2) corresponds to the
classical alternating-direction scheme, scheme 4 (for
n = 3) - to the scheme of Douglas and Gunn of sec-
ond order, scheme 5 - to the locally one-dimensional
scheme based on Crank-Nicolson. Finally, we also
consider scheme 6 - a splitting scheme proposed in
[2] which is based on the so called Uzawa algorithm
for the mixed formulation. Schemes 1-4 and 6 are
second order accurate, scheme 5 is only of first order
in time, in spite of the fact that the corresponding
scheme for mesh divergence is of second order. The
questions of stability for schemes 3-6 is still under
study although the fact that these schemes are un-
conditionally stable for the mesh divergence is quite
obvious. To obtain solution using proposed splitting
schemes one requires only to invert block matrices
with tridiagonal blocks which can be performed in
an efficient way, especially for cluster machines.

4 Numerical experiments and applications

For the sake of brevity only few words are pre-
sented here concerning results of numerical exper-
iments, namely only one test case is presented for
comparison of the schemes mentioned above for n =
2. All the schemes were tested against the following
analytical solution

T (x, y, t) = e−tsin(2πx)cos(2πy) + y + 1

in the unit square with appropriate initial and bound-
ary conditions. In figures (a) and (b) relative L2-
norms of the error for temperature and heat flux for
the time moment t = 1 depending on the space step
are shown for different 2D-schemes.
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In both figures “expl” stands for explicit, “Cr-N”
- for Crank-Nicolson, line 1 corresponds to scheme 1,
line 2 - to scheme 2, etc. The logarithmic scale is used

for the axis of error values. For all implicit schemes
the Courant number was taken 100, for the explicit
scheme the maximum allowable time-step (due to the
stability condition) was chosen. As one can notice,
schemes 3 and 6 provide the best results similar to
that of the Crank-Nicolson scheme, while schemes
1,2 and 5 are much less accurate. This holds true
for both temperature and heat flux. The detailed
comparison of the schemes for different test solutions
with variable coefficients and nonuniform grids, as
well as application problems (see, e.g.[3]) are omitted
here due to the lack of space.
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Numerical simulation of filtration gas combustion
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Abstract

The problem under consieration is the filtration
gas combustion. In particular we are interested in
the numerical modelling of the propagation of region
of gaseous exothermic reaction in chemically inert
porous medium, as gaseous reactants are being sup-
plied into the region of chemical transformation [1].
The aim of our work is the construction of efficient
algorithms for calculating the motion of combustion
wave. Several approaches will be used, namely the in-
troduction of adaptive grids, the method of splitting
into physical processes [2], parallelization on shared
memory [3] and the use of external highly optimized
libraries of Intel R©MKL [4]. We obtain solutions
of the problem that coincide with the experimental
data. We also implement the parallelization of the
constructed algorithms, which reduces the computa-
tional time by ten times compared to the original
code.
This work was supported by RFBR (12-01-31046, 13-
01-00019).

Introduction

Modeling of the processes of filtration gas combus-
tion (FGC) is the problem of current interest that
has wide practical application. Knowledge of the
properties of FGC waves is essential in solving many
problems of energy, chemical and construction tech-
nology, ecology, and fire safety. A physical model for
FGC may be described as follows. Let there be a
tube filled with a porous material, measuring about
10 cm. From one edge of it a combustible gas mix-
ture is supplied at a rate of ~v. Then the mixture is
ignited, resulting in a combustion front, which can
either be stationary or move in any direction, de-
pending on the model parameters. If the combustion
front moves, it may do so in a number of different
fashions.

The simpliest one-dimensional FGC model in the
enthalpy formulation includes three equations:

∂T

∂t
= as

∂2T

∂x2
+ αs(H − T −

Q

cg
η), (1)

∂H

∂t
= ag

∂2H

∂x2
− v∂H

∂x
+ αg(T −H +

Q

cg
η), (2)

∂η

∂t
= ag

∂2η

∂x2
− v ∂η

∂x
−W (η,H). (3)

Here ai = λi/ciρi is the coefficient of thermal dif-
fusivity of the i-th phase, ci, ρi, λi are respectively,
specific heat at constant pressure, density and ther-
mal conductivity of i-th phase (i = s for porous solid,
i = g for gas), αs = α

(1−m)csρs
, αg = α

mcgρg
, m - poros-

ity, α - interphase heat transfer rate, v - flow rate of
the combustible mixture, T ≡ Ts, Hcg = Tgcg + Qη
is full gas enthalpy, where Ti is the temperature of
the i-th phase, Q is energy release of the reaction,

W (η,H) = k0ηe
−E/R(H− Q

cg
)

- the chemical reaction
rate according to Arrhenius law, η - relative con-
centration of reactive component of the combustible
mixture, k0 - pre-exponential factor, E - activation
energy, R - universal gas constant.

It is easy to see that the system is parabolic. How-
ever, due to the nonlinear components of the third
equation solutions act as shock waves, which is typ-
ical for hyperbolic systems. It is also worth noting
that the speed of the wave is a priori unknown. The
Cauchy problem is stated by adding the Dirichlet
boundary conditions on the left edge and the Neu-
mann ones on the right edge.

1 Mathematical methods

1.1 Adaptive mesh

Jumps of the unknown functions in the area of
chemical reactions require a significant refinement of
the spatial step. This, in the case of explicit schemes,
involves a further refinement of the time step, due to
the Courant-type restriction. However, away from
the flame front, the solution functions are smooth
and close to a constant. Thus, one way to speed up
the computation seems to be the introduction of an
adaptive grid. It will depend on the solution of the
previous time step and will be concentrated in the
area of the chemical transformation.
We implemented two algorithms using adaptive
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grids. In the first one in the vicinity of the chem-
ical reaction zone a more dense grid is used. It then
moves according to the movement of the combustion
front. This approach saves time by increasing the
spatial step for smooth areas. However, it does not
affect the time step, which has to be chosen in accor-
dance with the stability condition on the fine grid.
An opportunity to increase the time step is imple-
mented in the second algorithm. The basic idea is
this: by doing one step of the uniformly coarse grid
scheme (with the corresponding big time step), we
obtain the initial data and boundary conditions for
the fine mesh. This provides us with a subproblem
with small spatial and time steps. Having executed
all the steps of the subproblem, we replace values of
coarse-grid solutions with the corresponding values of
solutions of the embedded problem. This approach
allows us to take big steps in space as well as in time
outside the chemical reaction zone.

1.2 Splitting method

A significant proportion of the total computation
time is devoted to the calculation of the exponent
in the reactant-concentration equation. Method of
splitting into physical parameters is based on the
idea to isolate the summand with the exponential
term. Thus, we count transfer and diffusion at the
first half-step and chemical reaction at the second
half-step. This approach opens tremendous oppor-
tunities for futher investigations and ways to reduce
the execution time.

2 Programming methods

2.1 Parallelization (Modeling on machines with
shared memory)

The simplest and most obvious way to implement
the program on a multiprocessor node is implemen-
tation of OpenMP procedures for the inner loop of
the program. However, when modeling small prob-
lems, the time required by the machine to transfer
data is comparable to the time of the actual receipt
of data. This parallelism is not always effective and
in some cases even leads to a slowdown of the pro-
gram execution. To reduce the time for the exchange
of data flows, it may be useful to distribute the data
between them, ie assign each thread its part of the
spatial grid. Each thread creates its arrays to find
a solution, fills them in accordance with the differ-
ence scheme, and outputs the results on its assigned
grid nodes. On a regular grid we thus obtain prac-

tically independent tasks exchanging only boundary
conditions.

2.2 Intel R©MKL

The use of the external highly optimized libraries
of Intel R©MKL helped us to reduce the execution
time. In our program we apply such functionalities
as vdExp to calculate the exponent efficiently, dgbtrf
and dgbtrs for solving a system of linear equations
by a direct method at every time step of the implicit
difference scheme.

Conclusion

We constructed various algorithms for the numer-
ical solution of the FGC problem which provide so-
lutions that are consistent with experimental data.
Calculations were carried out for a small problem
(tube length is 0.0125 m) and for a problem with
characteristic dimensions (length of tube is 0.1 m).
Modifications of the original algorithm have reduced
the execution time by a factor of 10 in the case of
small problems (for the physical time t = 0.1 sec)
and almost 120 in the case of large ones (for the
physical time t = 30 sec.) It’s easy to see that the
use of the adaptive grids for simulation of FGC pro-
vides significant gains. However, parallel implemen-
tation of such algorithms is not always effective and
demands special approach. At the same time the
number of processors on the computational node will
grow and the influence of parallelism will increase, so
construction of new algorithms that allow almost per-
fect scaling in the number of threads becomes rather
actual problem. The algorithms based on the split-
ting method are expected to show good scalability
since each thread can calculate the chemical reaction
rate independently from the other ones.
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Abstract

Common Middle Point seismic sections provides
important information about the internal structure
of the 3D heterogeneous geological media and are a
key element for seismic interpretation. It is there-
fore extremely important to be able to analyze in
detail how the typical geological structures are man-
ifested in these 3D seismic cubes. The most com-
plete knowledge here is provided by full mathemat-
ical simulation, which takes into account all multi-
scale structure of the medium under study. Un-
fortunately, these simulations for realistic geological
structures and 3D seismic surveys still can not be
implemented on a modern, even the most powerful
computer systems. In order to overcome this trou-
ble we propose a different approach - modeling these
3D seismic cubes directly rather than shot-by-shot
simulation with subsequent CMP stacking. In order
to do that the well know ”exploding reflectors prin-
ciple” is modified for 3D heterogeneous multiscale
media. Its parallel implementation allows modeling
of 3D Common Middle Point stacks with reasonable
computational costs.

1 Introduction

Common Middle Point (CMP) stack for the cor-
rect depth macrovelocity model will not only trans-
form multi-shot multi-offset seismic data to zero-
offset data, but also significantly reduce the multi-
ples. In order to imitate this procedure we apply the
exploding reflectors concepts (Claerbout, 1985) and
keep in the mind the following key items:

1. The secondary sources should posses reasonable
intensity;

2. The macrovelocity model should be properly
smoothed, so barely to change the travel time,
but essentially reduce reflections.

The smoothing is performed in vertical directions
only

2 From the full model to the smooth propa-
gator

To ensure the desired properties of the propagator
the full velocity model is smoothed by its convolution
with error function:

F < f > (z) = β

z0∫

−z0

f(z − ξ)e−αξ2
dξ (1)

This transform should reduce essentially reflections,
but not perturb travel times to some extent. In or-
der to guarantee the last property let parameters of
transformation (1) are searched in order to save con-
stant with given accuracy.

Straightforward computations give:

β

z+z0∫

z−z0

e−α(z−ζ)2dζ = β
√

απ erf(
√

αz0)

Error function erf(x) converges to unit with x → ∞,
so, in order to keep the constant we should choose
β
√

απ = 1. In our computations we choose
√

αz0 =
4, so erf(

√
αz0) = 1 − 1.5 ∗ 10−8 and any constant is

saved up to single computer precision.

3 Secondary sources

Secondary sources are introduced by decomposi-
tion of the full model onto smooth propagator (with
indicex 0) and rough reflectors (with indices 1):

ϱ = ρ0 + ρ1; λ = λ0 + λ1; µ = µ0 + µ1.

This decomposition introduces incident (indices 0)
and reflected/scattered/diffracted (indices 1) waves.
The latter has the following integral representation:

U⃗1(x⃗; ω) =

∫

R3

G(x⃗; ξ⃗; ω)
(
L̂0 + L̂1

)
U⃗0(ξ; ω)dξ
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with elastic Green matrix G(x⃗; ξ⃗; ω) and linear dif-
ferential operator

(L1(λ0, µ0)w⃗)k ≡

≡ ∂λ0

∂xk
divw⃗ +

3
Σ

j=1

∂µ0

∂xj

(
∂wj

∂xk
+

∂wk

∂xj

)

.
For smooth background volumetric source gen-

erates mainly incident P-wave. This allows to
prove that wavefield U⃗1(x; x0;xs; ω) generated by the
source at x⃗s and scattered at x⃗0 can be treated as the
solution to the following equation:

(
L0 + L1 + ϱ0ω

2
1

)
U⃗1 =

−
−ω2

1F (
ω1

2
)

4vp(x0)
λ1(x0)Ap0(x0, xs)gradδ(x − x0)

(2)

and therefore is created by a secondary volumetric
source at x⃗0.

4 Numerical experiments

Numerical experiments were done for 3D hetero-
geneous multiscale model of the buried channel over-
lying cavernous-fractured reservoir (see Fig.1). For
lack of space we do not present here the interim re-
sults, confirming the equivalence of zero-offset and
exploding reflectors given by (2). But we represent
3D seismic cube of zero-offset/CMP data in Figure
2.
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Figure 1: 3D seismic model used for simulation:
the buried channal with fractured reservoir. a) Top

view. b) Side view.

Figure 2: 3D zero-offset seismic cube. Simulation
by exploding reflector.
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Abstract

This paper presents an algorithm oriented on the
simulation of seismic wave propagation in models
containing viscoelastic formations. These formations
are typically relatively small (about 25 % of the
model), however proper treatment of seismic attenu-
ation doubles the computational intensity of the al-
gorithm in comparison with ideally elastic models.
Our suggestion is to use the attenuation oriented al-
gorithm only in the vicinity of viscoelastic formations
while efficient numerical approach to simulation of
seismic waves propagation in ideally elastic media
is applied elsewhere. In this paper we discuss both
mathematical aspects of algorithm and peculiarities
of its parallel implementation.

Introduction

Modern approaches to seismic processing such as
full waveform inversion, reverse time migration are
based on massive forward modeling. However, these
techniques are used nowadays mostly in application
to ideally elastic media. One of the main deter-
rent factors for their extension to viscoelasticity is
the computational intensity of the forward model-
ing. Seismic attenuation is introduced in a model
by convolution-like operator mapping strains into
stresses. In order to localize this operator the gen-
eralized standard linear solid model (GSLS) is used
[1], which is a rational approximation of the kernel
in frequency domain. In time domain GSLS include
additional memory variables and equations for them.
As the result amount of RAM and floating point op-
eration per grid cell needed for the simulation of wave
propagation in viscoelastic models doubles with re-
spect to those for ideally elastic media. At the same
time these formations are typically small enough (less
than 25% of the model) thus it is reasonable to use
the GSLS only in the vicinity of the viscoelastic for-
mations and couple it with the model of ideally elas-
tic media which is used elsewhere.

1 The algorithm

Consider the GSLS model governing wave propa-
gation in viscoelastic media:

ρ∂u
∂t = ∇ · σ,

∂ε
∂t =

(
∇u + ∇uT

)
,

∂σ
∂t = G1ε +

∑L
l=1 rl,

τσ,l
∂rl

∂t = −G2ε − rl,

where ρ is a mass density; G1 and G2 are fourth-order
tensors, defining the model properties; u is a velocity
vector; σ and ε are the stress and strain tensors; rl

tensor of memory variables. Note that the number of
memory variables tensors is L, typically two or three.
Proper initial and boundary conditions are assumed.

For the ideally elastic models the tensor G2 equals
to zero which means that solution of the last equation
is trivial if zero initial conditions are used. Thus the
memory variables tensors can be completely excluded
from the equations. After that the system turns into
that for ideally elastic wave equation. This means
that there is no need to allocate random access mem-
ory (RAM) for the memory variables in the ideally
elastic parts of the model.

Assume now a subdomain Ω ⊆ R3 where full vis-
coelastic wave equation is stated, while ideally elastic
wave equation is valid for the rest of the space. It
is easy to prove that the conditions at the interface
Γ = ∂Ω are

[σ · n⃗]|Γ = 0, [u]|Γ = 0,

where n⃗ is vector of outward normal and [] denote
jumps of the function over the interface. These con-
ditions are the same as those for elastic wave equation
at an interface. Moreover if standard staggered grid
scheme (SSGS) [2] is used these conditions are satis-
fied automatically. Thus the coupling of the models
does not require any special treatment of conditions
at the interface and can be implemented by allocation
of RAM for memory variables and soling equations
for them in viscoelastic part of the model.
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2 Parallel implementation

Parallel implementation of the algorithm is done
via domain decomposition technique. However, the
amount of the computational job for elastic and vis-
coelastic parts of the model is different, which leads
to the necessity to apply independent domain decom-
position to design a well-balanced algorithm. Mean-
while the use of SSGS assumes two types of synchro-
nization points. The first one is at instants just after
the velocity components have been updated. This
stage requires the same amount of flops per grid cell
for both elastic and viscoelastic parts of the algo-
rithm. The second type is after the stresses were
computed. This part is strongly different for the
named parts of the algorithm. This means that re-
gardless to the ratio of the elementary subdomains
associated with single core (node) for elastic and vis-
coelastic parts some of the cores will have latency
period. This can be seen in fig. 1.
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Figure 1: TraceAnalyzer images for equivolumetric

(top) and optimal (bottom) domain decomposition.

Dark bars correspond to computations, light bars

represent waiting time.

As the result an optimal domain decomposition
was suggested to minimize the overall computational
time (core-hours) of the algorithm. The computa-
tional time can be estimated by the formula:

T (α, β) = [δ max(1, β) + max(1, βγ)]

(
α +

1 − α

β

)
,

where γ = 0.33 and δ = 0.32 are the ratios of compu-
tational time needed to update velocity and stresses
respectively for elastic part per grid cell with respect

to time for computing stresses for viscoelastic part.
These values were measured experimentally. Param-
eters α is the relative volume of the viscoelastic part
of the model and β is the ratio of the elementary vol-
umes of elastic and viscoelastic parts. It is clear that
the optimal domain decomposition is constructed if
minβ T is achieved. Figure 2 represents the theo-
retical estimations of T (α, β) and numerical experi-
ments. One may note that the optimal ratio of the
elementary volumes for elastic and viscoelastic parts
is equal to 3 for relatively small amount of viscoelas-
ticity. In this case the speed-up of the hybrid al-
gorithm is about 2 with respect to pure viscoelastic
simulation.
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Figure 2: Normalized core-hours with respect to β.
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Abstract

Reverse Time Migration (RTM) is one of the most
widely used techniques for Seismic Imaging, but it in-
duces very high computational cost since it is based
on many successive solutions to the full wave equa-
tion. High-Order Discontinuous Galerkin Methods
(DGM), coupled with High Performance Computing
techniques, can be used to solve accurately this equa-
tion in complex geophysical media without increasing
the computational burden. However, to fully exploit
the high-order space discretization, it is necessary to
use a high-order time discretization. In this work, we
propose a new high order time scheme, the so-called
Nabla-p scheme. This scheme does not increase the
storage costs since it is a single step method and does
not require the storage of auxiliary unknowns. Nu-
merical results show that it requires less storage than
the ADER scheme for a given accuracy and that it
can be efficiently implemented in an RTM algorithm.

Introduction

Geophysical exploration is undertaken on more
and more complex media and we need advanced
numerical methods to accurately image the subsur-
face. Indeed, Seismic Imaging algorithms, such as
for instance Reverse Time Migration (RTM), gener-
ate high computational burden since they are iter-
ative algorithms that require many successive solu-
tions to the wave equation. To reduce these com-
putational cost, we use High-Order Discontinuous
Galerkin Methods, which are very accurate even with
coarse meshes and can be combined with explicit
time schemes. However, to take fully advantage
of high-order space discretization, it is necessary to
combine DGM with high order time discretization.
This can be achieved by using DG-ADER methods
[4], which are an extension of the Modified Equa-
tion Technique [2], [3]. They are single step meth-
ods, i.e., they only require to store the solution at
the previous time step. Nevertheless, even when us-
ing advanced methods like DG-ADER schemes, we
still have to store a huge number of unknowns. We

then propose a new single step method, called Nabla-
p schemes, which can be seen as an alternative to
DG-ADER schemes. The original idea consists in in-
verting the discretization order, which introduce high
order operators in space which require an appropri-
ate space discretization. Fortunately, DG method are
well adapted to deal with high order operators. This
has already been successfully applied to the second
order formulation of the acoustic wave equation and
we focus here on the first order formulation of acous-
tic and elastodynamic wave equations. Numerical
results show that the additional cost induced by the
computation of the high order operator is counter-
balanced by the accuracy of the method. Indeed, for
a given accuracy, it allows for much coarser meshes
than ADER, which considerably reduces the storage
and the computational time.

1 Discretization of the wave equation
To simplify the presentation, we focus on the

acoustic wave equation but the method can be ap-
plied to the elastodynamic wave equation too. We
consider the following system in a bounded domain
Ω ⊂ Rn, n = 1, 2, 3:





ρ(x)
∂v(x, t)

∂t
+ ∇p(x, t) = 0 in Ω × [0, T ]

1

µ(x)

∂p(x, t)

∂t
+ ∇ · (v(x, t)) = 0 in Ω × [0, T ]

(1)

where ρ and µ are respectively the density and the
compressibility modulus of Ω, p is the scalar pressure
and v the velocity vector. By applying a DGM, we
obtain the semi-discretized schemes:





dV

dt
+ M−1

v KpP =
dV

dt
− ApP = 0

dP

dt
+ M−1

p KvV =
dP

dt
− AvV = 0

(2)

where the mass matrices Mv, Mp are easily invert-
ible since they are diagonal and the stiffness matrices
Kp, Kv are sparse. One of the most efficient way to
discretize this system is to use ADER method [4]. It
is equivalent to the MET, when using the same time
step and the same order for the time discretization in
the whole domain. The fourth order ADER scheme,
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reads as:



V n+1 − V n

∆t
= ApP n+1/2 +

∆t2

24
ApAvApP n+1/2

P n+3/2 − P n+1/2

∆t
= AvV n+1 +

∆t2

24
AvApAvV n+1

This scheme requires three times more multiplica-
tions by the stiffness matrices than the second order
Leap Frog Scheme (LF), but the stability condition
is multiplied by almost three. However, for higher
order, the increase of the stability condition does not
counterbalance rising multiplications. We propose
here an alternative to ADER by applying the MET
to the continuous wave equation (1). We then obtain
the semi-discretized scheme:





v(x)n+1 − v(x)n

∆t
= −∇p(x)n+ 1

2 − ∆t2

24
∇∇ · ∇p(x)n+ 1

2

p(x)n+1 − p(x)n+ 1
2

∆t
= −∇ · v(x)n+1 − ∆t2

24
∇ · ∇∇ · v(x)n+1

This method has already been applied to the sec-
ond order formulation of the wave equation [1]. It is
worth noting, that we obtain a third order operator
in space, that we discretize with DGM.

2 Numerical Results
Our main goal is to limit the storage which is

the main drawback of the RTM. The computational
cost, can be controlled by new HPC techniques such
that MPI, OpenMP or GPU. We have performed a
comparison between classical LF scheme using P6-
elements in space and fourth order time schemes.
The length of the domain is 6 m, the simulation time
is 6.0 sec. The original space step h varies from 0.2
to 0.03 m. We consider periodic boundary conditions
and the initial data is:

U(x, t) = (x − x0 − t) e
−
(

(2π(x−x0−t))2

r0

)

.

In Fig. 1, we represent the relative L2-error as a
function of the number of unknowns. For a given
accuracy, High Order schemes require less degrees of
freedom (dof) than LF. Besides, the Nabla-p scheme
requires three times less dofs than ADER.

In Fig. 2 we represent the relative L2-error as a
function of the number of operations. For a given
accuracy, ADER and Nabla-p require approxima-
tively the same number of operations. As a conclu-
sion, Nabla-p scheme require less storage cost than
ADER and the computional cost is similar. This in-
dicates that Nabla-p scheme is more appropriate for
the RTM.

We will present RTM results that will illustrate
the performance of Nabla-p scheme in realistic 2D
and 3D configurations.
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[4] M. Dumbser and M. Käser (2000) An arbitrary High-

order discontinuous Galerkin method for elastic waves

unstructured meshes - II.The three-dimensional isotropic

case, Geophys. J. Int. 142.

HELENE BARUCQ, HENRI CALANDRA, JULIEN DIAZ AND FLORENT VENTIMIGLIA 50



True Amplitude Imaging of Ocean Bottom Cable Data by Gaussian Beams Based Weighted
Summation

Protasov M.I.†,∗, Kutovenko M.P.†, Tcheverda V.A.†
†Institute of Petroleum Geology and Geophysics, 3, Koptyug st., Novosibirsk, Russia 630090

∗Email:ProtasovMI@ipgg.sbras.ru

Abstract

An approach to true amplitude seismic imaging for
Ocean Bottom Cable multicomponent (displacement
and pressure) data is presented and discussed. This
approach is a migration procedure based on weighted
summation of prestack data.We use a pair of properly
chosen Gaussian Beams with fixed dip and opening
angles from each imaging point towards the acquisi-
tion system. Shooting from the image point over-
comes some difficulties due to multiple arrivals of
seismic energy which are common for complicated ve-
locity models and provides uniform illumination and
resolution in the target area. In addition, the global
regularity of Gaussian beams stabilizes this approach
in the presence of irregular ray fields. Numerical ex-
periments with synthetic data set for the Gullfaks
model (North Sea) are presented and discussed.

Introduction

We present the equations for true-amplitude elas-
tic imaging of multi-component (4C) seismic Ocean
Bottom Cable (OBC) data, and illustrate in the nu-
merical examples how a linearized elastic inversion
can retrieve perturbations in elastic parameters from
the true-amplitude images. Our results extend the
approach for elastic imaging of borehole seismic walk-
away VSP data presented in the paper [3]. Our
prestack migration procedure is based on weighted
summation of the data, with weights computed by
tracing Gaussian Beams (see [2]). The weights are
functions of two angles; structural dip and opening
angle for the pair of beams. Note that these beams
are shot from the image points toward the acquisi-
tion surfaces, thus stabilizing the solution in com-
plex models. Keeping the opening angle constant,
while carrying out the summation over dip, provides
so-called selective images of the rapid velocity varia-
tions, which we input to linearized (AVA-like) inver-
sion for elastic parameters. We illustrate our imaging
and inversion approaches with examples from a syn-
thetic data set computed for Gullfaks field model.

Method

The 2d elastic model below is supposed to be de-
composed as macro-model λ0, µ0, ρ0 and reflectiv-
ity/scatterer component λ1, µ1, ρ1. Let us suppose
that along the bottom line Γ there is an Ocean Bot-
tom Cable (OBC), registering the displacement vec-
tor and pressure scattered/reflected by underlying

rocks:
−→
d (xr;xs;ω) = (ux, uz, p). In order to describe

scattered/reflected wave field Born’s approximation
is used. The problem we deal with is to recover func-
tions λ1, µ1, ρ1 or some their combinations from OBC
data.

In order to construct a PP image at some tar-
get point xi let us shoot from it a couple of P-rays,
trace them through the smooth background towards
the acquisition system and introduce a couple of
P-wave Gaussian beams connected with these rays.
Next, let us compute the Gaussian beam and the
corresponding stresses at the receivers at the ocean

bottom:
−→
T p

gb,r(xr;α, β;ω), and the vertical derivative
of the potential of another P-wave Gaussian beam at
the source positions: T p

gb,s(xs;α, β;ω). Using these
expressions as weights for the summation OBC data
and applying the stationary phase method in the
same manner as it was done in [3], we find that with
accuracy to the first order the summation integral
can be represented as:

fpp(β) =

∫
dxrdxsdωdα

−→
d (xr;xs;ω) ·

·−→T p
gb,r(xr;α, β;ω) · T p

gb,s(xs;α, β;ω) + O(ω−1), (1)

with the function

fpp(β) =
λ1 + 2µ1 cos2 2β + ρ1V

2
0,p cos 2β

cos2β
. (2)

Here we use the fact that Gaussian beams are con-
centrated in the narrow vicinity of the corresponding
ray which allows us to restrict the integration over a
small area V around the imaging point.

Illustrations

To study the main features of the method and
evaluate the limits of its applicability and resolution,
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we have synthesized OBC data for the Gullfaks field
model. Numerical simulation was done with a finite-
difference scheme. The dataset consists of 81 shots
and array of 161 3C receivers. We applied no pre-
processing of these data before the Gaussian beam
imaging; in particular no P- and S-wave separation
was used. The result for opening angle β = 00 can be
seen in Fig.1 (bottom) in comparison with the true
model (top). The target structures are reconstructed
with excellent quality, especially the fine layering of
the reservoir (the shaded area). There are also no vis-
ible artifacts due to conversion (let us recall that we
did not apply preliminary P- and S-wave separation).
Next, we extract values of elastic parameters for the
medium by inverting expression (2) for the function
fpp(β). This inversion was carried out for two differ-
ent sets of physically meaningful parameters: 1) AVO
parameterization by R0, G and C (see [1]); 2) Param-
eterization by P- and S-impedances and normalized
density. In Fig.2(top) one can compare the recovered
(red line) and real (blue line) functions fpp(β) and
make sure that they match almost perfectly. Now
these functions are used as the right-hand sides of
a formally over determined system of linear equa-
tions: 20 equations for 3 parameters. This system
is resolved by standard Least Squares optimization
with the results presented in Fig.2(bottom) for both
parameterizations. Under AVO parameterization R0

recovery is almost ideal, parameter G is found with
reasonable quality, but the third coefficient C is re-
constructed poorly. At the same time, when param-
eterization by impedances and normalized density is
used, only P-impedance is restored reliably, while nei-
ther S-impedance nor the density is determined with
acceptable accuracy.

Conclusions

We presented theory and synthetic numerical re-
sults for a true amplitude Gaussian Beam elastic
imaging and inversion procedure with application to
Ocean Bottom Cable data. This research is based
on our previous study performed for one component
data and walk-away multicomponent VSP. The se-
lective images obtained for a range of opening angles
represent reflection coefficients in a linear approxima-
tion. If they can be computed for a range of opening
angles, we can recover the elastic properties of the
medium by AVA-like amplitude analysis and inver-
sion. It is worth mentioning that our inversion re-
sults are obtained without preprocessing of the data,
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Figure 1: Velocity model (top) and its
true-amplitude image (bottom).
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Figure 2: Input data for recovery of material
parameters, the function fpp (top). Inversion result

for AVO parameters R0, G,C (bottom left).
Inversion results for P- and S-impedances and

normalized density (bottom right).

and in particular no separation of P- and S-waves
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Abstract

The construction of Absorbing Boundary Condi-
tions (ABCs) for elastic media is an issue that is far
from being solved. This is probably due to the very
technical difficulties that arise when one wants to
write higher-order conditions. In the isotropic case,
we can nevertheless design conditions but the prob-
lem is not solved for general elastic media. Besides,
a realistic representation of the Earth must include
anisotropy and in most of cases, subsurface layers are
Tilted Transverse Isotropic (TTI). That is why we
propose a new low-order ABC for TTI media, that is
constructed from the geometry profile of the slowness
curves. We thus avoid technical issues that make the
construction of ABCs impossible.

1 Problem setting

We are interested in the design of an efficient di-
rect solver for elastodynamics that can be used for
seismic imaging of heterogeneous media. Denoting
x = (x, z) and t > 0, the space and time variables,
the elastodynamics system reads as

{
ρ(x)∂tv(x, t) = ∇.σ(x, t),

∂tσ(x, t) = C(x) : ε(v(x, t)),
(1)

with ρ > 0 the density, v the velocity field, σ the
stress tensor, C the stiffness tensor and ε the strain
tensor. The coefficients of C depend on the char-
acteristics of the propagation medium. The sim-
plest representation of C corresponds to an isotropic
medium but it does not adequately model waves
in realistic cases. Transverse Isotropy (TI) models
have more ability to reproduce waves into the Earth,
see [7], [2]. Vertical Transverse Isotropy (VTI) as-
sumes that there is a vertical axis of symmetry. In the
more general case of TTI, the symmetry axis can be
away from vertical, following an angle θ of rotation.
(see Fig. 1 for a description of different wavefronts).

Isotropic media can be characterized by the P-
waves and S-waves velocities Vp and Vs with the den-
sity ρ. VTI media are defined in the same manner by

Vp, Vs and ρ, and in addition with the Thomsen VTI
parameters ε and δ [5]. TTI media are described by
the VTI parameters and by the characteristic angle
of rotation θ.

θ

VTI TTIIso

Figure 1: Wavefronts for isotropic (left), VTI
(center) and TTI (right) media

A rigourous methodology for the construction of
ABCs is based on the diagonalization of the sys-
tem (1). This approach has been proposed by En-
quist and Majda [3] for strongly hyberbolic systems.
It provides a very elegant process for the derivation
of ABCs on arbitrarily shaped boundaries [1]. Nev-
ertheless, in practice, it can quickly become uneasy
to use because of coupling terms that are difficult to
handle in the first stage of the diagonalization. The
coupling indeed, results in eigenvalues which are diffi-
cult to exploit for the construction of efficient ABCs.
For instance, the VTI eigenvalues are [4]:

λP/S =

√
αk2 − βρw2 ±

√
γk4 − ηρk2w2 + ξρ2w4

where k denotes the frequency related to the time
variable by a Fourier transform, and α, β, γ, η, ξ are
parameters depending on the tensor coefficients.

From a practical point of view, it is obvious that
the numerical handling of λ is not feasible because
of the composition of two square roots which show
the coupling and are uneasy to localize. It reflects
the coupling between P-waves and S-waves. A possi-
ble approach consists then in uncoupling these waves
and constructing ABCs for each of them. By this
way, ABCs for VTI can be constructed and, when
the medium is isotropic, they are the same than the
conditions derived in [6].

Next, the P-waves and S-waves VTI ABCs can be
mixed in order to form unsplitted PS-waves low-order
VTI ABCs. Unfortunately, considering the TTI case,

53 WAVES 2013



even the splitting of the PS-waves into P-waves and
S-waves does not help anymore. This is due to the
characteristic angle of rotation that prevents from
obtaining a local ABC. In this work, we propose a
new TTI ABC that includes any characteristic of the
media providing this anisotropy is elliptic.

2 ABCs for elliptically TTI media

Elliptic anisotropy means that the TI coefficients
are equal: δ = ε. In this case, the slowness curve
of S-waves forms a circle, as in the isotropic case, so
that the same ABCs can be used. For example, for
the left vertical boundary, S-waves ABC is

{
σxx = 0,

σxz =
√
ρVsvx.

(2)

However, P-waves curves are different (see Fig. 2).
They form a circle for the isotropic case and a rotated
ellipse for the TTI case.

The construction of the new ABC is then based
on a change of coordinate that transforms a circle
into a rotated ellipse. The ABC is then obtained by
applying the coordinate change to the isotropic ABC.
In case of a vertical boundary, isotropic P-waves ABC
reads as

{
σxx = ±√ρVpvx,
σxz = 0.

(3)

The sign is fixed by the orientation of the normal
vector. Next, introducing κ =

√
1 + 2ε, TTI P-waves

ABC is





σxx =
√
ρVp

κ cos2 θ+sin2 θ√
κ2 cos2 θ+sin2 θ

×
[
(κ cos2 θ + sin2 θ)vx + (κ− 1) cos θ sin θvz

]
,

σxz =
√
ρVp

(κ−1) cos θ sin θ√
cos2 θ+κ2 sin2 θ

×
[
(1− κ) cos θ sin θvx + (cos2 θ + κ sin2 θ)vz

]
.

(4)

Finally, the P-waves and S-waves ABCs are mixed
in order to obtain unsplitted PS-waves low-order TTI
ABCs for elliptic anisotropic media. The ellipticity
hypothesis might be considered as restrictive. This
is actually not the case because the simplest VTI
ABC does not involve the parameter δ. We can thus
suppose it is the same for any TI medium.

We will provide numerical results of Reverse Time
Migration to assess the performance of the new ABC
in anisotropic media.
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Figure 2: Slowness curves of isotropic (left) and
TTI (right) cases – P-waves
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Abstract

Full Waveform Inversion (FWI) is a powerful seis-
mic imaging method, based on the iterative min-
imization of the distance between simulated and
recorded wavefields. The inverse Hessian operator re-
lated to this misfit function plays an important role
in the reconstruction scheme. As conventional meth-
ods use direct approximations of this operator, we
investigate an alternative optimization scheme: the
truncated Newton method. This two-nested-loops al-
gorithm is based on the resolution of the Newton
linear system through a matrix-free iterative solver
at each outer iteration. On the 2D BP 2004 model
widely used as a benchmark for FWI, the contrasts in
wave velocities between salt structures and the upper
water layer generate high amplitude multiple reflec-
tions. These multiple reflections strengthen the need
for quite accurate approximation of the inverse Hes-
sian operator and the truncated Newton method is
shown to outperform than more conventional algo-
rithms (l-BFGS, nonlinear conjugate gradient).

Introduction

Full Waveform Inversion is a seismic imaging
method dedicated to the computation of high resolu-
tion quantitative estimates of subsurface parameters
such as pressure wave velocity, shear wave velocity,
attenuation, or density. This method consists in com-
puting a subsurface model p which minimizes a misfit
function f(p), defined by

f(p) =
1

2

S∑

s=1

‖us(p)− ds‖2, (1)

which measures the distance between the simulated
wavefields us(p) and the actual recorded wavefields
ds. Despite its early introduction in the 80s, only
the recent development of computational capacities
(computer clusters) and acquisition systems (wide-
azimuth wide-offset broadband seismic surveys ) have
made possible its application to real data in oil and
gas industry.

In this study, we particularly focus on the min-
imization method which is used to solve the FWI
problem. As the large number of discrete unknowns
prevents from using global optimization methods,
state-of-the-art methods are local gradient-based
methods such as the nonlinear conjugate gradient
(CG) or the l-BFGS method. From an initial sub-
surface model p0, a sequence pk is built such that

pk+1 = pk + αk∆pk, (2)

where αk is computed through a linesearch method
and ∆pk is the descent direction

∆pk = −Qk∇f(pk). (3)

The matrix Qk is an approximation of the in-
verse Hessian matrix (∇2f(pk))

−1. Pratt [2] clearly
demonstrates the crucial role played by this operator
in the FWI reconstruction scheme:
• it acts as a deconvolution operator that accounts

for the limited bandwidth of the seismic data and
corrects for the loss of amplitude of poorly illumi-
nated subsurface parameters;
• it helps to remove artifacts that the second order

reflected waves may generate on the gradient descent
direction.
For multi-parameters FWI, the off-diagonal blocks of
the Hessian matrix should also account for the trade-
off between different classes of parameters. This sug-
gests that it should be crucial to account accurately
for the inverse Hessian operator within the minimiza-
tion schemes, and leads us to the investigation of the
truncated Newton method for FWI.

Methodology

The truncated Newton method only differs from
standard descent method by the strategy used to
compute the descent direction. Instead of using an
approximation of the inverse Hessian operator, the
descent direction ∆pk is computed through the reso-
lution of the Newton linear system

∇2f(pk)∆pk = −∇f(pk), (4)

55 WAVES 2013



using a matrix-free CG solver, which results in a two-
nested loops algorithm (inner linear CG iterations for
the computation of ∆pk through (4) and outer non-
linear iterations for the construction of the sequence
pk through (2)). The incomplete resolution of the lin-
ear system (4) is referred as the truncation strategy.
This presents several advantages over conventional
procedures:
• the inverse Hessian operator is more accurately

accounted for;
• the approximations of the inverse Hessian op-

erator developed for the standard methods can be
reintroduced within this framework as precondition-
ers of the linear system (4);
• the method is well suited for applications where

the misfit function change over the iterations, as for
instance using random combinations of data-sets ds
(source encoding techniques);
• the truncation strategy can be seen as an intrin-

sic regularization of the FWI problem (of particular
interest for the interpretation of noisy data).
An efficient implementation of this algorithm for
FWI is fully described in [1]. It mainly relies on the
reduction of the computation cost associated with
the inner loop. This is achieved using:
• second-order adjoint-state formulae for the com-

putation of Hessian-vector products;
• an adaptive stopping criterion for the inner it-

erations, related to the truncation strategy, a crucial
issue;
• an efficient preconditioning method based on the

approximation of the diagonal terms of the inverse
Hessian operator.

Numerical results

We compare the truncated Newton method with
the nonlinear CG method and the l-BFGS method
using the same preconditioning technique. This com-
parison is performed on the BP 2004 model, which
exhibits complex subsurface patterns related to the
presence of salt structures (figure 1). The high con-
trast in wave velocity between the water layer and
these salt structures are responsible for the presence
of high amplitude multi-reflected waves which ren-
ders an accurate estimation of the inverse Hessian
operator crucial for a stable reconstruction of the
subsurface model. These experiments are performed
under the acoustic approximation, and we aim at re-
covering the pressure wave velocity model. We solve
the wave equation in the frequency-domain (the for-

ward problem is then described by the Helmholtz
equation) and we adopt the so-called hierarchical ap-
proach: 6 groups of overlapping frequencies are in-
verted from 2.5 Hz to 20.5 Hz. The initial model
p0 (figure 1) is a smooth version of the exact one
which shall be obtained using conventional tomog-
raphy methods. The results provided by the three
optimization schemes are presented in figure 2. As
it can be seen, only the truncated Newton method
provides a reliable estimation in this specific case of
high contrasts.

Figure 1. BP 2004 model (left), initial model (right).

Figure 2. Nonlinear CG result (left), l-BFGS result (cen-

ter), truncated Newton result (right).

Conclusion and perspectives
An accurate estimation of the inverse Hessian op-

erator within the FWI reconstruction scheme is of
particular importance for computing accurate esti-
mations of the subsurface parameters. In the 2D
acoustic approximation, when high amplitude multi-
ple reflected waves have to be interpreted, the trun-
cated Newton method provides a better alternative
to conventional optimization methods. Application
to real data is now the next step for investigating the
interest of this method for FWI. This method will
be also further investigated in anisotropic and elastic
contexts, for multi-parameter reconstructions, in 2D
and 3D experiments. The coupling of this method
with source encoding strategies shall also be investi-
gated.
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Abstract
Two models of the grand piano key mechanism are

presented: a single-degree-of-freedom model and a
model based on 6 rotating bodies, 13 contact zones
with nonlinear springs, 3 of them (hammer-jack, jack-
escapement button, hammer-check) being also sub-
ject to Coulomb friction. The latter model introduces
discontinuities on the velocities. The problems raised
by the usual regular-dynamics formulation are dis-
cussed and a non-smooth dynamics approach is pro-
posed. Based on the comparison between experimen-
tal and simulation results, it is discussed whether the
simulation should be driven by the force exerted by
the pianist or by the displacement of the key.

Introduction
The piano action is made of seven rotating bod-

ies (Fig. 1) with parallel axes and felts at contact
zones. Simulating the dynamics of the key mecha-
nism (we retain this term for clarity purposes) has
several purposes: to validate a mechanical model, to
run numerical experiments which account for the ef-
fect of the mechanism on the player’s finger, to study
how modifications are "felt" by the player.

damper

hammer
lever
whippen
jack

key

friction zone

felt material

ground

check

escapement button

y(t)
F(t)

Figure 1: Top: scheme of the grand piano action.
Bottom: rigid bodies model.

1 Model complexity and simulation input
The key motion y(t) and the force F (t) on the key

are given by the dynamics of the mechanism and by
the action imposed by the pianist (whose dynamics
is also limited). If one does not describe the whole
coupled system {mechanism – pianist}, which seems
presently out of reach, the simulation of the mech-
anism only must be driven either by force data or
by motion data. However, it has never been clarified
whether the mechanism is better described as pseudo-
impedance (force reacting to a motion imposed by
the pianist) or as a pseudo-mobility (motion result-
ing from a force imposed by the pianist).

In order to validate a mechanical model, it is cus-
tomary to compare simulation results with experi-
mental observations. Since the dynamics of the mech-
anism is dominated by inertia, it appears that one
can reduce the model of the whole mechanism to one
single degree-of-freedom (following a dynamical equa-
tion of the form given by Eq. (1)) and yet obtain
an excellent match between experimental measure-
ments and force-driven simulation results. However,
the corresponding motion-driven simulation results
do not compare well with experiments: fine details
in the time-evolution of the reacting force F (t) are
ignored. In other words, because of the inertia dom-
inance, a force-driven simulation is not sufficient for
accounting the details of the piano key mechanism.

2 Non-smooth formulation
Since an elementary model is not fully satisfac-

tory, we used a model based on that proposed by
Lozada [1]. The 7 bodies are considered as 6 rotat-
ing solids with dry and viscous friction on their axes
and 13 non-linear and localized coupling springs rep-
resenting the felts (Fig. 1). Any spring force is gener-
ically given by F (g) = k gr + b g2 ġ, where g is the
compression length of the spring (felt). The equa-
tion describing the dynamics of any rigid body in the
model is of generic form:

J θ̈ + cv θ̇ + cd sign(θ̇) + F (g(x)) l + α = 0 (1)
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where J is the inertia of the rigid body, cv is a viscous
friction coefficient, cd is a dry friction coefficient, x is
the vector of generalized coordinates (i.e. the 6 an-
gles), F (g(x)) l is the moment of the felt force (several
such terms may be necessary when more than one felt
act upon the considered rigid body) and α contains
time-invariant terms such as the moment of gravity,
in the small angles approximation. As usual, sign is
the set-valued function defined by:

sign(θ̇) =





1 : θ̇ > 0

[−1, 1] : θ̇ = 0

−1 : θ̇ < 0

(2)

so that the dry friction is described by the Coulomb
model.

Because of dry friction and intermittent contacts,
the simulation of the model is complex. One difficulty
is that Eq. (1) is not an ODE. Regularizing the sign
set-valued function yields ODEs but the convergence
to a physical solution when reducing the time step
is not ensured. An example can be seen in the equi-
librium position: null-velocities imply vanishing reg-
ularized friction forces whereas the Coulomb friction
generally lets non-zero forces in the system. Another
difficulty is that stick-slip transitions induce velocity
discontinuities. Furthermore, the evaluation of the
moment of the reaction contact forces F (g(x)) is te-
dious. These difficulties can be overcome by using
methods of non-smooth contact dynamics (NSCD).

Instead of writing the dynamics in the form of six
coupled equations of the form (1), we use a Measure
Differential Inclusion formulation [2]:





Mdv = F∗(t)dt+H(x)di
v+ = (ẋ)+

(g(x), HT (x).v+, di) ∈ K
(3)

The first equation formulates the non-smooth dynam-
ics where M is the mass matrix, v is the generalized
velocity, F∗ is the regular part of the sum of external
forces, including gravity. dv and di are vector-valued
measures on R and can therefore be non-smooth. H
relates the relative velocities to the generalized co-
ordinates. The non-smooth laws (Coulomb and ar-
ticular friction, impacts) and equality constraints are
written as an inclusion in the fixed set K.

Eqs. (3) are discretized using a time-stepping
scheme. Its solution is computed with an implicit
scheme. As for smooth ODEs, it requires a root-

finding algorithm (Newton’s algorithm in our case).
The time-discretization of the non-smooth dynam-
ics and the non-smooth laws leads to a One-Step
Non-Smooth Problem (OSNSP) [3]. This OSNSP
is reformulated using a non-smooth augmented La-
grangian approach and solved using an iterative pro-
jective Gauss-Seidel-like method.

3 Results
We used XDE (eXtended Dynamic Engine), a soft-

ware component developed at CEA, LIST. The inputs
of the software are the geometrical and inertial de-
scriptions of the pieces (here: the rigid bodies), the
properties of the pivots (here: dry and viscous fric-
tion) and the contact laws (here: the coupling forces
of the springs and the Coulomb friction). The soft-
ware implements internally the non-smooth formula-
tion of the dynamics and its solution, as described in
Sec. 2.

An additional spring/damper association, aimed at
representing the softness of the finger, has been in-
serted between the key mechanism and the (force-
or motion-)driver of the mechanism. We measured
the position of the key and the force applied by the
pianist for several nuances, on one individual key.
As for the results obtained with the one-degree-of-
freedom model (Sec. 1), the results of a force-driven
simulation compare correctly with the measured mo-
tion. Contrary to the results obtained with the one-
degree-of-freedom model, the results of the motion-
driven simulation compare also correctly with the
measured force.

The calculation time (≈ 20× real-time) on an or-
dinary laptop computer could be largely improved by
taking into account the particularities of the model
of the key mechanism.
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Abstract
Modal observations of a piano soundboard are com-

pared with results predicted by a model consisting
of weakly coupled homogeneous sub-structures. The
model is entirely determined by the coarse geometry
of the soundboard (main plate, ribs, bridges, cut-off
corners) and by the elastic parameters of the wood
species. It can also be used to predict the point-
mobility at the bridge (where strings are attached)
or far from it. The agreement between observations
and model predictions is excellent, both in the low-
and high-frequency regimes (respectively below and
above ≈ 1 kHz). Applications include a comparison
between the characteristics of different pianos as well
as the influence of the wood properties on the point-
mobility. Some consequences in terms of acoustical
radiation will also be presented.

Introduction
In a piano, the soundboard is the plate-like struc-

ture on which the strings are attached. It radiates
sound (the strings are too thin to radiate efficiently)
and rules the sound-decay which is an essential part
of the piano sound. Coupling between the string and
the soundboard is described by the point-mobility
YQ(ω) = V (ω)/F (ω) where, ω is the angular fre-
quency, F the force applied by the string(s) at point
Q and V the resulting velocity of the soundboard at
that point. YQ(ω) can be written as the sum of the
mobilities of the modes of the soundboard at a given
point. We consider that modal shapes are sinusoids
along the bridge and products of sinusoids across the
soundboard (see § 1 for experimental observations
and FEM results). Modal frequencies are obtained
in average by a model presented in § 2. Modal damp-
ings are given by observation. Ignoring fine geomet-
rical details and local pecularities, these ingredients
are sufficient to predict YQ(ω) at any point, accord-
ing to Skudrzyk’s theory of the mean-value of the
point mobility [1]. Results pertaining to modal den-
sity and to the reciprocal of the frequency-averaged
point-mobility are given in § 3, for different pianos.

1 Experimental and numerical observations

The following observations (see [2] for a complete
report) have been made on an upright piano sound-
board (Atlas, .91 m × 1.39 m) and result from a
high-resolution modal analysis technique [3]. For re-
sults below 350 Hz, the soundboard was excited lo-
cally by a impact hammer and above that limit, the
soundboard was excited globally by a strong acous-
tical field. The vibration was observed locally with
accelerometers. The modal analysis also yielded the
modal dampings with an excellent precision in a fre-
quency range not accessible with Fourier-based tech-
niques (modal overlap approaching 100%). It appears
that above ≈1 kHz, not all the modes are observed at
any given observation point, hence the use of the con-
cept of apparent modal density, defined as the recip-
rocal of the average modal spacing and represented
in Fig. 1. Below 1 kHz, the apparent modal den-
sity does not depend on the point of observation and
looks similar to that of a plate (or a combination of
plates). Above that limit, the apparent modal density
decreases and depends on the point of observation.

A typical modal shape for the so-called low-
frequency regime (below 1 kHz) is represented in
the top of Fig. 2. The vibration extends over the
whole soundboard except, eventually, in one or an-
other cut-off corner. In the high-frequency regime

10
3

10
−2

10
−1

M
o

d
a

l 
d

e
n

s
it
y
 (

H
z

−
1
)

Frequency (Hz)

Figure 1: Modal density of the Atlas soundboard.
Dots: observed values at various points of the

soundboard. Lines: prediction of the model (§ 2).
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(above 1 kHz), modal shapes have been obtained by
finite-element modeling of the soundboard [2]. It ap-
pears (Fig. 2) that the vibration is both confined be-
tween ribs and, most often, localised in one or a very
few areas of the ribbed parts of the soundboard, due
presumably to the slightly irregular spacing of ribs
across the soundboard.

Figure 2: Typical modal shapes. Top: observed in
the low-frequency regime (mode 10, 303 Hz).

Bottom: numerically obtained in the high-frequency
regime (mode 167, 2733 Hz).

2 Model
The different parts (cut-off corners, if any, the two

main parts of the soundboard, as limited by the main
bridge, the rim and the cut-off bars, the main bridge)
are conidered as weakly coupled homogeneous sub-
structures. The bass bridge is described as a simple
mass added to the corresponding part of the sound-
board. Each plate-like structure is considered with
clamped boundary conditions. The main bridge is
described as a bar, the cut-off corners as orthotropic
plates, as well as the the ribbed parts of the sound-
board in the low-frequency regime, following the ho-
mogenisation proposed by [4].

In the high frequency domain (where the apparent
modal density depends on the point of observation),
we consider that the two main parts of the sound-
board (ribbed areas, extending on each side of the
main bridge) vibrate only in the vicinity of the ob-

servation points, namely within three inter-rib spaces.
Each inter-rib space of width p is seen as a structural
wave-guide where the wave-number in the direction
orthogonal to the ribs is kx = nπ/p, with n ∈ N∗. A
transition has been devised between the two regimes.

Under the weak-coupling hypothesis, the modal
density is the sum of the modal densities of the sub-
structures. The agreement between observations and
the results given by the model (Fig. 1) is striking.

3 Applications
The model has been used to to analyse the influ-

ence of wood parameters (not shown here) and to
characterise different pianos (Fig. 3).
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Abstract

A global model of a piano is presented. Its aim is
to reproduce the main vibratory and acoustic pheno-
mena involved in the generation of a piano sound
from the initial blow of the hammer against the
strings to the radiation from soundboard to the air.
One first originality of the work is due to the string
model which takes both geometrical nonlinear effects
and stiffness into account. Other significant improve-
ments are due to the combined modeling of the three
main couplings between the constitutive parts of the
instrument: hammer-string, string-soundboard and
soundboard-air coupling.

1 Introduction

Simplifying assumptions were made in the model.
The hammer is supposed to be perfectly aligned with
the strings. The agraffe is assumed to be rigidly fixed.
Both the string-soundboard and soundboard-air cou-
plings are lossless. The soundboard is considered as
simply supported along its edge, and the “listening”
room is anechoic with no obstacle except the piano it-
self. The action of the mechanism prior to the shock
of the hammer against the strings is ignored: the
tone starts when the hammer hits the strings with
an imposed velocity.
The physical parameters of hammers, strings and
soundboards included in the model are obtained
from standard string scaling and geometrical data
from manufacturers, and complemented with our
own measurements. For the losses in materials, ap-
proximate models based on experimental data are
used. The numerical formulation of the model is
based on a discrete formulation of the global energy
of the system, which ensures stability (see [1]). This
requires that the continuous energy of the problem is
decaying with time. The global model of the piano
is thus written according to this condition.

2 Strings

The string model accounts for large deforma-
tions, inducing geometrical nonlinearities, and intrin-

sic stiffness. The governing equations correspond to
those of a nonlinear Timoshenko beam under axial
tension. For the end conditions, we assume zero dis-
placement (in both transverse and longitudinal di-
rections) and zero moment at the agraffe. At the
bridge, the end conditions are consecutive to cou-
pling with the soundboard. The string is considered
at rest at the origin of time. A source term accounts
for the action of the hammer against the strings. A
simple viscoelastic model accounts globally and ap-
proximately for the damping effects. The coefficients
of this model are determined from measured sounds
for each string, through comparisons between simu-
lated and measured spectrograms. The global energy
of this string model is preserved, under the condition
EA > T0 where E is the Young’s modulus, A is the
cross-sectional area of the string and T0 its tension.
This condition is always fulfilled in piano strings.

3 Hammer

The hammer’s center of gravity is supposed to be
moving along a straight line orthogonal to the strings
at rest. The interaction force between the hammer
and one string of a given note is distributed on a
small portion of the string, through a spreading func-
tion localized around the impact point, and oriented
in the transversal direction. The interaction force de-
pends on the distance d(t) between the hammer and
the string: if d(t) is larger than the mean hammer
displacement ξ, there is no contact and the force is
zero. If d(t) ≤ ξ, the force is a function of the dis-
tance. According to previous studies, we define the
function:

Φ(d) =
[(

ξ − d
)+

]p
(1)

where (·)+ means “positive part of”, and where p is
a real positive nonlinear exponent. In practive, this
coefficient varies between 1.5 and 3.5. In order to ac-
count further for the observed hysteretic behavior of
the felt, a dissipative term is added in the expression
of the force [2].
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4 Soundboard

It is assumed that the only vibrating element is the
soundboard, all other parts (rim, keybed, lid, iron
frame. . . ) being assumed to be perfectly rigid. A
bidimensional Reissner-Mindlin plate model is con-
sidered. The bridge and ribs are considered as hetero-
geneities, and the orientation of the orthotropy axes
can be space dependent. As a consequence, the den-
sity, thickness and elastic coefficients are functions
of space. The soundboard is assumed to be simply
supported on its edge. Finally, a source term is im-
posed in the transverse vertical direction. This term
accounts for both the string’s tension at the bridge
and the air pressure jump. A modal approach has
been adopted where the modal damping can be ad-
justed, mode by mode. This method is justified as
long as the damping factor is small compared to the
eigenfrequency and requires also that the modes are
sufficiently well separated, a condition that is only
strictly valid for the piano below 1 to 2 kHz [3]. The
modal amplitudes are then solution of second-order
uncoupled damped oscillators equations. Again, it is
possible to exhibit an energy decaying with time for
this part of the system.

5 Strings-soundboard coupling

A plausible, though not fully validated, model is
used for the transformation of string longitudinal mo-
tion to bridge transverse motion. It is based on the
observation that the strings form a slight angle with
the horizontal plane due to both bridge height and
soundboard curvature. It is assumed that the bridge
moves in the vertical direction. When the hammer
strikes the strings, it gives rise to a transversal wave
which, in turn, induces a longitudinal wave, because
of nonlinear geometrical coupling. The longitudinal
wave travels 10 to 20 times faster than the trans-
verse one, and comes first at the bridge. The result-
ing variation of tension is oriented in the direction
of the string. Because of the angle formed by the
string with the horizontal plane, this induces a verti-
cal component of the longitudinal force at the bridge,
in addition to the transverse force. The total bridge
force is distributed in space in the soundboard by
means of a rapidly decreasing regular function cen-
tered on the point where the string is attached on
the soundboard. The associated kinematic boundary
conditions are the continuity of string and sound-
board velocities in the vertical direction, and the nul-
lity of the velocity in the horizontal direction.

6 Soundboard-air coupling

For the propagation of piano sounds in free space,
the rim is considered to be a rigid obstacle. The
acoustic velocity and pressure are solutions of the
linearized Euler equations in the unbounded domain
which excludes the rim and the plate. Viscothermal
losses in the air are ignored. The normal component
of the acoustic velocity vanishes on the rim. The cou-
pling between the 3D sound field and the vibrating
soundboard obeys to the condition of continuity of
the velocity normal components. Finally, the sound-
board force is the pressure jump across both sides
the plate. Again, this vibroacoustic system satisfies
a property of energy decay.

Conclusion

This piano model accounts for the phenomena
consecutive to amplitude dependence of string vi-
brations: presence of precursors [4], time-evolution
of eigenfrequencies, transverse-longitudinal coupling
and phantom partials. Due to the string-coupling,
the presence of soundboard modes in the transients
are reproduced in a natural way. Finally, due to
the integration of ribs and bridges, the influence of
soundboard modifications on the radiated sound can
be investigated systematically.
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Abstract

This paper deals with the discretization of the
global piano model described in [2]. We have to solve
a complex system of coupled equations, where each
subsystem has different spatial dimensions, which
poses specific difficulties. The hammer-strings part
is a 1D system governed by nonlinear equations. The
soundboard is a 2D system with diagonal damping.
The acoustic field is a 3D problem in an unbounded
domain. Energy based methods allow to build an
accurate and a priori stable scheme.

1 Introduction

The nonlinear parts of the problem (hammer-
strings interaction, string vibration), the couplings
between the subsystems and, more generally, the size
of the problem in terms of computational burden, re-
quires to guarantee the long-term numerical stabil-
ity. In the context of wave equations, and in mu-
sical acoustics particularly, a classical and efficient
technique to achieve this goal is to design numerical
schemes based on the formulation of a discrete en-
ergy which is either constant or decreasing with time
(see [7], [5]). Ensuring the positivity of the discrete
energy, consistent with the continuous energy of the
physical system, yields to a priori estimates for the
unknowns of the problem, leading to the stability of
the method. For most numerical schemes this im-
poses a restriction on the discretization parameters,
as, for example, an upper bound for the time step.

In the discrete formulation, the coupling terms
need a specific handling in order to guarantee a sim-
ple energy transfer, without any artificial introduc-
tion of dissipation or instabilities. Our choice here is
to consider discrete coupling terms that cancel each
other when computing the complete energy. In to-
tal, this method yields centered implicit couplings
between the unknowns of the subsystems. The order
of accuracy of the method is preserved, compared
to the order of each subsystem taken independently,
with no additional stability condition.

In view of the diversity of the various problems en-

countered in the full piano model, different discretiza-
tion methods are chosen for each subsystem and for
the coupling terms. We focus in the presentation on
a general survey on the numerical resolution and on
its main difficulties.

2 Strings

Standard high-order finite elements are used for
the space discretization of the nonlinear system of
equations that govern the vibrations of the strings.
The spatial discretization parameters (mesh size and
polynomial order) are selected to ensure a small nu-
merical dispersion in the audio range. The time dis-
cretization of the strings system is probably the most
novel and innovative method used in our piano nu-
merical formulation. It combines a new scheme for
nonlinear systems developped in [3], based on the
expression of a discrete gradient, which ensures the
conservation of an energy and an improved time dis-
cretisation for Timoshenko systems developped in [1].
A 1D nonlinear system must be solved at each time
step. The solution is computed via an iterative mod-
ified Newton-Raphson method which needs the eval-
uation of both the scheme and its Jacobian with
respect to the unknowns. It can be shown that a
discrete energy is decaying, after extinction of the
source. The stability of the numerical scheme can
be derived from this property, with condition on the
time step.

3 Hammer-strings coupling

Since the displacement of the hammer is a scalar
function of time, we choose to solve the hammer-
strings system by considering all together the un-
knowns of every strings belonging to the considered
note, plus the hammer scalar unknown.The nonlin-
ear hammer-strings interacting force is treated in a
centered conservative way. A global discrete energy
is shown to be decaying with respect to time when
the hammer is given with an initial velocity.
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4 Soundboard

The soundboard model assumes a diagonal damp-
ing in the modal basis. Its motion is first decomposed
onto the modes of the undamped Reissner-Mindlin
system belonging to the audio range, after semi-
discretization in space with high-order finite elements
as in [5]. These modes are only computed once for
all, before starting the time iterations. This proce-
dure yields decoupled equations which can be solved
analytically in time, without introducing any addi-
tional approximation or numerical dispersion. The
energy identity over time of the semi-discrete prob-
lem is also exactly satisfied with this method. How-
ever, one drawback of this choice is the loss of the
local nature of the couplings with strings and air.

5 Strings-soundboard coupling at the bridge

The discrete formulation of the strings-soundboard
continuity equations must ensure the stability of the
resulting scheme, which couples the implicit three
points nonlinear strings scheme described in 2 with
the time semi-analytic soundboard model described
in 4. New variables are introduced that represent the
coupling forces associated to the conditions between
strings and soundboard expressing the velocity con-
tinuity at the bridge. The strings and soundboard
unknowns are evaluated on interleaved time grids :
{n∆t} for the strings, and {(n+ 1/2) ∆t} for the
soundboard. The forces at the bridge are consid-
ered to be constant on time intervals of the form
[(n− 1/2)∆t, (n+ 1/2)∆t]. The discrete coupling
condition is implicit and centered on times n∆t. Due
to the linearity of the soundboard model, it is pos-
sible to express the soundboard unknowns as linear
functions of the forces at the bridge. Thanks to this
property, it is possible to perform Schur complements
on the system which, originally, is globally implicit.
An algorithm is then writen which updates first the
unknowns of the strings and the forces at the bridge,
and, in a second step, updates the unknowns of the
soundboard.

6 Acoustic propagation and structural
acoustics

The artifical truncation of the acoustic domain is
done with with Perfectly Matched Layers [6]. The
acoustical problem is solved in space with high-order
finite elements and in time with an explicit leap-
frog scheme, in view of the large number of degrees
of freedom to consider. The acoustic velocity and

pressure unknowns are calculated at times {n∆t}
and {(n+ 1/2) ∆t}, respectively. In the variational
formulation, the coupling between soundboard and
air appears as source terms for the soundboard and
the sound pressure equations. These terms are con-
structed in the discrete scheme so that they vanish
when computing the energy, centered at times n∆t.
An implicit coupling exists between the soundboard
displacement and the acoustic pressure in the vicinity
of the plate, which implies a change of basis between
the physical and the modal representations of the
soundboard. Due to the linearity of the equations,
it is possible here to perform Schur complements,
and to write an efficient algorithm that updates sep-
arately the plate (with a semi-analytic method) and
the air variables (with the leap-frog scheme).
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Abstract

We consider several data assimilation techniques
for thermoacoustic tomography (TAT), which is a
non invasive medical imaging technique. The inverse
problem can be formulated as an initial condition re-
construction. Variational data assimilation schemes
are compared with the back and forth nudging algo-
rithm.

Introduction

ThermoAcoustic Tomography (TAT) is a hybrid
imaging technique that uses ultrasound waves pro-
duced by a body submitted to a radiofrequency pulse,
uniformly deposited throughout the body. The ab-
sorption of this initial energy causes a non-uniform
thermal expansion, leading to the propagation of a
pressure wave outside the body to investigate. This
wave is then measured all around the body.

The physiological properties of the tissue are
highly related to the absorption of the initial pulse.
Considering that the initial illumination is a Dirac
distribution in time, the problem of recovering the
absorptivity of the investigated body from the ther-
moacoustic signal is equivalent to recovering the ini-
tial condition of a Cauchy problem involving the wave
equation from the knowledge of the solution on a sur-
face surrounding the imaging object [11].

Data assimilation consists in estimating the state
of a system by combining via numerical methods two
different sources of information: models and obser-
vations. Data assimilation makes it possible to an-
swer a wide range of questions such as: optimal iden-
tification of the initial state of a system, perform
reliable numerical forecasts, identify or extrapolate
non observed variables by using a numerical model
. . . [6]. Most data assimilation methods are either
variational methods such as 4D-VAR (based on opti-
mal control theory) or sequential methods (filtering
theory: Kalman filters). In linear situations, these
two approaches are usually equivalent.

Variational data assimilation methods consider the
equations governing the system as constraints and

the problem is closed by using a variational princi-
ple. The well-known 4D-VAR, four dimensional vari-
ational data assimilation algorithm, is based on the
minimization of a global cost function, which mea-
sures the discrepancy between the observations and
the corresponding system states. Based on optimal
control theory, the adjoint method allows one to com-
pute the gradient of the cost function in a single nu-
merical integration of the adjoint equation (see e.g.
[8]). One iteration of the minimization process con-
sists then in one forward integration of the model (in
order to compute the cost function) and one back-
ward integration of the adjoint model (in order to
compute its gradient).

Nudging can be seen as a degenerate Kalman fil-
ter. Also known as the Luenberger or asymptotic
observer [9], it consists in applying a Newtonian re-
call of the state value towards its direct observation.
A main disadvantage of such sequential data assimi-
lation methods is that it only takes into account past
observations at a given time, and not future ones.
Auroux and Blum proposed in [1] an original ap-
proach of backward and forward nudging (or back
and forth nudging, BFN), which consists in initially
solving the forward equations with a nudging term,
and then, using the final state as an initial condition,
in solving the same equations in a backward direc-
tion with a feedback term (with the opposite sign
compared to the feedback term of forward nudging).
This process is then repeated iteratively until con-
vergence. The implementation of the BFN algorithm
has been shown to be very easy, compared to other
data assimilation methods [2].

This algorithm has been successfully applied to
various problems: ODEs, PDEs, linear and nonlinear
equations, . . . , including viscous irreversible equa-
tions [2], [3], [4]. Note that for linear reversible sys-
tems, there has been a recent theoretical study of a
similar algorithm [10].

From a practical point of view, these methods can
be successfully used to manage the usual issues of the
TAT inverse problem as incomplete data, external
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source and variable sound speed (when given, how-
ever). So far, the theoretical convergence result for
the nudging technique is based on a classical result
about stabilization of the wave equation, which re-
quires somehow a geometric optics condition. Nu-
merical comparisons between variational and nudg-
ing algorithms, and also time reversal, have been per-
formed.

Consider the following problem:





∂ttu − ∆u = 0, (x, t) ∈ R3 × R+,
u(x, 0) = u0(x), x ∈ R3,
∂tu(x, 0) = 0, x ∈ R3,

(1)

where u0 is the object to reconstruct. We assume
that the support of u0 is compact and included in
the unit ball. The problem is the following: from
the knowledge of u (possibly with noise) on a surface
surrounding the unit ball, can we reconstruct u0? Let
udata be the observed data.

The iterative BFN algorithm for TAT is the fol-
lowing [7]:

• Forward evolution:




∂ttui − ∆ui = k∂t(udata − ui), (x, t) ∈ R3 × [0;T ],
ui(x, 0) = ũi−1(x, 0), x ∈ R3,
∂tui(x, 0) = ∂tũi−1(x, 0), x ∈ R3,

(2)
where T is such that the solution vanishes on the
unit ball.

• Backward evolution:




∂ttũi − ∆ũi = −k̃∂t(udata − ũi), (x, t) ∈ R3 × [0;T ],
ũi(x, T ) = ui(x, T ), x ∈ R3,
∂tũi(x, 0) = ∂tui(x, T ), x ∈ R3.

(3)

After each iteration, ũi(x, 0) is a new estimate of the
object to reconstruct.

The nudging terms are added only on the observed
domain, and parameters k and k̃ can be chosen equal
as the considered equation (wave equation) is re-
versible. If we add a numerical or physical atten-
uation in the equation, then the backward nudging
parameter might be increased, or one should refer
to the recent improvement of the BFN algorithm in
diffusive or attenuated situations [5].

In [7], the authors show that this algorithm con-
verges (under standard hypotheses) with a geometric
decay rate of the H1

0 norm of the error.
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Abstract
An iterative algorithm for solving initial data inverse

problems from partial observations has been proposed in
2010 by Ramdani, Tucsnak and Weiss [1]. In this work,
we are concerned with the convergence of this algorithm
when the inverse problem is ill-posed, i.e. when the ob-
servations are not sufficient to reconstruct any initial data.
We prove that the state space can be decomposed as a di-
rect sum, stable by the algorithm, corresponding to the
observable and unobservable part of the initial data. We
show that this result holds for both locally distributed and
boundary observation [2], [3].

Introduction
Let us start by briefly recalling the principle of the re-

construction method proposed in [1] in the simplified con-
text of skew-adjoint generators and bounded observation
operator. Given two Hilbert spaces X and Y (called state
and output spaces respectively), let A : D (A) → X be
skew-adjoint operator generating a C0-group T of isome-
tries onX and letC ∈ L(X,Y ) be a bounded observation
operator. Consider the infinite dimensional linear system
given by

{
ż(t) = Az(t), ∀t ≥ 0,
y(t) = Cz(t), ∀t ∈ [0, τ ].

(1)

where z is the state and y the output function (where the
dot symbol is used to denote the time derivative). Such
systems are often used as models of vibrating systems.

The inverse problem considered here is to reconstruct
the initial state z(0) = z0 ∈ X of system (1) knowing the
observation y(t) on the time interval [0, τ ].

Then, let z+0 ∈ X be a first arbitrary guess of z0 and
let us denote A+ = A−C∗C and A− = −A−C∗C and
introduce the following initial and final Cauchy problems,
for all n ≥ 1, called respectively forward and backward
observers of (1)




ż+n (t) = A+z+n (t) + C∗y(t), ∀t ∈ [0, τ ],
z+1 (0) = z+0 ,
z+n (0) = z−n−1(0), ∀n ≥ 2,

(2)

{
ż−n (t) = −A−z−n (t)− C∗y(t), ∀t ∈ [0, τ ],
z−n (τ) = z+n (τ), ∀n ≥ 2.

(3)

If we assume that (A,C) is exactly observable in time
τ > 0, i.e. that there exists kτ > 0 such that

∫ τ

0
‖y(t)‖2dt ≥ k2τ‖z0‖2, ∀z0 ∈ D(A), (4)

then, it is well-known thatA+ (respectivelyA−) generate
an exponentially stable C0-semigroup T+ (respectively
T−) on X . If we set L = T−τ T+

τ , then by [1, Proposi-
tion 3.7], we have δ := ‖L‖L(X) < 1 and we obtain

‖z−n (0)− z0‖ ≤ δn‖z+0 − z0‖, ∀z0 ∈ X,n ≥ 1.

Note that since the choice of z+0 is arbitrary, we often
choose zero in the applications.

1 Main results
In this work, we investigate the case without exact ob-

servability (for the wave equation for instance, this corre-
sponds to the case where τ is too small for the geometric
optic condition of Bardos, Lebeau and Rauch [4] to hold
true). Remarking that systems (2) and (3) are still well
defined in this case (at least when C is bounded), and that
we still have

z−n (0)− z0 = Ln
(
z+0 − z0

)
,

the following questions naturally arise : does the se-
quence z−n (0) converge and if so, to what limit ?

Assume that C ∈ L(X,Y ) is a bounded observation
operator. Let us denote S the unitary C0-group gener-
ated by A. Let Ψτ ∈ L(X,L2([0,∞), Y ) be the state-to-
output operator defined by

(Ψτz0) (t) =

{
CStz0, ∀t ∈ [0, τ ],
0, ∀t > τ.

Proposition 1. We have the following decomposition of
the state space X

X = Ker Ψτ ⊕ (Ker Ψτ )⊥ := VUnobs ⊕VObs,

and this decomposition is L-stable.
Furthermore, (Ker Ψτ )⊥ = Ran Φτ , where

Φτu =

∫ τ

0
S∗τ−tC∗u(t)dt,

is the input-to-state operator.

71 WAVES 2013



Theorem 2. Denote by Π the orthogonal projection from
X onto VObs. Then the following statements hold true:

1. We have for all z0 ∈ X, z+0 ∈ VObs, and n ≥ 1,
∥∥(I −Π)

(
z−n (0)− z0

)∥∥ = ‖(I −Π) z0‖ .
2. The sequence (‖Π (z−n (0)− z0)‖)n≥1 is strictly
decreasing and verifies
∥∥Π
(
z−n (0)− z0

)∥∥ =
∥∥z−n (0)−Πz0

∥∥ −→
n→∞

0.

3. There exists a constant α ∈ (0, 1), independent
of z0 and z+0 , such that for all n ≥ 1,

∥∥Π
(
z−n (0)− z0

)∥∥ ≤ αn
∥∥z+0 −Πz0

∥∥ ,
if and only if Ran Φτ is closed in X .

Using the framework of well-posed linear systems, we
can use a result of Curtain and Weiss [5] to handle the
case of (some) unbounded observation operators and de-
rive a result similar to Theorem 2 (formally, we take
A± = ±A− γC∗C, with a suitably chosen γ > 0).

2 Application
Let Ω be a bounded open subset of RN , N ≥ 2, with

smooth boundary ∂Ω = Γ0 ∪ Γ1, Γ0 ∩ Γ1 = ∅ and Γ0

and Γ1 being relatively open in ∂Ω. Denote by ν the unit
normal vector of Γ1 pointing towards the exterior of Ω.
Consider the following wave system




ẅ(x, t)−∆w(x, t) = 0, ∀x ∈ Ω, t > 0,
w(x, t) = 0, ∀x ∈ Γ0, t > 0,
w(x, t) = u(x, t), ∀x ∈ Γ1, t > 0,
w(x, 0) = w0(x), ẇ(x, 0) = w1(x), ∀x ∈ Ω,

(5)

with u the input function (the control), and (w0, w1) the
initial state. We observe this system on Γ1, leading to

y(x, t) = −∂(−∆)−1ẇ(x, t)

∂ν
, ∀x ∈ Γ1, t > 0. (6)

Using a result of Guo and Zhang [6, Theorem 1.1], we
can show that the system (5)–(6) fits into the framework
described above and we can thus apply Theorem 2 (in its
generalized version to unbounded observation operators)
to recover the observable part of the initial data (w0, w1).

For instance, let us consider the configuration of Fig-
ure 1. We can easily obtain two subdomains of Ω (the
striped ones on Figure 1), such that all initial data with
support in the left (resp. right) one are in VObs (resp. in
VUnobs).

We choose a suitable initial data to bring out these in-
clusions (in particular w1 ≡ 0). We perform some sim-
ulations (using GMSH and GetDP) and obtain Figure 2,
with 6% of relative error (in L2(Ω)) on the reconstruction
of the observable part of the data after three iterations.

Figure 1: An example of configuration in 2D

Figure 2: The initial position and its reconstruction
after 3 iterations
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Abstract

In my talk, I will present some recent results ob-
tained in [2] on an inverse problem for waves which
consists of finding a potential in a wave equation
through the knowledge of the flux of the solution of
the equation. Our strategy is based on a Carleman
estimate for the wave equation, see [5], [1], that we
will use to design a convergent iterative process that
yields the potential through the minimization of co-
ercive quadratic functionals.

1 Introduction

1.1 Presentation of the inverse problem

The inverse problem we shall consider is the fol-
lowing.

Let Ω be a smooth bounded domain and Γ0 be an
open subdomain of ∂Ω.

Given the source terms h and h∂ and the initial
data (w0, w1), considering the solution of





∂2
t W − ∆W + QW = h, in Ω × (0, T ),

W = h∂ , on ∂Ω × (0, T ),
W (0) = w0, ∂tW (0) = w1, in Ω,

(1)

can we determine the unknown potential Q = Q(x),
assumed to depend only on x ∈ Ω, from the addi-
tional knowledge of the flux

µ = ∂νW, on Γ0 × (0, T ) (2)

of the solution?

1.2 Known results

As usual, this inverse problem consists in several
questions:

• Uniqueness: is the map Q 7→ µ injective?
• Stability: is the inverse of the map Q 7→ µ con-

tinuous?
• Reconstruction: how can we compute Q from µ?

The question of uniqueness has been dealt with by
Bukgheim and Klibanov in [4]. Later on, several
works have been concerned with stability estimates,
and in particular [7], [5], [1], [6] based on Carleman

estimates provided the following conditions are sat-
isfied:

∃ x0 6∈ Ω, Γ0 ⊃ {x ∈ ∂Ω, (x − x0) · ν(x) ≥ 0}, (3)

T > sup
x∈Ω

|x − x0|. (4)

These Geometric and Time conditions, also known as
the Γ conditions of J.-L. Lions, were first introduced
in the context of controllability of waves when using
multiplier techniques. Such conditions of geometrical
nature are expected in such problem since the waves
propagate at velocity one along the bicharacteristic
rays and one should therefore guarantee that all the
rays of Geometric Optics enter the observation do-
main to get nice uniqueness and stability results.

Under these conditions (3)–(4) indeed, [5], [1]
prove Lipschitz stability results for this inverse prob-
lem.

However, despite the fact that the stability of this
inverse problem is by now well-known, to our knowl-
edge, no reconstruction process has been proposed
in the literature. We intend to do so by using in a
crucial way Carleman estimates.

2 Carleman estimates for waves

2.1 Results

We assume the following conditions

• the multipliers conditions (3)–(4).

• a regularity assumption:

W ∈ H1((0, T );L∞(Ω)), (5)

• a positivity condition:

∃α > 0 such that |w0| > α in Ω, (6)

• An a priori bound on the potential Q:

‖Q‖L∞ ≤ m. (7)

And we propose the following algorithm:

• Initialization: q0 = 0.
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• Iteration: Given qk, we set µk =
∂t

(
∂νw[qk] − ∂νW [Q]

)
on Γ0 × (0, T ), where

w[qk] denotes the solution of





∂2
t w − ∆w + qkw = h, in Ω × (0, T ),

w = h∂ , on ∂Ω × (0, T ),
w(0) = w0, ∂tw(0) = w1, in Ω,

(8)

corresponding to (1) with the potential qk. We then
introduce the functional Js,qk defined, for some s > 0
that will be chosen independently of k, by

Js,qk(z) =
1

2s
‖esϕ(∂2

t z − ∆z + qkz)‖2
L2(Ω×(0,T ))

+
1

2
‖esϕ(∂νz − µk)‖2

L2(Γ0×(0,T )), (9)

on the trajectories z ∈ L2(0, T ;H1
0 (Ω)) such that

∂2
t z−∆z+qkz ∈ L2(Ω×(0, T )), ∂νz ∈ L2(Γ0×(0, T ))

and z(·, 0) = 0 in Ω, see (12) for the definition of ϕ.
Let Zk be a minimizer of the functional Js,qk , and
then set

q̃k+1 = qk +
∂tZ

k(·, 0)
w0

, (10)

where w0 is the initial condition in (1).
Finally, using the function Tm(q) = q if |q| ≤ m

and Tm(q) = sign(q)m else, we set

qk+1 = Tm(q̃k+1). (11)

In the functional Js,qk , a weight function ϕ ap-
pears, which is the one coming from the Carleman
estimate for the wave equation. It is chosen as fol-
lows. Let β ∈ (0, 1) (close to 1), and define, for
(x, t) ∈ Ω × (−T, T ) and λ > 0,

ϕ(x, t) = eλ(|x−x0|2−βt2+C0), (12)

where C0 > 0 is chosen such that |x−x0|2−βt2+C0 ≥
1 in Ω × (−T, T ).

We then obtain the following result:

Theorem 1 ([2]). Assuming (3)–(7), there exist λ >
0 and a constant M > 0 such that for all s ≥ s0(m)
and k ∈ N, the functional Js,qk is strictly coercive

and therefore admits a unique minimizer Zk, and

‖esϕ(0)(qk+1 − Q)‖L2(Ω) ≤ M

s1/4
‖esϕ(0)(qk − Q)‖L2(Ω).

In particular, when s is large enough, the above al-
gorithm converges: qk converges to Q in L2(Ω) as
k → ∞.

2.2 Comments

The proof of Theorem 1 relies upon a Carleman
estimate for the wave equation, which can be found
for instance in [5]. In [5], [1], it was used to derive
Lipschitz stability estimates for the inverse problem
under consideration, under the precise assumptions
(3)–(7).

Our approach revisits these works by providing a
constructing way to find the potential Q, based on
the Carleman inequality directly. Note in partic-
ular that at each iteration, one only has to mini-
mize the functional Js,qk which is strictly coercive
and quadratic.

However, there are still numerical issues related to
the fact that the weight functions are exponentials
and may provide numerical overflow. Let us also
mention the fact that even the convergence of the
discrete inverse problem is not straightforward and
requires to prove a discrete Carleman estimate, uni-
form with respect to the discretization parameters,
see [3] for a detailed analysis in the 1-d setting.
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Introduction

Data assimilation originally developed for weather
forecasting has reached today new applications [4]
where various types of measurements can be con-
sidered to handle the numerous uncertainties in the
modeled system. In this work we focus on a wave
system where part of the solution is measured on
a subdomain and we demonstrate how the use of
a sequential data assimilation strategy through the
design of an observer can produce simulations with
better global approximation capabilities than classi-
cal numerical approximations.

1 Methods

1.1 Observer theory

LetH be a Hilbert space and A0 : D(A0)→ H be a
self-adjoint, definite positive operator with compact
resolvent. We consider the following system

{
ẅ(t) +A0w(t) = 0, t > 0
w(0) = w0, ẇ(0) = w1

(1)

which we refer to as a “wave-like system”. We rewrite
this system in a first order form by denoting x(t) =(
w(t)
ẇ(t)

)
such that

{
ẋ(t) = Ax(t), t > 0
x(0) = x0,

(2)

where A : D(A)→ X with D(A) = D(A0)×D(A
1
2
0 ),

X = D(A
1
2
0 ) × H, is given by A =

(
0 I
−A0 0

)
, and

x0 =

(
w0

w1

)
. Observation theory is less studied than

its dual control theory and consists in using some
available measurements on the system

z = Hx, (3)

with H ∈ L(X ,Z) an observation operator, in order
to retrieve or filter some initial uncertainties. A new
system

{
˙̂x(t) = Ax̂(t) +K(z −Hx̂), t > 0
x̂(0) = x̂0,

(4)

called an observer, is then built to track the actual
system by comparing its outputs to the given ob-
servations and correcting the trajectory by use of a
filtering operator K.

Despite a different objectives, control and obser-
vation are closely related, at least when considering
linear systems and bounded – observation/control –
operators in the sense that they are connected to a
stabilization problem – in observation, the stabiliza-
tion of the errors between the observer and the actual
system

{
˙̃x(t) = (A−KH)x̃(t), t > 0
x̃(0) = x̃0,

(5)

with x̃ = x − x̂. Therefore, some feedback control
results can directly lead to the definition of an ob-
server by deriving the adequate operator K. This
is typically the case for the wave equation when we
assume to measure in time the time-derivative of the
variable on a subdomain ω

z = ẇ|ω = H0ẇ ⇒ H = (0 H0).

Hence with K = H∗, the control and observation
problems lead to the same question of stabilizing the
wave equation by adding a local dissipation in the
subdomain following the stabilization conditions of
Bardos-Lebeau-Rauch, meaning for any solution of
(1) of initial condition (w0, w1) ∈ H1

0 (Ω)× L2(Ω)
∫ T

0
‖ẇ(., t)‖2L2(ω)dt ≥ C

(
‖w0‖2H1(Ω) +‖w1‖2L2(Ω)

)
. (6)

This controllability condition becomes an observabil-
ity condition for the observation problem which en-
sures that observing the system on a subdomain gives
enough information to estimate its state on the com-
plete domain.

Some differences can however appear between ob-
servation and control when no control has been de-
signed to use the prescribed measurements. This is
typically the case when we consider observations of
the main variable of a wave-like equation instead of
its time derivative

z = w|ω = H0w ⇒ H = (H0 0).
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In that case, using K = H∗ for an adequate def-
inition of the adjoint, [4] has proposed an original
non-physical observer in the sense that it can only
be realized as a virtual numerical system and not a
physical one. We write

{
˙̂w(x, t) = û(x, t) + γ Lω

(
z(t)− ŵ(·, t)|ω

)
,

˙̂u(x, t)−∆ŵ(x, t) = 0,
(7)

where we define the operator

Lω : H1(ω)→ H1
0 (Ω), Lωφ = ψ, (8)

with ψ the solution of the following elliptic equation





∆ψ = 0, in Ω\ω
ψ = 0, on ∂Ω
ψ = φ, in ω

(9)

Indeed, this observer modifies the classical first re-
lation giving the “velocity” variable as the time-
derivative of the “main variable” by incorporating
a stabilization term. Then in [1], this original ob-
server was demonstrated to exponentially converge
to the observed system with an observability condi-
tion, here of the form

∫ T

0
‖w(., t)‖2H1(ω)dt ≥ C

(
‖w0‖2H1(Ω) + ‖w1‖2L2(Ω)

)
,

(10)
equivalent to that given by Bardos-Lebeau-Rauch.

1.2 Numerical analysis improvement

In [4], this observer was originally designed to
model and numerically simulate systems with uncer-
tain initial conditions or modeling errors. It was in
particular applied to a complex mechanical system
modeling the heart mechanical contraction observed
by medical imaging protocols. However, the ben-
efits of the “closed-loop” observer system over the
standard discretization already appear on the clas-
sical numerical analysis where the discretization er-
ror can be reduced by use of the available measure-
ments. Therefore in [2], we undertake the complete
numerical analysis of the observer system for wave-
like equations and show that – under some natural
observability conditions – we can obtain error esti-
mates that no longer deteriorate with the simula-
tion duration, thereby providing a dramatic improve-
ment over direct discretizations of the original sys-
tem. This improvement is obtained as far as we can
demonstrate that the performance of the continuous

observer can be preserved through its discretization.
In fact, some spurious high frequencies coming from
the discretization are well known to deteriorate the
stability constants – and then the convergence prop-
erties of the observer – at the discrete level. Follow-
ing [3], we demonstrate in [2] that specific care in the
discretization can ensure a uniform stability with re-
spect to the discretization for the classical observer
using time-derivative measurements but also for the
original observer introduced in [4]. We therefore ob-
tain an estimation of the type

‖x̂nh − x(n∆t)‖X ≤ C(x̂0) max(ε, ε2 h−1∆t),

with ε = max{∆t, hθ}, instead of the classical

‖xnh − x(n∆t)‖X ≤ C(T )(hθ + ∆t2),

for System (1).
Our new error estimates then rely on the classical

cornerstones of numerical analysis formed by stabil-
ity and consistency to which we add an observability
condition leading to a new paradigm in numerical
analysis.
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Abstract

In this talk we present some results on the behav-
ior of the energy of solutions of the wave equation
with damping term in bounded domain or in exte-
rior domain.

1 Wave equation with arbitrary localized
damping

Let Ω be a smooth bounded domain in Rd with
boundary ∂Ω. Consider the following wave equation
with a nonlinear internal damping:





∂2
t u−∆u+ a (x) g (∂tu) = 0 R+ × Ω
u = 0 R+ × ∂Ω
(u (0) , ∂tu (0)) = (u0, u1)

(1)

Here ∆ denotes the Laplace operator in the space
variables. The nonlinear terms satisfy:

• g : R → R is a continuous, monotone increasing
function, g(0) = 0.

We assume that g is linearly bounded at infinity

m0y
2 ≤ g (y) y ≤M0y

2, |y| > 1

• a(x) is a non negative function in L∞ (Ω) . a(x) ≥
a0 > 0 a.e. in ω, where ω ⊂⊂ Ω an arbitrary
non-empty subdomain.

• Energy Functional:

Eu (t) =
1

2

∫

Ω

(
|∇u (t, x)|2 + |∂tu (t, x)|2

)
dx.

According to [ Lasiecka-Tataru] there exists a con-
cave strictly increasing function and linear at infinity
h0(s) defined for s ≥ 0, with h0(0) = 0 and

h0 (g (y) y) ≥ ε
(

(g (y))2 + y2
)

for |y| � 1.

Theorem: u(t) is the solution to the non-linear
problem with initial condition (u0, u1) ∈ X =(
H1

0 (Ω) ∩H2 (Ω)
)
×H1

0 (Ω). Then we have

Eu (t) ≤ S (t− T ) , t ≥ T

where S (t) is the solution of the following non-
linear ordinary differential equation

dS

dt
+

1

T
h−1◦ψ−1

(
S

K

)
= 0, S (0) = Eu (0) .

where K = C (T, ‖(u0, u1)‖X) ,

h (s) = s+ ma (ΩT )h0

(
s

ma (ΩT )

)

and ψ : R+ → R+, strictly increasing function,
defined by

ψ (s) =

(
ln

(
1

s
+ 1

))−2β

+ s; 0 < β < 1.

2 Wave equation with localized damping and
external force





∂2
t u−Au+ a (x) g (∂tu) = f R+ × Ω
u = 0 R+ × ∂Ω
(u (0) , ∂tu (0)) = (u0, u1)

(2)

• [aij(x)]ij smooth, symmetric
A = div[

(
aij (x) ∂xj

)
] .

• Uniform ellipticity. c > 0
d
i,j=1aij (x) ξiξj ≥ c

∑d
i=1 ξ

2
i

• g : R → R: continuous, monotone increasing
function, g(0) = 0. We assume that g is linearly
bounded at infinity.

• f ∈ L2
loc

(
R+, L

2 (Ω)
)
.

• Energy Functional: ∇A ≡
(∑d

j=1 aij(x)∂xj

)
i
.

Eu (t) =
1

2

∫

Ω

(
|∇Au (t, x)|2 + |∂tu (t, x)|2

)
dx.

Before introducing our result, we remind the ge-
ometric control condition of Bardos- Lebeau and
Rauch

GCC (ω, T ) geometrically controls Ω, i.e. every
generalized geodesic travelling with speed 1 and
issued at t = 0, enters the set ω in a time t < T .
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Theorem: We assume that (ω, T ) satisfies the as-
sumption (GCC) and

Γ (t) = ‖f (t, .)‖2L2(Ω)+ψ
∗
(
‖f (t, .)‖L2(Ω)

)
∈ L1

loc (R+)

where ψ∗ is the convex conjugate of the function
ψ, defined by

ψ (s) =

{
1

2T h
−1
(

s2

8CT eT

)
s ∈ R+

+∞ s ∈ R∗−
Let u(t) is the solution to the non-linear problem
(2) with initial condition (u0, u1) ∈ H1

0 × L2.
Then we have

Eu (t) ≤ 4eT
(
S (t− T ) +

∫ t

t−T
Γ (s) ds

)
, t ≥ T

where S (t) is the solution of

dS

dt
+

1

4T
h−1

(
S (t)

K

)
= Γ (t) , S (0) = Eu (0) .

3 Wave equation with linear damping in ex-
terior domain





∂2
t u−∆u+ a (x) ∂tu = 0 R+ × Ω
u = 0 R+ × ∂Ω
(u (0) , ∂tu (0)) = (u0, u1)

(3)

• Ω open smooth exterior domain in Rd (d ≥ 2)
with boundary ∂Ω.

• a ∈ L∞ (Ω) and a(x) ≥ 0.

• Space: H ≡ H1
0 (Ω)× L2 (Ω) .

Before introducing our results we shall state several
assumptions:

• There exists L > 0 such that

a (x) > ε0 > 0 for |x| ≥ L.

• (ω, T ) geometrically controls Ω, i.e. every gener-
alized geodesic travelling with speed 1 and issued
at t = 0, enters the set ω in a time t < T .

Theorem: We assume that Hyp A holds and (ω,T )
geometrically controls Ω. Then there exists
C0 > 0 such that the following estimates

Eu (t) ≤ C0 (1 + t)−1 I0 and ‖u (t)‖2L2 ≤ C0I0

hold for every solution u of (3) with initial data
(u0, u1) in H1

0 (Ω)×L2 (Ω), where I0 = ‖u0‖2H1 +
‖u1‖2L2 .

4 Wave equation with nonlinear damping in
exterior domain





∂2
t u−∆u+ a (x) |∂tu|r−1 ∂tu = 0 in R+ × Ω,
u = 0 on R+ × Γ,
u (0, x) = u0 and ∂tu (0, x) = u1.

(4)

• a ∈ L∞ (Ω) and a(x) ≥ 0.

• 1 < r ≤ 1 + 2
d .

Theorem: We assume that Hyp A holds and (ω,T )
geometrically controls Ω. Let

γ > 0 if 1 < r < 1 + 2
d

0 < γ < 2
r−1 if r = 1 + 2

d

Then there exists C0 > 0 such that the following
estimate

Eu (t) ≤ C0 (ln (2 + t))−γ I (u0, u1) , for all t ≥ 0

holds for every solution u of (4) with initial data
(u0, u1) in H1

0 (Ω) ∩H2 (Ω)×H1
0 (Ω), such that

∥∥∥∥
(

ln
(

1 + |x|2
)) γ

2 ∇u0

∥∥∥∥
L2

+

∥∥∥∥
(

ln
(

1 + |x|2
)) γ

2
u1

∥∥∥∥
L2

< +∞.
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Abstract

We consider the exact controllability problem on
a compact manifold Ω for two coupled wave equa-
tions, with a control function acting on one of them
only. Action on the second wave equation is obtained
through a coupling term. We introduce the time
Tω→O→ω for which all geodesics traveling in Ω go
through the control region ω, then through the cou-
pling region O, and finally come back in ω. We prove
that the system is controllable if and only if both ω
and O satisfy the Geometric Control Condition and
the control time is larger than Tω→O→ω. Next, we
prove that the associated HUM control operator is a
pseudodifferential operator.

1 Introduction

Let (Ω, g) be a C∞ compact connected n-
dimensional Riemannian manifold without boundary.
We denote by ∆ the (negative) Laplace-Beltrami op-
erator on Ω for the metric g, and P = ∂2

t − ∆ de-
notes the d’Alembert operator (or wave operator) on
the manifold R × Ω. We take two smooth functions
bω and b ≥ 0 on Ω. We consider the controllability
problem for the system of coupled wave equations

�
Pu1 + b(x) u2 = 0 in (0, T )× Ω,

Pu2 = bω(x) f in (0, T )× Ω.
(1)

Here, the state of the system is (u1, u2, ∂tu1, ∂tu2)
and f is our control function, with possible action
on the set ω = {bω �= 0}. Taking zero initial data,
together with a forcing term f ∈ L2((0, T ) × Ω)),
the associated solution of (1) lies for any time in
the space H2(Ω)×H1(Ω)×H1(Ω)× L2(Ω) as u2 ∈
L2(0, T ; H1(Ω)). Hence, there is a gain of regularity
for the uncontrolled variable u1 (see [1]).

In this context, the adapted control problem is
given by the following definition.

Definition 1.1. We say that System (1) is con-
trollable in time T > 0 if for any initial data
(u0

1, u
0
2, u

1
1, u

1
2) ∈ H2(Ω) × H1(Ω) × H1(Ω) × L2(Ω)

and any target (ũ0
1, ũ

0
2, ũ

1
1, ũ

1
2) ∈ H2(Ω) × H1(Ω) ×

H1(Ω) × L2(Ω) there exists a control function f ∈
L2((0, T ) × Ω) such that the solution of (1) issued
from (u1, u2, ∂tu1, ∂tu2)|t=0 = (u0

1, u
0
2, u

1
1, u

1
2), satis-

fies (u1, u2, ∂tu1, ∂tu2)|t=T = (ũ0
1, ũ

0
2, ũ

1
1, ũ

1
2).

A natural necessary and sufficient condition to ob-
tain controllability for wave equations is to assume
that the control set satisfies the Geometric Control
Condition (GCC) defined in [7], [2]. For ω ⊂ Ω and
T > 0, we shall say that (ω, T ) satisfies GCC if ev-
ery geodesic traveling at speed one in Ω meets ω in
a time t < T . We say that ω satisfies GCC if there
exists T > 0 such that (ω, T ) satisfies GCC. We also
set Tω = inf{T > 0, (ω, T ) satisfies GCC}.

Definition 1.2. Given two sets ω and O both sat-
isfying GCC, we set Tω→O→ω to be the infimum of
times T > 0 for which the following assertion is sat-
isfied:

every geodesic traveling at speed one in Ω meets ω
in a time t0 < T , meets O in a time t1 ∈ (t0, T ) and

meets ω again in a time t2 ∈ (t1, T ).

Note that in general Tω→O→ω �= TO→ω→O, and
that we have the estimate

max(TO, Tω) ≤ Tω→O→ω ≤ 2Tω + TO.

We can now state our controllability result (in the
sense of Definition 1.1).

Theorem 1.3. Suppose that b ≥ 0 on Ω, and that
both sets ω = {bω �= 0} and O = {b �= 0} sat-
isfy GCC. Then, System (1) is controllable if T >
Tω→O→ω and is not controllable if T < Tω→O→ω.

The proof of this result is based on the quantifica-
tion of the transport of a (vectorial) microlocal defect
measure [4], [8] along the bicharacteristic flow. Such
measures where first used for this type of results in
the work of G. Lebeau [5].

According to the Hilbert Uniqueness Method
(HUM) of J.-L. Lions [6], the controllability prop-
erty of Theorem 1.3 is equivalent to an observabil-
ity inequality for the adjoint system. More precisely,
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System (1) is exactly controllable in time T if and
only if the inequality

E−1(v1(0)) + E0(v2(0)) ≤ C

� T

0

�

ω
|bωv2|2dx dt (2)

holds for every (v1, v2) ∈ C 0([0, T ]; H−1(Ω) ×
L2(Ω)) ∩ C 1([0, T ]; H−2(Ω)×H−1(Ω)) solutions of

�
Pv1 = 0 in (0, T )× Ω,

Pv2 = −b(x) v1 in (0, T )× Ω.
(3)

In the observability inequality (2), we use the nota-
tion

Ek(v) = �v�2Hk(Ω) + �∂tv�2Hk−1(Ω), k ∈ Z,

where the space Hs(Ω) is endowed with the norm

�v�Hs(Ω) = �(1−∆)
s
2 v�L2(Ω), s ∈ R,

and the associated inner product.
An important feature of the Hilbert Uniqueness

Method, as presented by J.-L. Lions [6], lays in the
following two facts: the control one obtains, fHUM

minimizes the cost functional �f�2L2((0,T )×Ω) among

all f ∈ L2((0, T ) × Ω) realizing a control for Sys-
tem (1); it is the optimal L2-control. Moreover, it is
itself a solution of the adjoint system (3) for appro-
priate initial data, say W 0.

The Gramian operator L associated to Sys-
tems (1)-(3) is given by

� T

0

�

ω
|bωv2|2dx dt = �LV, V � ,

where v2 is the solution of (3) associated to the initial
data (v1, v2, ∂tv1, ∂tv2)|t=0 = V . If the observability
inequality (2) is satisfied, then, the HUM control op-
erator is the inverse of the mapping L. From the ini-
tial data to be controlled, the HUM operator maps
the associated initial data W 0 for the adjoint system,
giving rise to the control function fHUM .

The second main goal of this article is to give an ex-
plicit representation of the HUM operator. We prove
the following result

Theorem 1.4. 1. The Gramian operator is a
matrix of pseudodifferential operators of order
zero. The determinant of its principal symbol
takes essentially the following form
� T

0

� T

0
(b2
ω◦ϕt1)(b

2
ω◦ϕt2)

�� t2

t1

b◦ϕσdσ
�2

dt1dt2,

where ϕσ denotes the geodesic flow on S∗Ω.

2. This operator is elliptic if and only if T >
Tω→O→ω.

3. For T > Tω→O→ω, the HUM control operator
is also a matrix of pseudodifferential operators
of order zero.

The proof of this second result orginates in part
from the work of B. Dehman and G. Lebeau [3].
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M. Khenissi1,∗
1 Ecole Supérieure des Sciences et de Technologie

de Hammam Sousse, Tunisie
∗Email: Moez.Khenissi@fsg.rnu.tn

Abstract

In this talk, we give a survey of our works on the
long-time behavior of some damped equations in ex-
terior domains. As model, we study the wave equa-
tion, the elasticity system and the Schrödinger equa-
tion. We prove in particular, how the distribution
of the resonances depend on the geometry of the do-
main and the position of the support of the damping
terms.

1 Wave equation

Let Θ ⊂ Rd be a compact set with C∞-smooth
boundary Γ. Denote by Ω = Rd\Θ the exterior do-
main and a(x) ∈ C∞0 (Ω,R+).
For the trapping domains, when no uniform energy
decay is hoped, the idea of stabilization is to add
a dissipative term to the equation to force the
energy of the solution to decrease uniformly.

We consider the Cauchy problem for wave equation
with an internal damping term





(∂2
t −∆ + 2a(x)∂t)u = 0 on R+ × Ω

u(t)�∂Ω
= 0 ∀ t ∈ R+

u(0) = u0, ∂tu(0) = u1

(1.1)

For u satisfying (1.1), we define ER(u(t)) the local
energy on ΩR = {|x| < R} ∩ Ω,

ER(u(t)) =

∫

ΩR

[|∇u|2 (t) + |∂tu|2 (t)] dx. (1.2)

Definition 1.1 (E.G.C.) [2] We say that the sub-
set ω of Ω satisfies the Exterior Geometric Control
(E.G.C.) if any trapped ray1 meets ω.

Let χ ∈ C∞0 (Rd), χ = 1 on BR and Rχ(λ) = χR(λ)χ,
be the cutoff outgoing resolvent defined as following

Rχ(λ)f =

∫ +∞

0
e−iλtχu(t) dt, in {Imλ < 0} .

(1.3)
where u(t) is a solution of (1.1) with (u0, u1) =
(0, χf). Rχ(λ) as an operator from L2(Ω) to H1

0 (Ω),

1A trapped ray is a ray which can not leave BR.

which is holomorphic on {Imλ < 0}, extends mero-
morphically to the whole complex plane C for odd
dimensions and to the logarithmic Riemann surface
for even dimension.

First, we have to localize the poles of this exten-
sion, called resonances ([6], [3]).

Theorem 1.2 Suppose that ω = {x ∈ Ω, a(x) > 0}
satisfies the E.G.C., then
∥∥χ(−∆ + λ2 + iλa(x))−1χ

∥∥
L2(Ω)→L2(Ω)

≤ c

1 + |λ| .

We deduce that there exists c > 0 such that for all
(u0, u1) ∈ H1

comp × L2
comp

ER(u(t)) ≤ ce−δtE(u(0))) , if d is odd

ER(u(t)) ≤ c

td
E(u(0))) , if d is even

For the elasticity system, we prove in [8] and in odd
dimension the same result as the wave equation and
in [7] we gives the localisation of the resonances for
the elasticity system with boundary dissipative term.

2 Schrödinger equation

As the wave equation, when Ω is a non-trapping,
we get for the Schrödinger equation, the uniform de-
cay (polynomial) of the local energy: ∀f ∈ L2

comp(Ω)

ER(t) :=
∥∥∥eit(−∆D)f

∥∥∥
L2(ΩR)

≤ c

td/2
‖f‖L2 , ∀t > 0

We consider the following stabilization problem of
the Schrödinger equation [2]





i∂tu−∆u+ ia(x)u = 0 in R× Ω
u(0, .) = f in Ω
u/R×∂Ω = 0

(2.1)

Theorem 2.1 Suppose that ω = {x ∈ Ω, a(x) > 0}
satisfies the E.G.C., then ∃ σ0 and C such that for
any |=mτ | < σ0

‖χ(−τ −∆ + ia)−1χ‖L2→L2 ≤ C.
We deduce that there exists c > 0 such that for all
u0 ∈ L2

comp
∥∥∥χeit(−∆D+ia)u0

∥∥∥
L2(Ω)

≤ c

td/2
‖u0‖L2(Ω)
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It is well known that the Schrödinger equation en-
joys some smoothing properties. The solutions of
(2.1) satisfy the Kato-smoothing effect if and ally
if Ω is non trapping. By analogy to the stabiliza-
tion problem, when Ω is trapping, we introduce the
forced smoothing effect for Schrödinger equation.
It consists to act on the equation to produce some
smoothing effects.




i∂tu−∆u+ ia(x)(−∆)
1
2a(x)u = 0 in R× Ω,

u(0, .) = u0 in Ω,
u|R×∂Ω = 0,

(2.2)
In the case of bounded domain, under G.C.C. on the
set w = {a 6= 0}, Aloui [1] proved a weak Kato-
Smoothing effect:

‖u‖L2([ε,T ],Hs+1
D (Ω)) ≤ c(ε) ‖u0‖Hs

D(Ω) ,

where 0 < ε < T <∞. Then by iteration of the last
result, C∞-smoothing effect is proved.

Note that these smoothing effects hold away from
t = 0 and they seem strong compared with the Kato-
effect for which the GCC is necessary. Therefore the
case when w = {a 6= 0} does not control geometri-
cally Ω is very interesting.

We prove that the Geometric control condition is
not necessary to obtain the forced C∞- smoothing
effect. Let Aa = −i∆D − a(x)(−∆)

1
2a(x).

Let O = ∪Ni=1Oi ⊂ Rd be the union of a finite num-
ber of bounded strictly convex bodies, Oi, satisfying
the conditions of Ikawa.

Let B be a bounded domain containing O such
that Ω0 = Oc ∩B is connected, where Oc = Rd \O.

Theorem 2.2 [5] Assume a ∈ C∞(Ω0) is constant
near the boundary of B. Then ∃ σ0 and c such that
for any |=mτ | < σ0

∥∥∥(−∆D − τ + ia(x)(−∆D)
1
2a(x))−1

∥∥∥
L2→L2

≤ C log2〈τ〉
〈τ〉 1

2

,

where 〈τ〉 =
√

1 + |τ |2 and let s ∈ R then we have

(i) ∀ ε > 0 ∃ C > 0 / u(t) =

∫ t

0
ei(t−τ)Aaf(τ)dτ

satisfies

‖u‖L2
TH

s+1−ε(Ω0) ≤ C ‖f‖L2
TH

s(Ω0) (2.3)

(ii) If u0 ∈ Hs(Ω0) then eitAau0 ∈ C∞((0,+∞)×Ω0)
(iii) there exist α, c > 0 such that

‖eitAau0‖L2(Ω0) ≤ ce−αt‖u0‖L2(Ω0), ∀ t > 1.

Indeed, under the E.G.C. condition, we prove in [4]
the Kato-smoothing effect and the non homoge-
neous bound for the regularized Schrödinger equa-
tion in exterior domains.

Theorem 2.3 We suppose that ω satisfies the
E.G.C., then for any χ ∈ C∞0 (Rd) there exist c > 0,
λ0 such that for any λ > λ0 and ∀f ∈ L2(Ω)

∥∥χ(−iAa − λ)−1χf
∥∥
L2(Ω)

≤ c

|λ| 12
‖f‖L2 .

Moreover, for any T > 0 and s ∈]1/2, 1] there exist
c > 0 such that, for all u0, f in C∞0 (Ω),

∥∥〈x〉−su
∥∥

L2((0,T );H
1
2 )

≤ C(‖u0‖L2+‖〈x〉sf‖
L2((0,T );H− 1

2 )
)

where u = eitAau0 +
∫ t

0 e
i(t−τ)Aaf(τ)dτ .
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Slow modulation and large-time asymptotic behavior
about periodic traveling waves

in general systems of hyperbolic-parabolic composite type.
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Abstract

In a joint work with Mathew Johnson, Pascal No-
ble and Kevin Zumbrun, motivated by fluid dynamics
considerations, we tackle the following question:

1. In general systems of hyperbolic-parabolic com-
posite type, in which sense can we obtain asymp-
totic stability for spectrally stable periodic pla-
nar traveling waves ?

2. Is it possible to validate, for large time, formal
predictions obtained from a WKB expansion ?

During our talk we will discuss the hardest case
of space-dimension one but, for the sake of algebraic
simplicity, will restrict the type of the original sys-
tem. We will see to what extent the answer to the sec-
ond question is positive even when the reference wave
undergoes a non-localized perturbation (allowing for
global phase shifts at infinities but not for global
changes in wave numbers), thus also provide an an-
swer to the first question. The consideration of non-
localized perturbations, requiring an involved modu-
lation process, is made necessary by the fact that in
general even initially localized perturbations evolve
into non-localized perturbations. Among many other
difficulties it should be noted that these scenari ex-
hibit very slow decay in time and poor localization
in space.
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Optimized Schwarz Methods for curl-curl time-harmonic Maxwell’s equations
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Abstract

Like the Helmholtz equation, the high frequency
time-harmonic Maxwell’s equations are difficult to
solve by classical iterative methods. Domain decom-
position methods are currently most promising: fol-
lowing the first provably convergent method in [2],
various optimized Schwarz methods were developed
over the last decade [5], [6], [1], [3], [7], [8], [9],
[4]. There are however two basic formulations for
Maxwell’s equation: the first order formulation, for
which complete optimized results are known [3], and
the second order, or curl-curl formulation, with par-
tial optimization results [1], [7], [9]. We show in this
work that the convergence factors and the optimiza-
tion process for the two formulations are the same.
We then show by numerical experiments that the
Fourier analysis predicts very well the behavior of the
algorithms for a Yee scheme discretization, which cor-
responds to Nedelec edge elements on a tensor prod-
uct mesh, in the curl-curl formulation. When using
however mixed type Nedelec elements on an irregu-
lar tetrahedral mesh, numerical experiments indicate
that transverse magnetic (TM) modes are less well
resolved for high frequencies than transverse electric
(TE) modes, and a heuristic can then be used to
compensate for this in the optimization.
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Some domain decomposition approaches in scattering and radiation of waves

A. Bendali1,∗
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Abstract

Coupling dissimilar numerical schemes generally
enhances the solution process but may lead to specific
difficulties. Even more successful, this coupling may
be at the basis of the modeling procedure itself. It is
first shown here how Domain Decomposition Meth-
ods (DDM) can be used to design efficient procedures
for solving a radiation problem involving a relatively
small heterogeneous material posed on a relatively
large impenetrable structure. Typically such a prob-
lem is encountered when dealing with the radiation of
a complicated antenna in its environment. The next
case considered corresponds to a model reduction en-
tering in the determination of the wave reflected by a
cavity with walls covered by a thin absorbing mate-
rial. It is also shown in this context how DDM ideas
are at the basis of efficient solving procedures.

Introduction

As said above, the first problem, we deal with, cor-
responds to the radiation of a time-harmonic wave for
the case where some small size heterogenous material
is posed on a large scale impenetrable structure (Fig.
1) 




∇ · (χ∇u) + χκ2n2u = 0 in Ω,

χ∂nu = −f on Γ,

lim|x|→∞ |x|1/2(∂|x|u − iκu) = 0;

(1)

Ω is the complement of the impenetrable obstacle,
κ > 0 is the wave number, χ and n are functions
equal to 1 outside the heterogeneous material filling
Ω1 yielding the contrast and the refractive index of
the material. The idea here is to use a Boundary Inte-
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Figure 1: The radiation problem.

gral Equation (BIE) on the impenetrable part of the
structure lying outside and a Finite Element Method

(FEM) inside the heterogeneous material. However,
straightforward coupling procedures are generally in-
efficient specially for large size problems where the
solution process has to be tackled through an itera-
tive method.

The second problem considered is relative to the
determination of the wave reflected by a cavity with
walls covered by a thin penetrable material (Fig. 2).
The problem has a similar setting as (1) except that
the Neumann condition is everywhere now 0 on Γ
and the radiation condition is set now in terms of
an incident plane wave uinc: lim|x|→∞ |x|1/2(∂|x| −
iκ)

(
u − uinc

)
= 0. The challenge is now to solve

the corresponding boundary-value problem with a re-
duced model avoiding the solution of the equations
in the interior of the penetrable material.
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Figure 2: The covered cavity scattering problem.

1 Methods

1.1 An overlaping DDM procedure

We first describe how it is dealt with problem (1).
In its basic principle, the method ressembles the one
developed by Jami and Lenoir and interpreted later
when it is solved through an iterative procedure as a
Schwarz overlaping DDM in [1]. In this reference, the
whole structure is enclosed in a FE mesh and no BIE
is explicitly solved. However, proceeding in this way
for the present case results in a too large size prob-
lem. Even worse, approximating the propagation of
a wave along large distances by a FEM may be very
problematic because of the dispersion errors, which
can severely damage the accuracy of the final result.
Hence, it is only the part ΩS of the domain which is
dealt with a FE mesh as indicated in Fig. 3.

Each iteration is performed by solving a plain BIE
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Figure 3: Geometrical setting of the
non-overlaping domain decomposition approach.

corresponding to the solution of a transmission equa-
tion set in all of the plane and a boundary-value prob-
lem set in ΩS . In the spirit of the method devised in
[1], a low-order absorbing condition is added on the
fictitious boundary S. Clearly, this solution can be
carried out by means of a plain FEM. This study has
been carried out in collaboration with Y. Boubendir
and N. Zerbib [2].

1.2 A primal domain decomposition approach

Now, we turn our attention to the cavity problem.
We first use a usual primal DDM approach for setting
the problem to be solved (see Fig. 2 for the notation)

find ϕ and χ resp. def. on ∂D and ∂Ω s. t.
ϕ = χ on Σ{
∆w + κ2n2w = 0 in D
w = ϕ on ∂D



∆u + κ2u = 0 in Ω
u = χ on ∂D

lim|x|→∞ |x|1/2(∂|x| − iκ)
(
u − uinc

)
= 0∫

∂D

1
ε∂nwϕ′ds −

∫

∂Ω
∂nuχ′ds = 0,

∀ϕ′, χ′ such that ϕ′ = χ′ sur Σ

Of course, this equation is not explicit in ϕ and
χ. However, the matrix-vector product relative
to the term

∫
∂Ω∂nuχ′ds can be obtained by solv-

ing a Burton-Miller BIE. The one corresponding
to

∫
∂D

1
ε∂nwϕ′ds is completed through a thin layer

model. The model used here simply consists in as-
suming that w is constant along the normal (Fig. 4)

∫

∂D

1

ε
∂nwϕ′ds =

∫

D

(
1

ε
∇w · ∇w′ − κ2µww′

)
dx

= δ
thickness

∫

Σ

1

ε
∂sϕ∂sϕ

′ − κ2µϕϕ′ds

︸ ︷︷ ︸
Thin layer model

2 Results

Convergence of the overlaping DDM for radiation
problem (1) is mathematically proved in [2]. This

!

"

Neglected parts
in the integral

w is constant along the normal

Figure 4: The thin layer model.

study reports also its robustness and that it outper-
forms usual primal DDMs. The results relative to
the cavity problem have not been submitted yet. The
plot in Fig. 5 well depictes the accuracy reached by
this simple still powerfull method.
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Figure 5: Monostatic calculations by a direct
solving and the thin layer model.
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Domain Decomposition Methods for the interior Helmholtz problem:
Spectral Analysis and Numerical Experiments
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Abstract

In this talk, we review many domain decomposi-
tion methods (DDMs) developed for the Helmholtz
equation. We focus on the interior Helmholtz prob-
lem and show numerical experiments of the DDMs
considered on the same set of test models, including
the heterogeneous 3-D SEG-SALT model. We also
present a spectral analysis of the DDMs in order to
get a better understanding of their behavior.

Introduction

The Helmholtz equation is a real challenge for nu-
merical simulations [1]. In addition to the well known
pollution effect, the linear algebraic system from the
standard discretization of a 3-D problem at mid-
frequency is not only too large to be solved by factor-
ization, but also too indefinite for iterative methods
to converge well. There has been a lot of interest in
the past decades to design (parallel) iterative meth-
ods for this equation, which show substantial differ-
ences from solving definite problems. In this talk,
we focus on DDMs which divide the original problem
into smaller problems on subdomains and recover the
original solution by iteration. From the literature,
special transmission conditions, special coarse prob-
lems and the application order of subproblem solves
(parallel or serial) appear to be the key components
in designing DDMs for the Helmholtz equation.

We consider the Helmholtz equation

Lu :=

(
−ρ∇ · (

1

ρ
∇) − ω2

c2

)
u = f, (1)

where ρ : Ω ⊂ R3 → R+ is the density of mass,
c : Ω → R+ is the wave speed, ω ∈ R repre-
sents the temporary frequency of the corresponding
mode u · exp(ς iωt) (ς is a constant value equal to
one of {1,−1} decided upon users’ conventions), and
f : Ω → R is the source term. We divide the domain
into either non-overlapping or overlapping subdo-
mains, which gives rise to internal boundaries called
interfaces. We then impose certain boundary con-
ditions on these interfaces to define well-posed sub-
problems and the correct interface data are sought

in an iterative way. There are two different formu-
lations of DDMs, independently of the method be-
ing overlapping or not: one is a volume formulation
and the other is an interface, or substructured for-
mulation. In the volume formulation, one can use
inexact solvers for the subproblems. But if we use
exact solvers for subproblems, the spectra (except
0,1) of the two forms are usually the same (or not
far from each other), see e.g. [2]. Here, we use the
interface formulation, which simplifies the spectral
analysis based on Fourier techniques.

1 One-field non-overlapping methods

For non-overlapping subdomains, we note that the
Dirichlet and Neumann traces should match across
interfaces. If we take one type of common traces as
uniquely defined unknowns, and if these unknowns
define unique subdomain solutions, taking the other
type of traces of subdomain solutions and imposing
the matching conditions gives us a system to solve,
see e.g. [3]. Unfortunately, the Helmholtz equation
in a subdomain can be singular when equipped with
Dirichlet or Neumann boundary conditions. This
motivated [4] to take Robin conditions λ := ∂nu+pu
as unknowns, where n is a normal direction uniquely
defined for each interface (it is outward for a subdo-
main on one side of the interface and inward for the
neighboring subdomain), and Im p &= 0. Although
this class of methods has been well studied for def-
inite problems, the results for the Helmholtz equa-
tion are still limited, see e.g. [5]. In our talk, we will
show spectral results obtained from Fourier analysis
on many subdomains or in heterogeneous media.

2 Two-field non-overlapping and overlapping
methods

This class of methods take a set of boundary data
for every subdomain as unknowns and set up the sys-
tem by transmission conditions like Bi(ui − uj) = 0
on the interfaces ∂Ωi ∩ Ωj where Bi is a boundary
operator. All the boundary operators from the lit-
erature can be expressed in the form Bi := ∂ni

+ Ti

with Ti some tangential, possibly pseudo-differential
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Figure 1: Discretized with h = λ/10.

operator. Many DDMs fall into this category, like
the D-N alternating method, or optimized Schwarz
methods. A significant difference from the one-field
non-overlapping methods is the lack of a cheap pre-
conditioner (we can design a preconditioner for the
two-field methods but it will not be as cheap as for
one-field methods). An advantage are the high-order
transmission conditions and/or overlap, as we will
illustrate by Fourier analysis.

3 Numerical Experiments

We will also show the actual performance of these
DDMs on some test models. Fig. 1 and Fig. 2 depict
the scaling of the DDMs on 3×3×1 subdomains aug-
mented with six plane-waves for solving the 3-D SEG-
SALT model. The top panel shows non-overlapping
methods and the bottom panel overlapping methods.
Large scale parallel experiments are in progress.

References

[1] O. G. Ernst and M. J. Gander, Why it is difficult
to solve Helmholtz problems with classical iter-
ative methods, in Numerical Analysis of Multi-
scale Problems, Springer Verlag (2012) pp. 325–
363.

2.5 3 3.5 4 4.5 5 5.5 6 6.5
100

101

102

Number of wavelength in x−direction

N
um

be
r o

f G
M

R
ES

 it
er

at
io

ns

 

 

FETI−DPH Lumped
FETI−DPH Dirichlet
FETI−H
OO0
OO2

2.5 3 3.5 4 4.5 5 5.5 6 6.5
100

101

102

Number of wavelength in x−direction
N

um
be

r o
f G

M
R

ES
 it

er
at

io
ns

 

 

Dirichlet
Taylor 0
Neumann
OO0
OO2

Figure 2: Discretized with h2 = Cλ3.

[2] J. Li and O. B. Widlund, On the use of inexact
subdomain solvers for BDDC algorithms, Com-
puter methods in applied mechanics and engi-
neering, 196 (2007), pp. 1415–1428.

[3] C. Farhat, P. Avery, R. Tezaur, and J. Li,
FETI-DPH: a dual-primal domain decomposi-
tion method for acoustic scattering, Journal of
Computational Acoustics, 13 (2005), pp. 499–
524.

[4] C. Farhat, A. Macedo, M. Lesoinne, F. X.
Roux, F. Magoulès and A. L.Bourdonnaie, Two-
level domain decomposition methods with La-
grange multipliers for the fast iterative solution
of acoustic scattering problems, Computer meth-
ods in applied mechanics and engineering, 184
(2000), pp. 213–239.

[5] J. Li and X. Tu, Convergence analysis of a bal-
ancing domain decomposition method for solv-
ing a class of indefinite linear systems, Numeri-
cal Linear Algebra with Applications, 16 (2009),
pp. 745–773.

MARTIN J. GANDER AND HUI ZHANG 94



A DDM double sweep preconditioner for the Helmholtz equation
with matrix probing of the DtN map
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Abstract

We describe the structure of a fast solver for
the Helmholtz equation in the optimized Schwarz
framework, based on a preconditioner that leverages
impedance-matching boundary conditions on subdo-
mains. In the case of a simple 2D waveguide numer-
ical example, the method requires no more than 4
GMRES iterations, independently of the frequency
and the number of subdomains. The challenge re-
mains to make each iteration fast: we give a partial
answer to this question by showing how the Dirichlet
to Neumann (DtN) map is accurately approximated
in a compressed form via the recently introduced no-
tion of matrix probing.

Introduction

Domain Decomposition Methods (DDM) offer a
very useful tool for numerically solving PDEs, but
require additional ideas to operate optimally in the
high-frequency regime [1]. The setting of our pro-
posed method is a reformulation of the problem in
terms of a set of unknown sources defined on arti-
ficial boundaries inside the domain. These sources
must produce the same solution inside the individ-
ual subdomains, so a linear system must be solved
to find them. It was shown in [2] that a Krylov
method for this system can be set up, where the
sources are defined from boundary conditions that
match impedances of subdomains. The contributions
of this paper are twofold: we propose 1) a precondi-
tioner that takes advantage of the particular struc-
ture of the iteration matrix in the case of a layered
partitioning ; and 2) an efficient computation of the
DtN map using matrix probing.

1 Non-overlapping optimized Schwarz DDM

Consider a domain Ω with boundary ∂Ω. We de-
compose Ω into N non-overlapping slices Ωi,1≤i≤N ,
with artificial boundaries Σij between Ωi and Ωj .
(This is a layered partitioning, not a general 2D par-
titioning.) The iterative scheme, detailed in [2], uses
impedance-matching boundary conditions on Σij and

recasts the problem in terms of the set of interface
data g = {gij , 1 ≤ i �= j ≤ N, |i− j| = 1}. An itera-
tion amounts to solving all subproblems in parallel:

−(∆ + k2)u
(m+1)
i = 0 in Ωi

(∂n + S)u
(m+1)
i = (−∂n + S)u

(m)
j on Σij

= g
(m)
ij ,

(1)
with k the wavenumber and the update:

g
(m+1)
ij = −∂nu

(m+1)
j + Su

(m+1)
j on Σij

= −g
(m)
ji + 2Su

(m+1)
j .

Boundary conditions on ∂Ωi∩∂Ω are conserved from
the original problem. This procedure can be rewrit-
ten as a fixed point iteration on the unknowns g:

Fg = b, (2)

where applying the operator F amounts to solving
the subproblems and updating g. The solution of
problem (2) can be accelerated using GMRES.

The choice of operator S is critical for the rate of
convergence. It was shown in [3] that the optimum
is obtained if S is the DtN map of the Helmholtz
operator on the corresponding interface.

2 Double sweep preconditioner

The matrix of the iteration operator F (never
formed in practice, but considered here for the pur-
pose of analysis) consists of blocks arranged near the
diagonal, each of which, when applied to a vector,
amounts to solving a subproblem where the bound-
ary source is restricted to one side of the domain.
Provided that no reflection occurs at the opposite
boundary, this matrix is easy to invert. An absence
of reflection is hard to achieve in a numerical setting,
but can be approached by using a sufficiently good
Absorbing Boundary Condition (ABC).

The preconditioning strategy is to neglect those
components of the iteration operator that are caused
by spurious reflections, and would be zero in the ab-
sence of such reflections, to build an approximate in-
verse F̃−1 of the iteration operator F .
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N = 10 20 50 100 200 400

k = 10π 3 3 4 4 4 4

40π 3 3 3 3 4 4

Table 1: Convergence of the method with double sweep
preconditioner and exact DtN map, applied to a rectangu-
lar waveguide with increasing number of subdomains N .
The iteration count (||r||2/||r0||2 < 10−13) is small and
independent of N and wavenumber k.

By rearranging the terms of the matrix-vector
product g = F̃−1r, one can rewrite the precondi-
tioner as a double sequence (forward and backward)
of subproblems solutions, each problem taking into
account the contribution of all its predecessors in the
sequence. So, considering the forward sequence, the
i-th component of g is: gi = ri + H−1

f,i gi−1, with H−1
f,i

the output of (1) for the i-th problem with impedance
data gi on the left and 0 on the right, and starting
with g1 = r1. Such a sequence of solves is called a
sweep over the subdomains, hence the name of dou-
ble sweep preconditioner.

The idea of sweeping was proposed in [4] for
preconditioning the Helmholtz equation. A double
sweep strategy was also proposed in [5]. These work
use the sweeps to precondition the Helmholtz oper-
ator in the original domain, while we use them to
precondition the operator F of a Schwarz method.
In addition, we precompute the DtN map by matrix
probing rather than by using perfectly-matched lay-
ers (PML), leading to potential computational sav-
ings. Because the complexity of applying a probed
DtN map hardly depends on its quality, we can use a
better ABC (thicker layer) in our precomputation,
hence potentially improved convergence properties
for the DDM algorithm.

3 DtN map approximation via probing

We are thus looking for an accurate approximation
D to the DtN map S at some interface Σ. Consider
the Helmholtz equation in a (PML) placed next to Σ.
The operator D is viewed as a black box that maps
Dirichlet data on Σ to the normal derivative, on Σ as
well, of the solution to the Helmholtz equation in the
PML: ∂nū = Dū. We first precompute the matrix D
offline, then apply it to vectors on the fly as needed.

Matrix probing is used to make the precomputa-
tion of D tractable. Suppose that we wish to approx-
imate a matrix D ∈ Rn×n, but we only have access
to a handful of products of D with vectors. We as-
sume D can be written as a linear combination of a

small number of basis matrices Bj , D ≈ �p
j=1 cjBj

fixed ahead of time. Under various assumptions, no-
tably p � n (see [6] for details) we can recover
the vector c with great accuracy using only a few
black box calls. For illustration, it is often advanta-
geous to consider a single random vector z, so that
Dz ≈�p

j=1 cjBjz = Ψzc, where the Bjz are columns
of Ψz. Solving for c now requires the pseudo-inverse
of Ψz, which can be quickly obtained since this is an
n× p matrix with p� n.

Hence we need a relatively small set of basis matri-
ces which can accurately approximate the DtN map
D. There are different ways to do this: we can use
a geometrical optics approximation with oscillations
of the form eiωτ(x,y) times a parametrized singular
amplitude, see [7] for details, or else we can use the
relaxed terms of the Padé expansion proposed in [2],
obtained from a few 1D PDE solves. Both methods
reproduce the numerical results presented earlier.

Current work focuses on further lowering the com-
plexity of each subdomain solve H−1 and each ap-
plication of D. Preliminary results with a non-
homogeneous medium tend to indicate that the be-
haviour of the method is not fundamentally changed.
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The model problem

In the following, Ω denotes a bounded (for sim-
plicity) open set of Rd (d =2 or 3), f ∈ L2(Ω) and
ω > 0 (the frequency) are given and one is interested
in u ∈ H1(Ω), the (complex valued) solution of the
boundary value problem




−∆u− ω2 u = f in Ω

∂nu+ iω u = 0 on ∂Ω
(1)

We assume that Ω can be split into two domains Ω1

Γ

Ω1 Ω2

Σ

n

Γ

Figure 1: The domain decomposition

and Ω2 separated by a smooth interface Σ, according
to figure 1 and denote uj the restriction of u to Ωj .
The objective of an iterative domain decomposition
method is to construct a sequence

(un1 , u
n
2 ) ∈ H1(Ω1)×H1(Ω2), n ≥ 1

such that (un1 , u
n
2 ) −→ (u1, u2), n −→ +∞.

Obviously, unj solves the Helmholtz equation in Ωj :




−∆unj − ω2 unj = f in Ωj ,

∂nu
n
j + iω unj = 0 on Γj = ∂Ω ∩ ∂Ωj

(2)

The key point is the choice of the boundary condi-
tions on the interface Σ that will link the unj to the
previous iterates and are supposed to ensure, after
convergence, the correct transmission conditions (n
is the unit normal vector oriented from Ω1 to Ω2, see
figure 1, left picture):

u1 = u2, ∂nu1 = ∂nu2, on Σ = ∂Ω. (3)

Remark : What follows is easily generalizable to non
constant coefficients and more general boundary con-
ditions in (1). One can also consider more subdo-
mains provided that the interfaces are closed and dis-
joint manifolds (figure 1, right picture).

Transmission conditions and iterations

Let T ∈ L(Hs(Σ), H−s(Σ)) for some s > 0 be an
operator that we assume to be positive, symmetric
and injective operator (the transmission operator).
Let z 6= 0 be a complex number with Imz > 0, we
first observe that (3) is equivalent to




Bλ u1 = Bλ u2, for λ = z and λ = z.

Bλ := ∂n + λT
(4)

The missing boundary conditions for (2) are obtained
by applying a fixed point algorithm, with relaxation
parameter r ∈]0, 1], to the transmission conditions
(4) so that the resolutions in Ω1 and Ω2 are decoupled
at each step:





Bz u
n
1 = r Bz u

n−1
2 + (1− r)Bz un−1

1 ,

Bz u
n
2 = r Bz u

n−1
1 + (1− r)Bz un−1

2 ,
(5)

The well-posedness of the local problems (2, 5) is
guaranteed as soon as Imz > 0.

Let us remark that this general framework contains
most of the iterative methods proposed in the litera-
ture. For instance, when z = iω :

• If, T = I (s = 0), one recovers the original
method proposed by Després [2],

• If T is a second order boundary differential op-
erator (s = 2), one gets the conditions of [4],

However, as soon as the operator T is local (i.e. ex-
pressed in terms of tangential differential operators),
the convergence of the algorithm is at best algebraic
(typically in 1/n). Our goal is to propose new trans-
mission conditions achieving exponential convergence
and to optimize the convergence rate.
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Convergence issues

We assume that T = ΛΛ∗ where

Λ ∈ L
(
L2(Σ), H−s(Σ)

)
is isomorphic, (6)

and Λ∗ is the adjoint of Λ. Let us consider the errors

(en1 , e
n
2 ) = (un1 − u1, u

n
2 − u2), en = (en1 , e

n
2 )

as well as the boundary quantities:

xn1 = Λ−1 ∂ne
n
1 + z Λ∗en1 , xn2 = Λ−1 ∂ne

n
2 + z Λ∗en2

so that xn = (xn1 , x
n
2 ) ∈ L2(Σ)2 with norm ‖ · ‖Σ.

From the well-posedness of the local problems (2, 5),
we deduce that, if V := H1(Ω1)×H1(Ω2)

‖en‖V ≤ C ‖xn‖Σ .

The key point for the convergence of the algorithm
is the following identity, that extends a result of [1]:

‖xn‖2Σ = ‖xn−1‖2Σ − r(1− r) ‖yn−1‖2Σ
− ω r ‖en−1‖2Γ

(7)

where yn = (yn1 , y
n
2 ) ∈ L2(Σ)2 is defined by

yn1 = Λ−1 ∂ne
n
1 + z Λ∗en1 , yn2 = Λ−1 ∂ne

n
2 + z Λ∗en2 .

Assume now that

(6) holds with s = 1/2. (8)

By an abstract functional analytic argument, it is
possible to show that there exists δ ∈ ]0, 1[ such that

‖yn−1‖Σ ≤ δ ‖xn−1‖Σ

so that (7) yields

‖xn‖Σ ≤ τ ‖xn−1‖Σ, τ =
√

1− r(1− r) δ2

implying the exponential convergence with rate τ .

However, the condition (8) prevents us from defining
T with the help of local operators.

Quasi-local transmission operators

In practice,we need to build an explicit operator
satisfying (8). The idea is to use a nonlocal opera-
tor of the form −divΣ

(
K∇Σ

)
where K is an inte-

gral operator with kernel K(x, y) that should be a
pseudo-differential operator of order -3/2. For this,

K must have the correct singularity when x− y → 0
as suggested by Riesz potentials [3]

K(x, y) ∼ |x− y|δ

with δ = 1/2 if d = 2, δ = −1/2 if d = 3. Moreover,
to avoid fully nonlocal operators leading to full ma-
trices after space discretization, the idea is to localize
K around the diagonal x = y. That is why we use a
smooth cut-off function χ(ρ) : R+ → [0, 1] such that

supp χ ⊂ [0, 1], χ = 1 in
[

0,
1

2

]

and consider the operator

Λ = α− β divΣ

(
KL∇Σ

)
(9)

where L > 0, β > 0 and α ∈ C are given, and

KLϕ(x) =

∫

Σ
χ
( |x− y|

L

)
|x− y|δ ϕ(y) dy (10)

Theorem : As soon as Imα 6= 0, the operator Λ de-
fined by (9) satisfies (8).

At the conference, we shall explain how to solve
the local problems (2, 5) and investigate, numeri-
cally and analytically, how to tune the parameters
(z, α, β, χ, L) to optimize the rate of convergence.
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Abstract

The aim of this work is to develop a numerical
method for the full-wave simulation of electromag-
netic wave propagation in a plasma. The propaga-
tion and the absorption of lower hybrid (LH) elec-
tromagnetic waves is a powerful method to generate
current in tokamaks by Landau wave particle reso-
nance. Full-wave calculations of the LH wave prop-
agation is a challenging issue because of the short
wave length with respect to the machine size. We
propose a Fourier finite element method for solving
the Maxwell equations based on a mixed augmented
variational formulation. In order to develop a par-
allel version of the simulation and consider non ho-
mogenous plasma response, a nonoverlapping domain
decomposition approach is presented.

Introduction

Let the domain Ω be a torus (tokamak plasma vol-
ume) with strong external time-invariant magnetic
field Bext. We study a second order partial differen-
tial equation for the time-harmonic electric field E
arising from Maxwell equations:

curl curlE − ω2

c2
KE = f in Ω, (1)

div(KE) = g in Ω (2)

where ω > 0 is the excited wave frequency and c de-
notes the speed of light in free space. The plasma
response is described by the matrix K, in Stix frame
(third coordinate parallel to Bext). It includes a cold
plasma approximation of the relative dielectric per-
mittivity tensor and Landau damping:

K(x) =




S(x) −iD(x) 0
iD(x) S(x) 0

0 0 PL(x)




Expressions of the entries S,D and PL involve plasma
frequencies, cyclotron frequencies of each species (ion
and electron) and also the collision frequency. In
general, the matrix K is complex-valued and non-
hermitian. Let Γ be the boundary of the domain Ω

and ΓA ⊂ Γ be an antenna on the tokamak, then
several boundary conditions are possible:

Neumann: curlE × n = iωµ0js on ΓA

Dirichlet: E × n = EA × n on ΓA.

On the other part of the boundary ΓC = Γ \ ΓA, we
assume a perfectly conducting condition:

E × n = 0 on ΓC .

1 Finite element method

1.1 Variational formulation and well-posedness

Taking the divergence condition (2) as constraint,
we use a mixed augmented variational formulation
(MAVF) [3], which gives rise to a H1 conform-
ing variational space, XN (K,Ω) := H0(curl,Ω) ∩
H(divK,Ω). We obtain the following variational
formulation of the Dirichlet problem :
Find (E, p) ∈XN (K,Ω)× L2(Ω) such that

as(E,F ) + b(F , p) = Ls(F ) ∀F ∈XN (K,Ω)

b(E, q) = l(q) ∀q ∈ L2(Ω).

where

as(E,F ) := (curlE | curlF )− ω2

c2
(KE | F )

+s(divKE | divKF )

Ls(F ) := (f | F ) + s(g | divKF )

b(E, q) := (divKE | q)
l(q) := (g | q),

with parameter s ∈ C. Here, (· | ·) denotes the stan-
dard L2 inner product in Ω.

The well-posedness of the considered formulation
follows from the Babuska-Brezzi theorem. Thanks
to spectral properties of the dielectric tensor, the
sesquilinear form as is coercive if <(s) > 0 and
=(s) ≤ 0.

1.2 Dimension reduction and discretization

The 3D problem can be reduced to a series of 2D
one by using cylindrical coordinates (R,Z, φ) and by
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expanding all functions f(R,Z, φ) as Fourier series in
the angular coordinate φ

f(R,Z, φ) =
1√
2π

∑

ν∈Z
fν(R,Z)eiνφ

where the coefficients fν(R,Z) are defined on a cross
section of Ω [4]. Then the sesquilinear forms of
the variational formulation can be written as sum
of modal forms

as(u,v) =
∑

ν∈Z
as,ν(uν ,vν), b(v, p) =

∑

ν∈Z
bν(vν , pν)

The modal variational formulation is then dis-
cretized using a Taylor-Hood P2-iso-P1 finite element.

1.3 Numerical results

2 2.5 3 3.5 4
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Figure 1: Real part of a component of the electric
field for ω = ωLH = 1.3× 1010 rad/s

2 Domain decomposition

Consider a nonoverlapping decomposition Ω =⋃
k Ωk. In the domain decomposition method con-

sidered here, we solve the original problem in each
subdomain Ωi; the equivalence with the one-domain
formulation is obtained by continuity conditions

[E × n]Σij = 0 and [KE · n]Σij = 0 (3)

which ensure the X(K,Ω) regularity of the electric
field and

[curlE × n]Σij = 0, (4)

which implies that the one-domain formulation holds
in the sense of distributions. We have denoted, as
usual, [f ]Σij the jump of a quantity f across the in-

terface Σij = Ωi∩Ωj . The conditions (3) are dualized

by introducing the associated Lagrange multipliers
λij ∈ H1/2(Σij), while (4) is treated as a natural
condition. The existence and uniqueness of the solu-
tion (Ei, pi,λij) to the multidomain formulation was
proved and :

Ei = E|Ωi
and pi = p|Ωi

where (E, p) is the solution to the one-domain for-
mulation.

The full linear system involving all subdomains
(the outer system) is a generalized saddle-point prob-
lem:

(
Q GH

G 0

)
=

(
E
λ

)
=

(
F
0

)
(5)

where Q is a block sparse non-hermitian matrix.
Each block corresponds to a problem in one sub-
domain. The sparse matrix G expresses the inter-
actions between subdomains. The outer system (5)
is solved using a preconditioned GMRES algorithm.
The inner problem on each subdomain is also a gen-
eralized saddle-point problem, and is solved using a
direct method.
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Abstract
In this paper, we focus on the convergence of the

GMRES method for diffraction problems in electromag-
netism by a 3D obstacle using the strategy based on cou-
pling of the finite elements and the integral representation.
The convergence of the GMRES method has been intro-
duced by I. Moret in a general framework without any
additional indicator on the convergence rate. We explain
that we have a superlinear convergence of GMRES in our
context. The proof is based on the courant-Weyl’s min-
max principle. Our study is restricted to the case of the
perfect conductor problem.

Introduction
We are interested in the resolution of the exterior

Maxwell problem. First we introduce an equivalent for-
mulation by adding a regularizing term grad-div in the
time-harmonic- Maxwell equation. The aim is to solve
an elliptic problem, then it is treated numerically by stan-
dard Lagrange finite element instead of edge element. A
combination of finite elements and an integral represen-
tation reduces the exterior problem to a bounded domain
delimited by the surface of the scatterer and an artificial
boundary. We derive in this context an analytical proof of
a superlinear convergence of GMRES method.

Scattering by a perfect conductor
Let us consider Ωi a bounded obstacle in R3 with reg-

ular boundary Γ and Ωe its unbounded complementary.
We are concerned with the scattering of a time-harmonic
electromagnetic wave by the perfect conductor Ωi. Our
purpose is to determine the total field E = Es + Einc
where Einc is the incident wave and Es is the scattered
field. We then consider the following scattering problem:



curl curl E− t−1∇(divE)− k2
sE = 0 in Ωe,

E× nγ = 0,divE = 0 on Γ,

lim
R→∞

∫

||x||=R
||curl Es × nγ − iksnγ × (Es × nγ)||2dγ=0,

lim
R→∞

∫

||x||=R
|
√
t−1divEs − iksEs · n|2dγ = 0.

nγ is the exterior unit normal of the domain Ωi. By the
coupling of finite elements and integral representation
method introduced for Maxwell equations by C. Hazard

and M. Lenoir in [1], we reduce the exterior problem to
an equivalent one: find E such that





curl curl E− t−1∇(divE)− k2
sE = 0 in Ω,

E× nγ = 0, divE = 0 on Γ,
Tν1(E) = Tν1(Einc − IRt (Γ,E)) on Σ,
Nν2(E) = Nν2(Einc − IRt (Γ,E)) sur Σ.

(1)

where t−1 depends on the permittivity and the permeabil-
ity of air and the regularization parameter. ks is the wave
number, ν1 and ν2 are complex numbers which have a
strict negative imaginary part .The two operators Tν1 and
Nν2 are defined by Tν1E = curl E × nσ + ν1(E)t and
Nν2U = divE + ν2E · nσ. (E)t = nσ × (E× nσ) and nσ
is the exterior unit normal of the domain Ω on Σ. For a
sufficiently smooth field E,

IRt (Γ,E)(x) = −k2
s

∫

Ω
(RGt(x, .)E+rotRGt(x, .)rot E)

+t−1

∫

Ω
divRGt(x, .)TdivE−t−1

∫

Γ
divGt(x, .)T (E·nγ)dγ

where
Gt = GksI+

1

k2
s

Hess(Gks−Gkp), I is the identity matrix

in R3, Hess stands for Hessian operator, kp =
√
tks and

Gk is the fundamental solution of Helmholtz equation. R
is the linear operator that maps every regular function φ
defined on Γ into a regular functionRφ defined on Ω that
satisfiesRφ = φ on Γ andRφ = 0 on Σ.
Let us introduceHt the Hilbert space given by
Ht =

{
E ∈ H(curl,Ω) such that divE ∈ L2(Ω) ,

E × nγ = 0, E× nσ ∈ L2(Σ)3 and E · nσ ∈ L2(Σ)
}

(., .) denotes the natural scalar product onHt:
(E,E′)t =

∫

Ω
(E·E′+curl E·curl E′+|t|−1divE divE′)

+

∫

Σ
((E× nσ) · (E′ × nσ) + |t|−1(E · nσ)(E′ · nσ))dσ.

The reduced problem (1) consists in finding E ∈ Ht such
that

(At + Ct)E = Ft, (2)

The operators At and Ct : Ht → Ht are defined by:

(AtE,E′)t =

∫

Ω
(rot E·rot E′+t−1divEdivE′+k2

sE·E′)

101 WAVES 2013



+ν1

∫

Σ
((nσ ∧E) · (nσ ∧E′) + t−1ν2(nσ ·E)(nσ ·E′))dσ,

(CtE,E′)t = −2k2
s

∫

Ω
E · E′ +

∫

Σ
Tν1(IRt (Γ,E)) · E′dσ

+t−1

∫

Σ
Nν2(IRt (Γ,E))(nσ · E′)dσ,

and Ft is given by

(Ft,E′)t =

∫

Σ
(Tν1Einc · E′ + t−1NνEinc(nσ · E′))dσ

The problem (2) is well posed and the operator At is
invertible as explained in [1]. If At is chosen as a pre-
conditioner then the problem (2) is formulated as follows
(IΩ +A−1

t Ct)E = A−1
t Ft.

1 Convergence analysis for GMRES
There exists a further strategy which consists in solving

a problem posed on Σ instead of the problem (2) posed on
Ω. We introduce Ψ defined by

Ψ = Tν1(Einc−IRt (Γ,E))+t−1 nσNν2(Einc−IRt (Γ,E))

and we consider the operator
BRΓ (Ψ) = Tν1(IRt (Γ,E)) + t−1Nν2(IRt (Γ,E))nσ
We get,

(IΣ + BRΓ )Ψ = F̃t on Σ. (3)

We study the convergence of the resolution for the prob-
lem (3). The idea of the proof was initialy introduced by
F. Ben Belgacem et al. in [2]. From [1], one can check
that BRΓ is a compact operator in (L2(Σ))3. Due to the
work by I. Moret [4], the GMRES method converges su-
perlinearly to solve the problem (3). In the following part,
we present a further proof by verifying the exponentional
decaying of each singular value γp for p ≥ 0 of BRΓ . The
first step to prove the convergence of the GMRES method
is the construction of an operator (BRΓ )p with a rank ≤ p
which approximates BRΓ .

Proposition 1 There exist c and τ two positive constants,
such that

γp ≤ c e−τ
√
p ∀ p ≥ 0

Proof: The proof is based on the Courant-Weyl min-
max principle [3] together with an expansion in term of
the Bessel and Hankel funtions and the harmonic spher-
ical functions. In the first step of the proof, we con-
sider the scattering from a perfectly conducting ball with
radius R∗ and spherical boundary Γ. We suppose that
the artificial boundary Σ is the sphere concentric to Γ
with radius R > R∗. We perform the proof in the case
ν1 = ν2 = −iks.. If the surface of the obstacle is not

spherical then we can consider an intermediary spherical
surface Γ̃ between Γ and the fictitious boundary Σ. Then,
the integral representation is written on Γ̃ and we can use
the same proof.

Proposition 2 The GMRES method converges superlin-
early.

Proof: We denote rm the residual at the iterationm Fol-
lowing the theorem 1 of [4] and by the proposition 1 and
from Stirling’s formula, there exist c and τ two positive
constants such that

(|| rm ||L2(Σ)3)
1
m ≤ c

mτ
; ∀m ≥ 0.

As a future work, we aim to validate this study numeri-
cally.
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Shifted Laplace DDM preconditioners for the Helmholtz equation
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Abstract

We consider iterative methods for solving the
Helmholtz equation with motivation coming from ap-
plications in seismic imaging. Once this equation
is discretised by finite elements or finite differences
(with a suitable boundary condition) the resulting
linear system is complex and non-Hermitian. Be-
cause of the latter property, conventional iterative
methods can fail to converge [2], so it is necessary
to precondition the linear system before solving us-
ing an iterative method such as GMRES. In this talk
we will discuss an optimised Schwarz domain decom-
position algorithm for the Helmholtz problem with
a complex shift, which can also be used as a pre-
conditioner for the original Helmholtz equation. An
analysis of the algorithm will be presented along with
numerical examples.

Introduction

When solving the Helmholtz equation on a
bounded domain one considers as a model problem
the following boundary value problem,

−∆u− k2u = f, in Ω ⊂ R2,

(∂n + ik)u = 0, on ∂Ω. (1)

Once this is discretised with finite elements we solve
the linear system AU = f . Some recent research has
focused on preconditioning this system with the dis-
critisation of the following complex shifted problem,

−∆u−
(
k2 − iε

)
u = f, in Ω ⊂ R2,

(
∂n + i

√
k2 − iε

)
u = 0, on ∂Ω. (2)

which we shall call AεU = f . This idea was used
by Erlangga et. al. [1] where they used solves with
the Multigrid method to approximate A−1ε . More
recently Kimn and Sarkis [5] used solves with the
Restricted Additive Schwarz method to approximate
A−1ε . The choice of ε so that Aε is a good precon-
ditioner for A and also so that iterative methods for
approximating A−1ε work well is a delicate business.

1 Optimised Schwarz methods

We shall use the idea of the optimised Schwarz
method without overlap of Gander et. al. [3].
Therefore we take Ω = R2 and decomposition it
into two equal subdomains Ω1 = (−∞, 0] × R and
Ω2 = [0,∞)×R with an interface Γ = 0×R. There-
fore given um−1 at iterate m− 1 we solve,

−∆um1 −
(
k2 − iε

)
um1 = f1, in Ω1,

(∂x + S1)um1 = (∂x − S2)um−12 , on Γ,

−∆um+1
2 −

(
k2 − iε

)
um+1
2 = f2, in Ω2,

(∂x + S1)um+1
2 = (∂x − S2)um1 , on Γ.

(3)

where S1, S2 are operators acting tangentially along
the subdomain interface Γ, and assumed to be a con-
volution. By carrying out a Fourier analysis of (3),
one can show that the convergence rate of (3) is given
by,

ρ (σ, η, k, ε) =

(
σ1 − λ(η, k, ε)

σ1 + λ(η, k, ε)

)(
σ2 − λ(η, k, ε)

σ2 + λ(η, k, ε)

)
,

(4)

where λ(η, k, ε) =
√
η2 − k2 + iε, (where η comes

from performing a Fourier transform tangential to
Γ) and σ1, σ2 are S1, S2 Fourier transformed. We
consider parameters σi, for i = 1, 2, of the form,

σi = αi(1 + i) + βi(1 + i)η2, (5)

and hence,

Si = αi(1 + i) + βi(1 + i)∂2yy. (6)

The problem then becomes how to choose σ1 and σ2
to ensure that ρ in (4) is as small as possible. This is
done by considering the following optimisation prob-
lem,

min
σ1,σ2∈R+

(
max

η∈[ηmin,ηmax]
ρ (σ, η, k, ε)

)
, (7)

where we choose 0 < ηmin < ηmax for physical rea-
sons.
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2 Example

Consider the simplest case σ1 = σ2 = α(1 + i) for
α ∈ R+. This choice is known as optimised of order
zero (OO0). The minimax problem (7) can then be
solved analytically under the assumption that ε

k → 0
for large k. The solution is given by,

α∗ ≈ k 1
2 ε

1
4 . (8)

So that the optimal value of ρ is,

ρ∗ ≈ 1−
( ε
k

) 1
4
k−

1
4 . (9)

Therefore in this case the number of Schwarz itera-
tions increases like

(
ε
k

)− 1
4 k

1
4 . These analytical re-

sults will be supported by numerical tests, which
show that the number of iterations of the Schwarz
algorithm (3) do indeed increase asymptotically like(
ε
k

)− 1
4 k

1
4 . One could consider optimising (7) for a

more general choice of parameters αi and βi, as was
done in [3], [4]. However this can involve numerically
solving (7) to observe how the optimised parameters
αi and βi depend asymptotically on k. This shall
be discussed, as will the case of an overlapping de-
composition and other choices of ε. It is hoped that
this method of approximating the solution of (2) by
a domain decomposition method using (3), can be-
come an effective preconditioner for solving (1) with
convergence nearly independent of k.
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Abstract

When solving the system of Maxwell’s equations,
the divergence constraint equations are often ne-
glected. In a simple case, such as when modelling
modes, this does not cause an apparent problem. But
when a right hand side is added, such as a current
term source in the simulations, non physical phenom-
ena related to charge conservation can appear.

We present correction methods that take into ac-
count Gauss’ law. The novelty of our approach is
that we apply these corrections on nonconforming
mesh with the help of a Discontinuous Galerkin time
domain (DGTD) method.

Introduction

The Maxwell system (1) allows us to determine the
evolution of the electromagnetic fields E and B from
both data charge and current density, ρ and J,

∂tE− c2rotB = −J

ε
, (1a)

∂tB + rotE = 0, (1b)

divE =
ρ

ε
, (1c)

divB = 0, (1d)

where ε is the electric permittivity and c is the speed
of light. We call equations (1c) and (1d) the diver-
gence constraint equations.

For all times t ≥ 0, when ρ and J satisfy the charge
conservation equation

∂tρ+ divJ = 0. (2)

and when the initial E and B satisfy (1c) and (1d)
the Maxwell system (1a)-(1b) has a unique solution.

Current J can for example come from an electric-
current filament. When data J is analytically (and
consequently ρ), if a numerical method satisfies the
conditions of divergence constraint (1c) and (1d) at
the initial time, then we can just solve equations (1a)-
(1b). In this paper we present the same centered

DGTD method as given in [4], which has the prop-
erty of statisfying the divergence constraint equation
only in a weak sense. We show through a numerical
test case [3] that a weak sense may not be sufficient
and lead to non-physical results. Stock et al. use a
correction method to compensate this problem. The
originality of our study is to adapt the correction
methods on nonconforming mesh such as in Figure
1(b).

1 Centered DGTD on nonconforming mesh

The nonconforming mesh allows us to have hang-
ing nodes, i.e., a mesh can have more than one neigh-
bor in one space dimension. An example of a non-
conforming mesh is shown in Figure 1(b).

(a) directional refine-
ment mesh

(b) nonconforming mesh

Figure 1: refinement mesh

This kind of mesh is useful in modeling highly
multi-scale problem, for example when we consider
a detail of the order of micrometer in a domain of
the order of meter. With a Finite Difference or Fi-
nite Element method, a refined mesh is possible only
directionally, such as illustrated in Figure 1(a), but
it is still hugely computational costly. An interest of
the DGTD discretization is to manage nonconform-
ing mesh, Figure 1(b), and so to decrease the com-
putational cost. Indeed, the nonconforming mesh in-
volves an adaptation of interface fluxes, which are
managed in DGTD by the local flux matrices.
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2 Correction techniques

To satisfy charge conservation, correction tech-
niques consist in adding divergence constraint of
Gauss’ law to the evolution equation for electrical
field E by a generalized Lagrange multiplier Φ. We
solve the following Maxwell system,

∂tE− c2rotB + c2gradΦ = −J

ε
, (3a)

∂tB + rotE = 0, (3b)

g(Φ) + divE =
ρ

ε
, (3c)

The new variable Φ defines an additional degree of
freedom which respects the following equation

∂tg(Φ)− c2∆Φ =
1

ε
(∂tρ+ divJ). (4)

We use two choices for the differential operator g(Φ).

• Hyperbolic-elliptic formulation : This formula-
tion corresponds to a Boris’ correction [2]. In
this approach, we consider in the reformulated
Maxwell equations that

g(Φ) = 0. (5)

This implies, by the equation (3c), that we need
to check exactly the Gauss’ law. That is why
this correction is considered such as the refer-
ence correction. But the elliptic correction is
costly in computation time because it requires
the inversion of a Laplace operator for each time
step.

• Purely hyperbolic approach : this approach was
introduced by Munz et al. [3]. We choose

g(Φ) =
1

χ2
∂tΦ. (6)

This correction is less expensive but less accu-
rate than the elliptic correction method.

The choice of a non conforming DGTD solver for the
Maxwell’s equations involved a special adaptation for
corrections. It is this adataption that we want to
present at the conference in details.

3 Numerical results

Stock et al. in [3] have proven the effectiveness of
the hyperbolic correction on a cartesian conforming
mesh. We take the test case of their paper to apply
on the nonconforming mesh illustrate in Figure 1(b).
Figure 3 shows that a correction is needed to keep
Gauss’ law. Corrections preserve their effectiveness
on nonconforming mesh.

Error L2 on the Gauss’ law
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Conclusion

It appears necessary to take into account the di-
vergence constraint of Maxwell’s system. Our study
shows that the corrections are also robust on con-
forming or nonconforming mesh. In fututre work we
want adapt the correction methods to non conform-
ing mesh for the simulation of plasma with Vlasov-
Maxwell equations for which the respect of charge
conservation is crucial.
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Abstract

This paper provides a numerical investigation con-
cerning the effect of defect angular-position on re-
flection and transmission coefficients. The spectral
method Wave Finite Element has been used to carry
out calculation. Results show that the type of in-
cident wave as well as the examined reflected and
transmitted waves play an important role in circum-
ferential localization of the defect.

Introduction

A considerable progress has been made over the
last few years on the subject of long-range guided
wave inspection in pipes [1]. From the numerical pint
of view, many useful frequency-domain information,
such as wave dispersibility, reflection from damage,
interface or boundary, sensitivity of specific mode to
various types of damages, mode conversions, etc. can
be obtained directly from the eigensolutions in spec-
tral methods, or by the global-local techniques such
as hybrid methods [2], [3], [4]. The Wave Finite Ele-
ment Method (WFEM), which is a spectral method
based on the standard finite element (FE) formula-
tion, can be applied to examine the wave interaction
with the local defects and the structural features.
The hybrid WFE/FE method is one of the hybrid
methods for global-local analysis, which is very suit-
able to the case that wavelength is larger than the
axial extension of FE model for complex local defect.

This paper aims to investigate numerically reflec-
tion and transmission coefficients from a defined de-
fect in a pipe while varying its angular position at
a fixed axial location. The hybrid WFE/FE method
has been employed in this study to compute diffusion
matrices from the defect, in order to find an approach
for the angular localization of the defect.

1 Numerical implementation and results

The principle of the study is to vary the circum-
ferential position of the defect while keeping the ax-
ial position constant, and observe the influence of
this variation on the reflection and transmission co-
efficients (see figure 1). The circumference of the
pipe is divided into 44 elements. Positions of the de-

Waveguide 1 Waveguide 2Coupling structure

Defect

Figure 1: Defect positions around the
circumference of the pipe.

fect around the pipe are varied by an increment of
4 elements, that is an angle of about ∆α = 32.73◦.
Thus, 11 positions were treated in this study as illus-
trated in figure 2. Three types of incident waves are

P1

P2

P3

P4

P5

P6
P7

P8

P9

P10

P11

Δα

Figure 2: Defect positions around the
circumference of the pipe.

used: fundamental torsional mode T(0,1), longitudi-
nal mode L(0,2), and flexural mode F(1,2). Let’s con-
sider the torsional wave T(0,1). The torsional mode
T(0,1) has shown a relevant capability for defect de-
tection in pipes and possesses a lot of advantages in
the long range guided waves inspection domain. The
first test in our investigation consists of impinging the
considered defect by the T(0,1) mode. When T(0,1)
is incident, reflection and transmission coefficients of
T(0,1), L(0,2) and the three above-mentioned flexu-
ral modes are calculated. Several important observa-
tions could be taken from the obtained curves. Figure
3 shows the reflection and transmission coefficients of
the T(0,1) mode from the considered defect for the 11
positions around the circumference of the pipe. We
can note that there is no variation in the obtained
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curves depending on the circumferential position of
the defect. This is obvious regarding the axisymme-
try of the T(0,1) mode that makes it insensitive to
an angular rotation of the defect.
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Figure 3: Reflection coefficients (blue line) and
transmission coefficients (red line) of T(0,1) from a

with a T(0,1) incident mode.

Figures 4 and Figures 5 shows the reflection coeffi-
cients of F(1,2) and F(3,2) respectively when T(0,1)
is incident. From these figures we can note that for
modes F(1,2) and F(3,2) each two positions have the
same reflection/transmission coefficient curve except
position P9; for example curves of P1 and P6 are con-
fused. That is to say a given reflection/transmission
coefficient at a given frequency refers to two possi-
ble circumferential positions, which is practically not
convenient to localize the circumferential position of
the defect. However, the result found in the F(2,2)
case shows that each position produces its own reflec-
tion/transmission coefficient curve. The F(2,2) mode
seems to be more suitable for circumferential local-
ization of the defect when T(0,1) mode is incident.
It should be mentioned that these flexural waves, as
they are nonaxisymmetric, are sensible to the circum-
ferential position of the defect. Nevertheless, each
mode has his own mode shape which impacts on the
result.
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Figure 4: Reflection coefficients of F(1,2) with a
T(0,1) incident mode.
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Industrial simulation of electromagnetic wave propagation
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Abstract

Astrium has been dealing with computational elec-
tromagnetics for more than 30 years. Generally
speaking, the goal is to predict the electromagnetic
behaviour of a body. It can be to calculate the radar
cross-section of a target, its ”signature”, in order for
a radar operator to detect and identify it, or to make
it as ”stealthy” as possible, when designing missiles
or atmospheric re-entry vehicles.
Another concrete issue can be the design of an an-
tenna, that can be optimised so that it gives maxi-
mum capacity in the environment in which it is used.
For such activities, we use various and very per-
forming methods in the harmonic domain, such as
boundary element or finite element methods, or an-
alytical asymptotic methods with various direct or
iterative solvers and preconditioners or accelerating
techniques.

The problem

The problem we are dealing with is to compute the
electromagnetic response of a tridimensional struc-
ture under an excitation. The physical phenome-
nas are the same: an incident electromagnetic field
creates currents (magnetic and electric) on the sur-
face and inside materials; these currents generate an
electromagnetic field in the surrounding space. The
general problem is described by Maxwell equations.
The numerical methods developed by our teams solve
these equations in the frequency domain. There are
two main methods (which are called exact in opposi-
tion to asymptotic methods).

Methods

Methods We first describe the surfacic methods:
they put the unknowns on the boundaries of the
solid domains which compose the considered objects
and which contain implicitly the boundary limit
conditions. Our surfacic method is based on the
integral representation of MAXWELL equations
(cf.[1]), well known as EFIE (Electric Field Integral
Equation) for objects composed with dielectric or
perfectly conducting materials:

∫

Γ×Γ
[φ(x).φ

t
(y)−

1

k2
divφ(x).divφ

t
(y)].G(x−y).dx.dy =

i

kZ0

< Einc,φt >

excitation of the problem (incident wave, generator,
etc.). For every pair of points (x, y) of Γ (the surface
of the body) there is an interaction with an intensity
given by the Green kernel G :

G(x− y) =
eik|x−y|

4π|x− y|

Therefore, the complex matrix is a full one. The ad-
vantage of these surfacic methods is to transform the
initial volumic problem of calculating the electromag-
netic field which is scattered in the whole space, into
a surfacic equivalent problem acting on electric and
magnetic currents J and M on the boundaries. But
these methods have an inconvenient: they can take
into account only homogeneous and isotropic mate-
rials.
The second ”exact” methods are volumic ones which
calculate inside the volumic domains. They are
able to modelize objects with arbitrary physical and
geometrical characteristics, but they deal with a
great amount of unknowns and they need an explicit
boundary condition.
Volumic methods have been developed to calculate
electromagnetic behaviour of objects covered by lay-
ers of materials, which are no more homogeneous or
isotropic without any approximation (cf.[2]). The
calculation domain is then parted into 2 areas sepa-
rated by a coupling surface.
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The inner problem is solved by the way of partial
derivative equations of the Maxwell system using
H(rot) Volumic Finite Elements (cf.[3]), and the ex-
ternal problem is solved using integral equations on
the coupling surface.

Direct or iterative solver

A numerical code has been developed since 1989,
which is widely used within EADS under the trade
name ASERIS-BE.
With the direct solvers, we factorise the matrix which
is a very expensive step with a huge number of oper-
ations in O(N3) where N is the number of unknowns.
With iterative solvers we approach the solution step
by step using a matrix-vector product which is in
O(N2).
But when N increases, the classical solution of the
problem, becomes hugely expensive in CPU dura-
tion as well as in storage amount. Therefore, to
push the limits, we have developed an iterative solver
and a fast matrix-vector product called FMM, for
Fast Multipole Method. We are now using it in our
daily work for problems with perfectly conducting
domains, for dielectric materials with complex coef-
ficients, with wires, antennas, etc...

The FMM (Fast Multipole [Multilevel]
Method)

We can give the following description (cf.[4]):

• As a solver, the FMM replaces the standard
matrix-vector product by an approximate but
fast computation. It works in O(N log N) time
compared to O(N2) with the usual method,

• From an electromagnetic point of view, FMM
cuts scattering body into boxes, and calculates
for each of them a radiation function in the far
field approximation. These functions are then
used to calculate all the interactions between
boxes that are sufficiently distant,

• From a matrix point of view, FMM cuts every
term Ai,j of the matrix A in a sum of terms
separating indices i et j which enables a fast
computation of the matrix-vector product,

• As an algorithm, FMM travels through a tree
which is based on a recursive partition of the
scattering body. It is the reason of the asymp-
totical duration evaluation in O(N log N).

In order to accelerate the convergence of the so-
lution, we have developed efficient parallel al-
gorithms and preconditioning technics such as
SPAI, for Sparse Approximate Inverse Precon-
ditioner.

Work Group

Teams from Astrium, EADS Innovation Works
and CEA, met in a work group to exchange on
numerical technics used in their own computation
codes. A very good agreement was found between
numerical results, which confirms the excellence of
the codes in the domain of benchmarking. This high
level of performance shows the major advantage
that can be taken from big computers with a great
amount of processors.
”On 2011 May 19., the French Defence Procurement
Agency (DGA), awarded its Science & Defence prize
to Christian Brochard of Astrium Space Transporta-
tion, who had teamed up with Guillaume Sylvand
from EADS Innovation Works and with Michel
Mandallena and Bruno Stupfel from CEA/CESTA,
in recognition of their work on high performance
simulation of wave propagation phenomena”

We are now looking forward to solving prob-
lems involving hundreds of millions of unknowns
such as encountered for radiation in a re-entry
plasma or for windmills stealth. In the frame of this
FMM work, parallel multilevel H-Matrix methods
seem to be a new breakthrough for the years to
come.
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Ten Industrial Challengesin Wave Propagation Simulation(at EADS)

Eric Duceau
Scientific Director, EADS Innovation Works, BP 76 Suresnes F92152

The presentation deals with the different hurdles
that prevent the industrial day-to-day use of Mod-
elling and Simulation activitiesfor the domain of wave
propagation. The show stoppers are sorted as fol-
lows: affordability (the bricks are identified and the
limit in usage only depends on time-to-market; soft-
ware vendors as well as in-house solutions may likely
make the step for-ward), maturity ( the mathemat-
ical tools seems identified but the resolution has not
yet been demonstrated; short term research can be
launched with significant level of confidence) and un-
derstanding (this means that the modelling phase
is not yet available and that fun-damental research
should be triggered if the industry wishes to solve
the point). I’ll be focusing on the 2 last axes to con-
tribute to a potential roadmap in Modelling. I’ll just
re-mind you with the ”starting point” for industrial
research labs that can be guessed out of the concerns
described in the first axis, which, nevertheless, con-
tains some interesting questions.
1 Affordability as a main driver

Numerical methods have dramatically changed the
way of working in engineering of waves thanks to
2 successive revolutions: the FMM breakthrough,
end of 90’ and, recently, the H-Matrix breakthrough.
Even if the mathematical demonstration is not
achieved for all formula-tions, engineers have imme-
diately taken the opportunity to pragmatically and
systematically test all of them. The result is amazing:
performances seem to be improved and accuracy not
degraded: the Grail? Not far from ! But remaining
industrial hurdles slow down the integration:

- Pre processing is still a nightmare: automatic
generation of 100 millions of triangles, without too
much distortion or unexpected refinement is a real
challenge; and when it comes to mixed surface-
volume formulations, mesh generation is too often
a show-stopper. (Challenge 1)

- Breakthrough in Volume Formulation (Finite El-
ement methods, Galerkine discontinuous etc.) are
definitely not at the same level, so couplings be-
tween volumic and surfacic formulation suffers from
the weaknesses of the 3D part; challenges refer to lin-
ear algebra (MUMPS or equivalent libraries for ex-
ample).(Challenge 2)

- Post-processing may represent one of the next
”computer science” challenges in the propagation do-
main for some applications demand a lot of right-
hand-sides to be processed (holographic RADAR
images being the most representative one). Solu-
tions are currently expected from SVD-like meth-
ods; Compress sensing theory could revisit the topic
soon...(Challenge 3)
Examples will be presented to illustrate the ”state-
of-the-art” in this perimeter: acoustic propagation of
waves in an inhomogeneous flow for the limit we en-
counter within the coupling approach; Radar Cross
Section computation for the last topic.
2 Maturity as a main driver

Unfortunately, the requirements from industry re-
garding Modelling & Simulation tools have became
more demanding and the 2 former breakthroughs do
not cover the expectation. The following list gives
some typical applications for which a full demonstra-
tion has not yet clarify the maturity of the approach:

- Margin analysis is one of the main drivers for
simulation in lot of domains. For electromagnetic or
acoustic applications, the medium is often consider
as well known although the boundary conditions are
one of the main sources of uncertainty (just have a
look to the inside part of an Aircraft cabin for noise
refection/diffusion or wireless installation!). From a
mathematical point of view, this problem may lead to
modelling a set of deterministic configuration, each
of them being a sample of the universe of bound-
ary conditions: not realistic! The worsecase analysis
(needed in safety demonstration) cannot be tackled
that way too. The corresponding problem can be de-
scribed as follows: two components are well known
(uncertainty propagation in the one hand, a direct
solver in the other hand) but we still miss a strategy
to couple them in an efficient way (from an indus-
trial point of view) and demonstrate that the results
means something valuable...(Challenge 4)

- Sensitivity with respect to parameters has been
investigated since decades and can be considered as
closed from a mathematical point of view in some
areas (derivation, Pad? expansions, even topological
optimisation, etc). As a matter of facts, only a few
software tools exploit such a capability, each time
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in a very restricted domain of application. Needs
in EADS will be presented with examples: sen-
sitivity to Mach number within acoustic propaga-
tion, sensitivity to scaling effects in metamaterials
on top of basic sensitivitivity with respect to fre-
quency.(Challenge 5)

- Sizing is the main activity in the Design Phase
and tools are supposed to speed up that process and
give it a better robustness thanks to a better under-
standing (modelling) and accuracy (margin manage-
ment). A characteristic requirement in the Design
Phase is the need for model reduction methodology.
Lots of model reduction algorithms have been pub-
lished and the buzz is being running well. But a
lack of systematic approach prevents industry from
efficient usage. Key examples for EADS in Electro-
magnetic Compatibility are related to ”probability to
exceed a threshold” or ”standard deviation around a
mean value” and they do not lead to the same model
reduction algorithm as far as propagation effects are
concerned.(Challenge 6)
3 Understanding as a show stopper

Simultaneously, the requirements from industry re-
garding Modelling & Simulation tools have became
more demanding and the 2 former breakthroughs do
not cover the present expectations. The following
list gives some typical applications for which a full
demonstration has not yet clarify the maturity of the
approach:
• Electromagnetic and/or acoustic Wave for periodic
materials & metamaterialleads to at least two differ-
ent problems:

1. Being able to model defects in a periodic struc-
ture (see fig. 1) has been investigated123 but the
models are still not efficient enough to be exploited
in an industrial contex. Industrial examples one may

Figure 1: Periodic model and defects, randomly
located according to 2 different distributions

think about: an array antenna with broken elements
inside; or detection of a defect in a structured mate-
rial. (Challenge 7)

1for example Benoit Lizé’s presentation at Waves 2013
2S. Fliss’ PhD thesis
3A. Anantharaman -G.Allaire in CMAP internal document

2. being able to model ”metamaterial” concepts
in a efficient way. Applying domain decomposition
techniques seems appropriate and might be acceler-
ated when similarity of geometry is taken into ac-
count. Parametric optimisation being the final goal
, properties of parametric Dirichlet-to-Neumann op-
erators may be analysed. (Challenge 8)
• Elastic and/or Electromagnetic waves in ”quasi
random” medium (see fig. 2): industrial composite
material gives a representative example of the com-
plexity we face today. Very promising approaches
have been proposed which are not pure homogenisa-
tion techniques and lots of mathematical problems
remains open. This material is not periodic, yet

Figure 2: 2D cut of a composite material

there is some kind of underlying periodic arrange-
ment of the fibbers. Taking advantage of the in-
dustrial process behind, one can assume that a ran-
dom perturbation of a regular structure can be a
good model to derive homogeneous equivalent pa-
rameters.4 (Challenge 9)
• Acoustic wave propagation in a ”random” given
flow is a major scientific challenge now that the ”af-
fordability” for constant or rotational flow is man-
aged: Is stochastic PDE a realistic approach? As
in the previous approach, we’re trying to find out
modelling approaches that cover a locally perturbed
propagation phenomenon, the perturbation being of
a random nature (or, at least, described by stochas-
tic parameters linked to correlation in space and time
for example) (Challenge 10)
4 Conclusion:

Challenges for modelling complex propagation ef-
fects, as described in this context, refers to various
competences. The 3 first ones requires mainly com-
puter science skills. The next 3 ones are well-known
mathematical problems and the industrial solutions
may emerge in the incoming years. The last four ob-
viously demand a ”reinforced” mathematical frame
to be tackled. The presentation will develop those
examples to help positioning new research axes.

4A. Anantharaman -C LeBris in CERMICS internal docu-
ment
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RECENT ADVANCES IN NUMERICAL SIMULATION TO PREDICT INTERIOR NOISE
FOR FULL VEHICLE APPLICATIONS

Slaheddine Frikha
ESI France - 99 rue des Solets - Rungis - France

Slaheddine.Frikha@esi-group.com

Abstract

This contribution will give an overview and de-
scribes a number of recent advances in the prediction
of interior noise with a focus on transport system
acoustic comfort. At low frequencies, the response of
a system is typically dominated by a small number of
modes; standard analysis methods based on finite ele-
ments, boundary elements and infinite elements typi-
cally provide an accurate description of the response.
At high frequencies, the higher order modes of a sys-
tem tend to be particularly sensitive to small pertur-
bations in the properties of the system. A statistical
description of a system becomes essential in order
to draw meaningful conclusions about the response.
The transition between low and high frequency re-
gion so-called the medium frequency ranges is ad-
dressed by Hybrid approach which has been demon-
strated to be very efficient for structure-born noise
analysis.
All these modeling approaches are available in the
commercial software VA One which offers a suite of
fully coupled solvers in a single plateforme.

Introduction

The perceived quality of a vehicle is strongly influ-
enced by the interior noise that a passenger experi-
ences in the vehicle. In order to model interior noise
it is useful to adopt a source-path-receiver model.
The sources can be separated into air-borne sources
(that inject energy directly into acoustic spaces sur-
rounding the vehicle) and structure-borne sources
(that inject energy directly into the body structure).
The transmission paths, by which noise and vibration
travel to the interior of the vehicle, are also typically
different for each source and require low, medium
and high frequency dedicated analytical and numer-
ical approches. The paper present recent advance to
address air-borne and structure-borne noise in the
full frequency range with a focus on mid-frequency
range where both structure-borne and airborne con-
tribution to interior noise are significant.

1 FE Models of fully Trimmed vehicle

At low frequencies, Finite Element models pro-
vide a good way to describe interior noise. The re-
cent advances in acoustic package design based on
porous-elastic material tend to significantly increase
the contribution of trimming component to struc-
tural damping (resistive effects) and to reduce the
acoustic power transmitted by the structural vibrat-
ing into adjacent cavity. A number of advances have
been made recently in the development of rigorous Fi-
nite Element descriptions of bi-phase porous-elastic
materials:




div(
1

ω2P̃f
gradϕP − βU) + αdiv U +

ϕP

R
= 0

ω2P̃sU + div(σkl − αϕpδkl) + βgradϕP = 0

The trimmed body is described as an assembly of a
body, a cavity and an ensemble of trimming compo-
nent. This substructuring approach developped by
prof. M. A. Hamdi leads a plug-in equation:
[(

[Ω2
s − jD − ω2I] −C̃

−C̃T [Ω2
F − ω2I]

)
−
(

Ỹss Ỹsc

Ỹcs Ỹcc

)]{
W̃

P̃

}
=

{
F̃
0

}

Where sound packages impedances are simply added
to the body in white impedance. This allows dras-
tically reducing the memory storage and CPU usage
to solve the challenging full-FE model of a complete
trimmed car in a few hours, using standard computer
facilities.

2 SEA models for Interior noise

The use of SEA for airborne interior noise predic-
tion is now a standard part of production modeling
for most automotive OEMS and suppliers. Figure 8
shows a typical airborne SEA model.

The model includes the major structural and acous-
tic components that are important for transmission,
along with the sound package, pass-through and leak-
age paths. While the basic modeling approach for
airborne SEA is well established, advances are still
being made. Models of poro-elastic materials con-
tinue to improve and more detailed descriptions of
sound package are now possible.
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Typical airborne SEA model.

3 The Hybrid FE-SEA Method

A hybrid FE-SEA method ideally combines the low
frequency performance of the FE method with the
high frequency performance of SEA to produce a ro-
bust method that can close the gap where none of the
standard FE or SEA approaches applies perfectly.
The main difference to be overcome between FE and
SEA approaches lies in the fact that:
- FE is based on dynamic equilibrium while SEA is
based on the conservation of energy flow,
- FE is a deterministic method while SEA is inher-
ently random.

Hybrid approach principle.

In order to express the coupling between determin-
istic components modeled by finite element method
with random components modeled as SEA subsys-
tems, both continuity relationship and flow energy
balance have to be verified along the hybrid junc-
tions.
From the point of view of the deterministic subsys-
tem, the SEA random subsystem is perceived as an
infinite media that apply to the FE subsystem an
added-impedance and a set of uncorrelated and ran-
domly distributed incident waves. These incident
waves are representative of the reverberant filed in
the SEA subsystem. A similar phenomenon is en-
countered when modeling the structure excited by a
diffuse field in reverberant chamber. Such problem is

commonly being represented by a structure coupled
to an infinite media and excited by a set of uncorre-
lated plane waves. The infinite media adds reactive
and resistive impedance to the modes of the struc-
ture, which can be represented by a complex ”modal
radiation impedance” matrix. The magnitude of the
plane waves loading depends on the energy in the
reverberant chamber.

4 Conclusions

All these modeling approaches are available in the
commercial software VA One. Detailed theoritical
background will presented and some validation re-
sults will be shown in the conference.
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Comparative SVD-analysis of standard L2 Full Waveform Inversion and its Migration Based
Travel Time formulation
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Abstract

The common knowledge now is that standard least
squares Full Waveform Inversion is unable to recon-
struct macrovelocity for reasonable frequency band
of input data but claims unpractically low time fre-
quencies. There are a range of different approaches to
overcome this weakness and among them Migration
Based Travel Time reformulation of the cost func-
tion. Here we compare SVD for linear approxima-
tion of standard least squares Full Waveform Inver-
sion with its Migration Based Travel Time reformu-
lation. In order to do that we start with lineariza-
tion of both nonlinear forward maps with subsequent
computations of singular spectra (singular values and
right/left singular vectors) for corresponding linear
operators. The next step is to construct the two
families of linear spans of right singular vectors cor-
responding to a set of fixed values of the condition
number and to analyze their mutual disposition. Our
computations demonstrate the reliable reconstruc-
tion of the smooth velocity component by full wave-
form inversion in migration based travel-time formu-
lation.

1 Introduction

Constructing a smooth velocity model (propaga-
tor, macro velocity constituent) in the depth domain,
which is responsible for correct travel-times of wave
propagation is a key element of the up-to-date seis-
mic data processing in areas with complex local ge-
ology. Theoretically it could be obtained, along with
the subsurface structure, by the Full Waveform In-
version (FWI) technique matching the observed and
the synthetic seismograms (Tarantola, 1984). The L2

norm is usually used for this matching, though other
criteria are also considered. To minimize the misfit
function and to find the elastic parameters of the sub-
surface, iterative gradient-based algorithms are usu-

ally applied. Such approach to solving seismic inverse
problem proposed originally by Tarantola (1984) has
been developed and studied in a great number of pub-
lications (see Virieux and Operto, 2009, and the ref-
erences therein).

However, the straightforward application of FWI
reconstructs reliably only the reflectivity component
of the subsurface but fails to provide a smooth ve-
locity (propagator) component of a model. In or-
der to overcome this trouble G.Chavent with col-
leagues introduced Full Waveform Inversion in Mi-
gration Based Travel-Time formulation (2001). The
main idea of this approach is to decompose model
space into two orthogonal subspaces - smooth prop-
agator and rough reflector with subsequent reformu-
lation of the cost function.

2 Methods

2.1 Statement

Full Waveform Inversion formally is application of
non-linear least squares for seismic inverse problem
treated as a nonlinear operator equation

F [m] = d.

Here the known right-hand side d is multi-source
multi-receivers seismic data, F is a non-linear op-
erator (forward map) which transforms the current
model m to synthetic data. For the sake of simplic-
ity we deal with the Helmholtz equation:

∆u +
ω2

c(x)2
u = f(ω)δ(x − xs)

with data d being its solution computed at receivers
positions.

Instead of regular non-linear least squares formu-
lation of Full Waveform Inversion, when unknown
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function c(x) is searched as

c∗ = argmin
c

‖F(c) − d‖2, (1)

MBTT introduces the following decomposition of the
model space:

m = p + r = p + ΠrM(p) < s > .

Here p ∈ P describes smooth macrovelocity, which
does not perturb significantly direction of waves
propagation, but governs their travel times. In con-
trast the depth reflector r describes rough pertur-
bations of the model, which send seismic energy back
to the surface, but do not change travel-times. The
key moment here is interrelation r = ΠrM(p) < s >
where s is unknown time reflectivity, M(p) - a
true amplitude prestack migration operator with lin-
ear reweighing W and Πr is the orthogonal projector
onto the space of reflectors (orthogonal to the space
of propagators). In more details this operator is writ-
ten down as

M(p) < s >= W ◦ Re

{(
δF
δm

(p)

)∗
< s >

}
,

where ∗ denotes adjoint operator in application to
Frechet derivative of nonlinear forward map F .

In this notations MBTT formulation of FWI with
respect to propagator p and time reflectivity s is as
follows:

(p∗, s∗) = argmin
p,s

‖F(p + ΠrM(p) < s >) − d‖ (2)

It is worth mentioning that the argument of the cost
function in MBTT formulation is linear with respect
to the time reflectivity s and is essentially nonlinear
with respect to the depth propagator p.

2.2 Linearized inversion

In the linear approximation FWI in standard least
squares formulation (1) leads to a linear operator
equation of the first kind with respect to the model
perturbation:

δF
δm

(m0) < δm >= d − F(m0)

while in MBTT formulation we have the following
linear operator equation with respect to propagator
perturbation:

δF
δm

(m0)

〈
δp + Πr

(
∂M

∂p
(p0) < δp >

)
< s >

〉

= d − F(m0)

3 Illustrations

In Fig.1 one can see the result of the linear Full
Waveform Inversion in MBTT formulation for for the
simplest model - step-like vertical heterogeneous ve-
locity. Input data are synthesized for Ricker pulse
of 25 Hz and frequencies staring 10 Hz are used for
inversion. There are two figures - reconstruction of
the full model and its smooth macrovelocity compo-
nent (propagator). One can recognize almost perfect
reconstruction of propagator. Some defects in reflec-
tor recovery can be explained by the imperfection of
the procedure of prestack true amplitude migration.
High frequency oscillations can be easy removed by
taping time frequency band in use.

Figure 1: Projections for MBTT formulation. Left
- full model, right - macrovelocity component.
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Interior point method for time-dependent inverse problems
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Abstract

In many inverse problems, box-constraints are
used to include some a priori information about the
model. We present the numerical solution of a box-
constrained inverse problem governed by an acoustic
wave equation with unknown coefficients. The iden-
tification process is guided by a waveform misfit func-
tional, that is the difference among synthetic and ob-
served measurements at some receivers. Ill-posedness
of the problem is tackled through Tikhonov regular-
ization. Finite differences in time and spectral finite
elements in space are used for the space-time dis-
cretization of both the forward and backward waves
associated with the minimization. To also handle
inequality constraints, we propose to use an Interior-
point Optimization algorithm. Numerical tests illus-
trate the performance of the suggested optimization
method.

Inverse problem

Parameter identification from data measurement
is of interest in many engineering applications. The
problem is here formulated as a PDE-constrained op-
timization problem, where the control variable rep-
resents the parameter profile we want to identify
through minimization.
Let Ω be a bounded domain in Rd, with boundary
∂Ω, and let be T > 0 a fixed time. The propagation
of an acoustic wave on Ω× [0, T ] is described by :





∂ttu(x, t)−∇ · (c(x)2∇u(x, t)) = f(x, t) Ω× (0, T ),
u(x, t) = 0, ∂tu(x, t) = 0 ∀x ∈ Ω, t = 0,
∂νu(x, t) = 0 ∀x ∈ ∂Ω, ∀t ∈ (0, T ).

(1)
where x ∈ Ω, t are the spatial and time coordi-
nate, respectively, u(x, t) is the pressure wave field,
c = c(x) is the velocity profile, f is the source signal
and ∂ν(·) the co-normal derivative. For each velocity
profile c(x), there exists a unique wave field u ∈ V ,
solution of (1), with V a suitable functional space.
Let Ωo ⊂ Ω be an observation domain (usually de-
fined as a set of receivers), and uobs observed mea-
surements on Ωo × [0, T ]. We define the waveform

misfit functional as follows :

J(u, q) =
1

2

∫ T

0

∫

Ωo

(u−uobs)2 dΩ dt+
α

2

∫

Ω

(
∇q
)2
dΩ,

(2)
with α > 0 a fixed penalization parameter. The first
term in (2) is the data-fitting error between the simu-
lated wave u and the observed data uobs. The second
term corresponds to Tikhonov regularization; it acts
on the control variable q(x) = c(x)2 to penalize vari-
ations that are invisible to the data.
The inverse problem is: find (u, q) ∈ V ×Qad s.t.

{
min
q∈Qad

J(u, q)

where (u, q) solution of (1).
(3)

The control space Qad is a bounded convex set de-
fined as Qad = {q(x) ∈ L2(Ω) : ql ≤ qj ≤ qu}, for
fixed lower and upper bounds ql, q

u ∈ L2(Ω).

Discretize then optimize

To solve (3), we follow the discretize-then-optimize
approach: first, we discretize the state equation (1)
and the misfit functional (2); then, we apply an opti-
mization method to solve the corresponding discrete
minimization problem.

Space-time discretization

We discretize the forward wave equation (1) by
Spectral Element Methods (SEM) in space and the
Leap-Frog method in time, [1], [2]. Let Qadδ ⊂ Q,
Vδ ⊂ V be the discretization of Qad and V , respec-
tively. Given q ∈ Qadδ , u ∈ Vδ is the discrete solution
of (1) if it satisfies:





Mun+1−2un+un−1

∆t2
+ Aun = fn n = 1, . . . , Nt,

u0 = 0, 2
∆t2

Mu1 = f0,
(4)

∆t being a suitable time-step (that satisfies the
stability condition, [3]), Nt the number of temporal
steps, and A, M the stiffness and mass matrices
associated with (1), respectively. The corresponding
discrete inverse problem reads: find (u,q) ∈ Vδ×Qadδ
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s.t.

{
min
Qadδ

J(u,q)

(u,q) satisfies (4) .
(5)

Optimization process

Since for each fixed control q, there is a corre-
sponding unique u, solution of (4), problem (5) is
equivalent to minimizing the reduced discrete func-
tional:

Ĵ(q) = J(u,q)) (6)

over Qadδ . This is a discrete optimization problem
with constraints only on the control variable. To min-
imize (6), we use an Interior Point Optimizer (Ipopt)
algorithm, able to deal with nonlinear programming
problems of general nature, [3]. A logarithmic term is
added to the reduced misfit functional Ĵ(q) to handle
the inequality constraints; hence for a given parame-
ter µ > 0, we define the auxiliary barrier functional:

Ĵµ(q) = Ĵ(q)− µ
(

ln(q − ql) + ln(qu − q)
)
. (7)

For a decreasing sequence of barrier parameters µ
converging to zero, we now solve the unconstrained
iterative minimization for Ĵµ(q). Starting from an
initial profile q0, we perform at the k-th iteration
a Gauss-Newton step to find a descent direction
dk; then, the next approximation qk+1 is computed
through a line-search approach, qk+1 = qk + αkdk,
where the step-size is determined using a backtrack-
ing line-search algorithm αk = 2−lαkmax, l = 0, · · · ,
with αkmax = max{α ∈ (0, 1) : qk+αdk ≥ (1−τ)qk},
τ = max{τmin, 1− µ}, τmin ∈ (0, 1), see [3].

Numerical experiment

We conclude by a numerical test case to illustrate
the performance of the proposed algorithm. Let us
consider Ω = (0, 1), T = 1, Ωo given by two re-
ceivers located at the extrema of the boundary do-
main. We excite the medium with a high-frequency
Ricker Wavelet source function. For the space dis-
cretization, we use K = 25 spectral elements and a
conforming polynomial order N = 2 on each subdo-
main. To construct the observations, we solve the
forward problem on a finer mesh using the fixed tar-
get profile qt. In Figure 1, we show the lower and
upper profiles ql, qu, the initial profile q0, the tar-
get profile qt and the reconstructed profile q after 20
iterations. In Figure 2, the L2 norm of ∇Ĵ vs the
iteration count is plotted. Despite the nonconvexity

of the inverse problem and the high variations of the
target profile, the algorithm is able to find a good
approximation of the target profile.

Figure 1: Velocity profile

Figure 2: ‖∇Ĵ‖ vs iterations
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Abstract

We investigate numerical methods to retrieve a
piece-wise constant approximation of an acoustic re-
fraction index from far-field measurements.

We here propose to enhance this reconstruction by
coupling it, in two different strategies, with a pre-
viously developed defects localization method. Both
strategies can be combined and are aimed to reducing
the number of computed parameters.

Moreover, our defects localization provides a new
(constructive) characterization of an unknown refrac-
tion index. We thus investigate the minimization
of defects as a new approach to solve the inverse
medium problem. Our results are illustrated by nu-
merical experiments.

1 Introduction

In inverse acoustic scattering, one tries to recover
information about a scatterer from measurements.
The penetrable scatterers we are interested in are also
called inhomogeneous media and are characterized by
a refraction index n ∈ L∞(Rd), where d = 2 or 3 [1].
We place ourselves in the case of (n − 1) having a
compact support.

U

i

8

U
D

Incoming 
directions

Measurement
directions

Figure 1: : General setting and notations.

1.1 The direct problem

The acoustic total field un ∈ L2
loc(Rd) is assumed

to satisfy the Helmholtz equation

∆un + k2n(x)un = 0, x ∈ Rd.

For practical reasons, we consider plane-wave
sources. Hence, the corresponding total field is pa-
rameterized by the incidence direction taken in Sd−1

(see Figure 1). Finally, u∞n ∈ C∞(Sd−1 × Sd−1) is
the associated far-field pattern [1] and F : n 7→ u∞n
denotes the index-to-far-field mapping.

1.2 The inverse medium problem

With D = ∪Zi, i = 1 . . . N , we look for a piece-
wise constant approximation n(x) =

∑
ηi1Zi(x) of

the actual refraction index, denoted by n? ∈ L∞(Rd),
from the corresponding far-field measurements u∞n? .
A popular method to approximate n?, for its ease
of implementation and efficiency, is using the itera-
tive Gauss-Newton (G.-N.) method to minimize the
following regularized cost function [2]

J(n) := ‖F(n)− u∞n?‖2L2(Sd−1×Sd−1)+λ ‖n− n0‖2L2(D) .

2 Enhancement of piece-wise constant re-
constructions through selective focusing

The G.-N. method involves heavy computations in
which all parameters ηi are updated at each itera-
tion. However, the initial guess could be exact in
some zones Zi and thus, the corresponding constants
should not be updated. Also, during the reconstruc-
tion, some constants can reach a satisfactory preci-
sion while the other ones still require improvement.

2.1 Defects localization

To address these aspects of the reconstruction, the
useful information would thus be a fast localization
of the exact (enough) constants. To this end, we have
extended the so-called Factorization method (see [3]
and references therein) to localize the differences be-
tween n? and a fixed (known) reference index. We
call these differences defects and their localization is
achieved via a localization function: for each x ∈ Rd,
we have the equivalence between n(x) 6= n?(x) and

S{n, n?}(x) :=



∑

j

∣∣∣〈un(·, x), ψj〉L2(Sd−1)

∣∣∣
2

σj




−1

> 0,

where (σj , ψj) is an eigen-system of the self-adjoint
operator W# := |W +W ?|+ |W −W ?| , where

W := (id+ αFn)?(Fn? − Fn),

Fn is the classical far-field operator defined by

Fng(x̂) := 〈g, u∞n (·, x̂)〉L2(Sd−1),

and α is a constant. So, S{n, n?} is built only from
the measurements u∞n? and the reference index n.
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2.2 Selective reconstruction

First, we consider the case where n? is a locally
perturbed version of a known initial state, denoted
by n0. These perturbations can now be localized
through the function S{n0, n?}. So, only the corre-
sponding constants need to be reconstructed, using
n0 as an initial guess. This naturally provides a sub-
stantial reduction in computational costs.

2.3 Adaptive refinement

Secondly, we propose an iterative refinement strat-
egy for the reconstruction: starting with p = 0,

1. Compute the average value of S{np, n?} over each
zone Zi.

2. Split the zone corresponding to the highest av-
erage value into four and duplicate the corre-
sponding parameter accordingly.

3. Run the G.-N. method on this new set of pa-
rameters to compute the approximation np+1.

4. p← p+ 1 and go to 1.

This leads to an approximation of n? with a con-
strained number of parameters, positioned to fit as
much as possible the geometry of this index.
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Figure 2: : Full reconstruction with 16 parameters.

2.4 Combination of both strategies

Both strategies can be chained. Figure 2a depicts
the real part of some unperturbed index n0. The per-
turbation is then located by thresholding the values
of S{n0, n?} (Figure 2b). Lastly, five iterations of the

adaptive refinement process are applied to this se-
lection, starting with a single parameter and ending
with only 16. The result is shown on Figure 2c and
can be compared to the actual index n? on Figure 2d.
The final relative error is ‖n5 − n?‖ / ‖n?‖ = 0.07.

3 A new approach to the inverse medium
problem

Lastly, the construction of S{n, n?} provides a new
constructive uniqueness proof for the inverse medium
problem that is valid in R3, but also in R2, and for
any k. Indeed, if u∞n = u∞n? , then S{n, n?} = 0 and
thus, n = n?. Therefore, we propose a new way to
look for n? by minimizing

JS(n) :=
∥∥S{n, n?}

∥∥2
L2(D)

+ λ ‖n− n0‖2L2(D) .

This approach shows encouraging numerical results
when compared to the classical cost function J . Also,
since the localization function is defined locally, its
minimization on any sub-part of D should allow the
reconstruction of the unknown index n? on this sub-
part. Thus, in theory, this new method handles do-
main decomposition straightforwardly, although we
have no numerical evidence at this point.

Conclusion and perspectives

The inverse medium problem’s numerical resolu-
tion has been enhanced in two specific cases by cou-
pling it with a defects localization method. More-
over, this defects localization provides a new recon-
struction approach that shows promising results.

Further investigations are performed to extend the
localization function and to establish its regularity.
That information is needed to develop, in particular,
domain decomposition and L1-norm minimization for
our new approach to the inverse medium problem.
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Abstract∗

The representation of a function by its circular
Radon transform (CRT) and various related prob-
lems arise in many areas of mathematics, physics
and imaging science. There has been a substan-
tial spike of interest towards these problems in the
last decade mainly due to the connection between
the CRT and mathematical models of several emerg-
ing medical imaging modalities. This article contains
some new results about the existence and unique-
ness of the representation of a function by its circular
Radon transform with partial data. A new inversion
formula is presented in the case of the circular acqui-
sition geometry when the Radon transform is known
for only a part of all possible radii. The results are
not only interesting as original mathematical discov-
eries, but can also be useful for applications, e.g. in
medical imaging.

Introduction

The circular Radon transform g puts into corre-
spondence to a given function f its integrals along
circles

g(x0, y0, r) =

∫

C(x0,y0,r)
f(x, y) ds, (1)

where C(x0, y0, r) denotes the circle of radius r cen-
tered at the point (x0, y0).

In circular acquisition geometry there are various
inversion formulae when g is known for circles of all
possible radii [3], [4], [6], [7], [8], [9]. However, to
the best of our knowledge no exact formula is known
for the case when g is available for only half of all
possible radii.

1

1 Uniqueness of reconstruction

In this subsection we consider a smooth function
f(r, θ) supported inside the disc of radius R. We
will show that the function can be uniquely recovered
from Radon data with only part of all possible radii.

1∗This article is mainly based on the paper [1]

Theorem 1 Let f(r, θ) be an unknown continuous
function supported inside the annulus A(ε,R) =
{(r, θ) : r ∈ (ε,R), θ ∈ [0, 2π]}, where 0 < ε < R.
If g(ρ, φ) is known for φ ∈ [0, 2π] and ρ ∈ [0, R − ε],
then f(r, θ) can be uniquely recovered in A(ε,R).

Using an approach similar to Cormack’s inversion of
the linear Radon transform [2], we can rewrite the Eq
(1) by considering the contribution dg to g(ρ, φ) from
two equal elements of arc ds of the circle C(ρ, φ).

dg =
∞∑

n=−∞
[fn(r) einθ + fn(r) ein(2φ−θ)] ds

where 0 ≤ φ ≤ θ ≤ 2π and fn(r) is the Fourier
coefficients computed by

fn(r) =
1

2π

∫ 2π

0
f(r, θ) e−inθdθ

By passing to the basis of complex exponentials we
diagonalized the CRT, i.e. the n-th Fourier coeffi-
cient of g depends only on n-th Fourier coefficient
of f . This is not surprising, due to rotation invari-
ance property of g in the circular geometry. We refer
the readers to [1], [5] for further details. As a re-
sult our problem breaks down to the following set of
one-dimensional integral equations

gn(ρ) = 2

∫ R

R−ρ

fn(r) r T|n|
(
r2+R2−ρ2

2rR

)

R

√
1−

(
ρ2+R2−r2

2ρR

)2 dr, (2)

where Tk(x) is the k-th order Chebyshev polyno-
mial of the first kind. This equation can be writ-
ten a Volterra integral equation of the first kind with
weakly singular kernel

gn(ρ) =

∫ ρ

0

Fn(u)Kn(ρ, u)√
ρ− u du, (3)

where

Fn(u) = fn(R− u), (4)
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Kn(ρ, u) =
4ρ (R− u) T|n|

[
(R−u)2+R2−ρ2

2R(R−u)

]

√
(u+ ρ)(2R+ ρ− u)(2R− ρ− u)

.

(5)
we finally obtain a Volterra equation of second kind

Gn(t) = Fn(t) +

∫ t

0
Fn(u)Ln(t, u) du, (6)

where

Gn(t) =
1

πKn(t, t)

d

dt

∫ t

0

gn(ρ)√
t− ρ dρ, (7)

and

Ln(t, u) =
1

πKn(t, t)

∂

∂t

∫ t

u

Kn(ρ, u)√
ρ− u√t− ρ dρ (8)

The Volterra equation of the second kind (6) has a
unique solution, which finishes the proof of the the-
orem.

2 Reconstruction formula

Using the Picard’s process of successive approx-
imations (e.g. see [10], [11]) for the solution of
Volterra equations of second kind one can immedi-
ately obtain the following

Corollary 2 An exact solution of equation (6) is
given by the formula

Fn(t) = Gn(t) +

∫ t

0
Hn(t, u)Gn(u) du, (9)

where the resolvent kernel Hn(t, u) is given by the
series of iterated kernels

Hn(t, u) =

∞∑

i=1

(−1)iLn,i(t, u), (10)

defined by
Ln,1(t, u) = Ln(t, u), (11)

and

Ln,i(t, u) =

∫ t

u
Ln,1(t, x) Ln,i−1(x, u) dx, ∀ i ≥ 2.

(12)

This is a new exact formula for inversion of the circu-
lar Radon transform in circular acquisition geometry.
Its advantage compared to all the other known exact
inversion formulas is the fact that only part of the g
data is used.
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Abstract

This work examines the performance of topological
sensitivity as a tool for tackling the inverse scattering
of scalar waves in the high-frequency regime, when
the wave length of the incident field is small relative
to the remaining length scales in the problem. To
provide a focus in the study, it is assumed that the
obstacle is convex and impenetrable (of either Dirich-
let or Neumann type), and that the full-waveform
measurements of the scattered field are taken over
a sphere whose radius is finite, yet large relative to
the size of the sampling region. In this setting, the
formula for topological sensitivity is expressed a pair
of nested surface integrals – one taken the measure-
ment sphere, and the other over the surface of a hid-
den obstacle. By way of multipole expansion, the
inner integral (over the measurement surface) is re-
duced to a set of antilinear forms in terms of the
Green’s function and its gradient. The remaining ex-
pression is distilled by evaluating the scattered field
on the surface of the obstacle via Kirchhoff (physical
optics) approximation, and deploying the method of
stationary phase to evaluate the remaining integral.
In this way the topological sensitivity is expressed as
a sum of the closed-form expressions, signifying the
contribution of critical points on the “illuminated”
part of the surface of a hidden obstacle. Thus ob-
tained result explicitly demonstrates the localizing
nature of the topological sensitivity and, via numeri-
cal simulations, helps better understand some of the
reconstruction patterns observed in earlier works.

Introduction

Since its inception within the context of shape op-
timization [1], the notion of topological sensitivity
has been generalized and applied to deal with in-
verse scattering problems in acoustics [2,3], electro-
magnetism [4], and elastodynamics [5]. In the recon-
struction approach the topological sensitivity, which
quantifies the perturbation of a given cost functional
due to the nucleation of an infinitesimal defect in the
(reference) background medium, is used as an effec-
tive obstacle indicator through an assembly of sam-
pling points where it attains extreme negative values.

Typically, formulas for the topological sensitivity are
amenable to an explicit representation in terms of the
wavefields computed exclusively for the reference do-
main, which is the source of computational efficiency
of this class of inverse scattering solutions. How-
ever, with the exception of the treatment of point-like
scatterers [6], the justification for the performance
of this class of inverse scattering solutions has been
notably lacking. To help bridge the gap, this work
aims to expose the essence of the topological sensi-
tivity (TS) indicator in the high-frequency regime,
when the scatterer extends many wavelengths of the
incident wavefield.

1 Methods

Consider the scattering of time-harmonic scalar
waves by a convex impenetrable obstacle D⊂B1 ⊂
R3 with smooth boundary S = ∂D and outward nor-
mal n, where B1 is an open ball of radius R1 centered
at the origin. On denoting by ũ the scattered field
generated by the action of an incident field ui on D,
it is assumed that the total field

u(ξ) := ui(ξ) + ũ(ξ), ξ ∈ R3\D̄

is monitored over a closed measurement surface
Γobs = ∂B2, where B2 is an open ball of radius R2 =
α−1R1 (α�1) centered at the origin, see Fig. 1. The
reference background medium is assumed to be ho-
mogeneous with wave speed c and mass density ρ.
Writing the germane time dependence as eiωt where
ω denotes the frequency of excitation, the incident
field is for simplicity assumed in the form of a plane
wave, ui = e−ikξ·d, where k = ω/c.

On substituting the integral representation of the
scattered field over Γobs into the adjoint-field for-
mula [3] for TS and reversing the order of integra-
tion over S and Γobs, the expression for TS in the
case of a sound-soft (Dirichlet) obstacle, taken here
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Figure 1: Obstacle D ∈ R3 illuminated by plane
waves.

as an example, can be written as

T(xo, β, γ) = 2Re

{
(1−β)∇ui(xo)·A·

∫

S
ui,n(ζ)

∫

Γobs

G(ξ, ζ, k)∇G(ξ,xo, k) dΓξ dSζ

− (1−βγ2) k2 ui(xo)

∫

Sf

ui,n(ζ)

∫

Γobs

G(ξ, ζ, k)G(ξ,xo, k) dΓξ dSζ

}
, (1)

where G is the fundamental solution of the Helmholtz
equation in R3, while β = ρ/ρ? and γ = c/c? de-
note the material characteristics of a vanishing trial
obstacle at xo. When the latter is ball-shaped,
A = 2/(3+β)I, where I is the second-order iden-
tity tensor.

Representation (1) can further be reduced to a sin-
gle surface integral with an explicit kernel by way of
the Helmholtz-Kirchhoff identity

∫

Γobs

G(ξ, ζ, k)G(ξ,xo, k) dΓξ ' −
1

k
Im
(
G(xo, ζ, k)

)
,

xo, ζ ∈ B1, α� 1, (2)

its extension in terms of G∇G, and the Kirchhoff
(high-frequency) approximation of the scattered field

over S which states that

u = 0 on S = ∂D, u,n =

{
2ui,n on Sf

0 on Sb ,

(3)
when the obstacle is sound-soft. Here Sf = {x∈S :
n(x)·d < 0} is the “front” (i.e. illuminated) part of
S, and Sb = {x∈S : n(x)·d > 0} denotes its “back”
side.

The remaining surface integral is next evaluated
explicitly via the method of stationary phase [7] as
a sum of contributions of the kernel in the neigh-
borhood of critical points on Sf, namely those where
i) the tangential gradient of the exponential part of
the kernel vanishes, and ii) the kernel fails to be dif-
ferentiable. In this way the TS indicator function is
written in terms of the basic transcendental functions
combined with their specialized counterparts such as
the Airy, Fresnel, and Pearcey integrals.
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Abstract

We are concerned with focusing effects for time-
dependent waves using an array of point-like trans-
ducers. We consider a two-dimensional problem
which models acoustic wave propagation in a medium
which contains several unknown point-like scatter-
ers. Spatial focusing properties have been studied in
the frequency domain in the context of the DORT
method (“Decomposition of the Time Reversal Op-
erator”). This method consists in doing a Singular
Value Decomposition of the scattering operator, that
is, the operator which maps the input signals sent
to the transducers to the measure of the scattered
wave. We show how to construct a wave that focuses
in space and time near one of these scatterers, in
the form of a superposition of time-harmonic waves
related to the singular vectors of the scattering oper-
ator. Numerical results will be shown.

Introduction

We consider a reference medium, possibly inhomo-
geneous, filling the whole plane R2. We denote by
G the time-dependent Green function of the acoustic
wave equation, that is the causal solution to

1

c2(x)

∂2G(x, y; t)

∂t2
−∆xG(x, y; t) = δ(x− y)⊗ δ(t)

where c is the wave speed function of the medium
(e.g., G(x, y; t) = −H(t−|x− y|)/(2π(t2−|x− y|2))

1
2

for c ≡ 1, where H is the Heaviside function). We
assume that the reference medium is perturbed by
the presence of a family of P point-like scatterers
whose positions s1, . . . , sP are unknown. Using an
array of N point-like transducers located at xn for
n = 1, . . . , N (with N ≥ P ), our aim is to generate
a wave that focuses in space and time on one of the
scatterers. Such a wave is defined by

w(x, t) =
N∑

n=1

(
G(x, xn; ·) t

? qn

)
(t) (1)

where qinp(t) := (q1(t), . . . , qN (t))> represents the in-

put signals applied to the transducers and
t
? denotes

the time convolution. The question is to find sig-
nals qinp(t) for which most part of the energy of the
wave will be concentrated near one obstacle at a given
time. In the present paper, we show how to deduce
such signals from the only knowledge of the scatter-
ing operator S : qinp 7→ qmes where qmes represents the
measures at points x1, . . . , xN of the scattered wave
associated with the incident wave (1), that is, the
perturbation of this incident wave due to the pres-
ence of the unknown scatterers. The idea is to take
advantage of the so-called DORT method (see, e.g.,
[2], [3]) whose spatial focusing properties in the fre-
quency domain are well known.

1 Space focusing in the frequency domain

Let Ĝ denote the time-harmonic Green function of
the reference medium which is related to the time-
dependent Green function G by the Fourier trans-
form:

G(x, y; t) =
1

π
Re

(∫ +∞

0
Ĝ(x, y;ω) e−iωt dω

)
.

At a fixed frequency ω, the array of transducers emits
a time-harmonic incident wave defined by

ŵ(x) =
N∑

n=1

q̂n Ĝ(x, xn;ω),

for a given q̂inp := (q̂1, . . . , q̂N )> ∈ CN (complex
amplitudes of the input signals at the N transduc-
ers). Then, the array measures the scattered wave
q̂mes. This yields the time-harmonic scattering oper-
ator Ŝω : q̂inp 7→ q̂mes which can be written here as a
product of three matrices:

Ŝω = Ĝ>ω︸︷︷︸
back propagation

Σ̂ω︸︷︷︸
reflection

Ĝω︸︷︷︸
direct propagation

,

where Ĝω is a P × N matrix defined by (Ĝω)pn :=

Ĝ(xn, sp;ω) and Σ̂ω is a P × P symmetric matrix

(Σ̂>ω = Σ̂ω) which represents the reflections on the
scatterers. The latter matrix depends on the choice
of an asymptotic model for the scatterers. In the
simplest case (no interaction between the scatterers),
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this is a diagonal matrix composed of the reflection
coefficients of the scatterers. The more elaborate
Foldy–Lax model [1] takes into account isotropic in-
teractions.

The DORT method consists in a Singular Value
Decomposition (SVD) of Ŝω:

Ŝω = P̂ω D̂ω Q̂
>
ω , (2)

where D̂ω, P̂ω, Q̂ω are respectively the diagonal ma-
trix of singular values, the matrices of the left and
right singular vectors. It is now well understood
([2], [3]) that in a homogeneous medium, for distant
enough scatterers, the number of nonzero singular
values of Ŝω coincide with the number of scatterers.
Moreover if such a singular value λp(ω) is simple, the
associated right singular vector q̂p(ω) (pth column of

Q̂ω) generates a wave which focuses selectively on one
scatterer, say sp.

2 Space-time focusing

Suppose that in a given frequency band [ω1, ω2]
(imposed by the physical properties of our array), we
know a right singular vector q̂p(ω) ∈ CN associated
with the pth obstacle. How can one choose a function
A(ω) defined on the frequency band such that the
superposition of the time-harmonic input signals:

qp(t) = Re

∫ ω2

ω1

A(ω) q̂p(ω) e−iωt dω (3)

generates an incident wave which focuses not only in
space near sp, but also in time?

We look for a function A as a product A(ω) =
χ(ω)eiφ(ω) with χ a given real cutoff function and φ
an unknown phase. This is a problem of frequency
phase synchronization. The phase choice that we
propose is based on a particular SVD of the scat-
tering operator related to its symmetry. Ŝω is a sym-
metric operator, therefore up to a change of sign,
there exists a unique φ ∈ [−π, π[ such that

Ŝω eiφ(ω)q̂p(ω) = λp(ω) eiφ(ω)q̂p(ω), (4)

eiφ(ω)q̂p(ω) is then a right singular vector of a sym-

metric SVD of Ŝω: Uω Dω U
>
ω . Does this signal yield

an optimal focusing? We did not succeed in finding
a mathematical functional representing the focusing
quality which would be maximal for this particular
choice. But several arguments are pointing in that
direction.

The first one is heuristic. As the time reversal op-
eration J : f(t) 7→ f(−t) becomes a complex conjuga-
tion in the frequency domain, we see with (4) that at
each frequency, the measure of the scattered field is
(up to a positive real factor λp(ω)) the time reversed
emitted signal. This temporal symmetry synchro-
nizes the spectral components of the emitted wave at
the focusing time t = 0. The mathematical counter-
part of this property lies in the fact that the input sig-
nal qp is closed (for the L2 norm) to an eigenfunction
of the operator J S related to a positive eigenvalue.

The second one is related to the well-known time-
reversal experiment: a time-reversed wave back-
propagates towards the source. In this sense, the
time-reversed Green function G emmited at sp is
some kind of optimal space-time focusing wave. We
have checked that for high ω, the phases given by (4)
become close to those of the frequency components
of the measures of the time-reversed Green function.

The last arguments are numerical experiments
which confirm these focusing properties. In partic-
ular, we have measured the focusing quality of (3) by
means of an energy criterion. We compute the ratio
of the local acoustic energy contained in a box which
surrounds the obstacle sp by the total energy sent by
the transducers during the emission.

Figure 1: Comparison with a referencee signal built

with the obstacle position in the case of two scatterers
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Shape Identification of Diffraction Gratings from Spectral Data: The TM Case
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1 Abstract

We consider the shape identification problem of
diffraction gratings from measured spectral data in-
volving of scattered electromagnetic waves. The
model problem that we study here is motivated by
the important applications of such structures in op-
tics. Recently, the Factorization method, introduced
in [3], has been extended to periodic inverse scatter-
ing problems as a tool for imaging. In [1], [2] the au-
thors studied the Factorization method for the imag-
ing problem of impenetrable periodic structures with
Dirichlet and impedance boundary conditions. The
paper [4] considered imaging of penetrable periodic
interfaces between two dielectrics in two dimensions.
In the present work, the Factorization method has
been studied for identifying shape of diffraction grat-
ings constituted by penetrable periodic dielectrics
mounted on a metallic plate. Further, we consider
the problem of TM modes instead of TE modes stud-
ied in the previous works. We provide a rigorous
analysis for the method as well as numerical experi-
ments to examine its performance.

2 Problem Formulation

An important class of diffraction gratings are in-
variant in one direction and periodic in the orthog-
onal direction. For these structures, the direct and
inverse electromagnetic scattering problems decouple
into two scalar problems, if the wave vector of the in-
cident field is orthogonal to the invariant axis of the
grating. Here, we consider one of the two scalar re-
duced problems corresponding to the TM mode,

div(a∇u) + k2u = 0 in R2
+ = {(x1, x2)

T , x2 > 0},
a∂u/∂ν = 0 on Γ0,

where Γ0 := {(x1, x2)
T : x1 ∈ (−π, π), x2 = 0}. The

periodic refractive index is a ∈ L∞(R2
+), ℜ(a) ≥ c >

0. Further, a(x1 + 2π, x2) = a(x1, x2) for (x1, x2)
T ∈

R2
+ and a = 1 outside the grating. The wave number

is denoted by k > 0. For α ∈ (−k, k) fixed through-
out this paper, n ∈ Z, we denote αn = α+ n, and

βn :=

{√
k2 − α2

n, k2 ≥ α2
n,

i
√
α2

n − k2, k2 < α2
n,

Further assume that k2 6= α2
n for all n ∈ Z which

means βn 6= 0. We use plane waves as incident fields,

ui
n = ei(αnx1−βjx2) + ei(αnx1+βnx2), n ∈ Z.

Those are α-quasiperiodic, i.e.,

ui
n(x1 + 2π, x2) = e2πiαui

n(x1, x2),

and satisfy the Neumann boundary condition
∂ui

n/∂ν = 0 on Γ0. Further, we require that the scat-
tered fields us

n := u−ui
n are also α-quasiperiodic and

satisfy the Rayleigh expansion radiation condition

us
n(x) =

∑

j∈Z
cn,je

iαjx1+iβj(x2−h) for x2 > h.

The numbers {cn,j}j∈Z form the Rayleigh sequence
of us

n. The differential equation for us
n is hence

div(a∇us
n)+k2us

n = −div(q∇ui
n), subject to a∂2u

s
n =

−a∂2u
i
n = 0 on Γ0. For a variational formulation,

we define the bounded domain Ωh := (−π, π) ×
(0, h), Γh := (−π, π) × {h}. The quasiperiodic
Sobolev space H1

α(Ωh) := {u ∈ H1(Ωh) : u =
U |Ωh

for some α-quasip. U ∈ H1
loc(R2)}. Denote

by q := a − 1 the contrast, the variational prob-
lem for the scattered field is to find us

n ∈ H1
α(Ωh)

solving the following source problem for the source
f =

√
|q|∇ui

n ∈ L2(Ωh)2: Find v ∈ H1
α(Ωh) such

that
∫

Ωh

(a∇v · ∇φ− k2vφ)dx−
∫

Γh

φT (v)ds

= −
∫

Ωh

q/
√

|q|f · ∇φdx for all φ ∈ H1
α(Ωh).

(1)

Here, for φ̂j =
∫ 2π
0 φ(t)e−iαj tdt,

T : φ 7→ i
∑

j∈Z
βj φ̂je

iαjx1

is the Dirichlet-to-Neumann operator on Γh. Ex-
istence theory for this problem can be derived by
Fredholm’s alternative. In the sequel, we will as-
sume that (1) is uniquely solvable for any f ∈
L2(Ωh)2. Then we can define a solution operator
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G : L2(Ωh)2 → ℓ2 which maps f to the Rayleigh
sequence (vj)j∈Z of v ∈ H1

α(Ωh), solution to (1).
Due to the linearity of the scattering problem, the

scattered field resulting from a linear combination
of several incident fields is the corresponding linear
combination of the scattered fields. We obtain such
linear combination using sequences (an)n∈Z ∈ ℓ2 and
define the corresponding operator by

H(an) =
√

|q|
∑

n∈Z
an∇ui

n|Ωh
,

In our inverse problem the data operator, due to the
near field measurement methodology, is usually re-
ferred to as the near field operator, denoted by N .
We define N : ℓ2 → ℓ2 to map a sequence (an) to
the Rayleigh sequence of the scattered field caused
by the incident field H(an) above. Then

N = GH.

Our imaging problem is now to reconstruct the sup-
port D of the contrast q = a− 1 when the near field
operator N is given. We solve this problem using the
Factorization method that factorizing the near field
operator is one of the important steps.

3 Main Results

Denote by H∗ : L2(Ωh)2 → ℓ2 the L2-adjoint to H.
Theorem 1. The near field N satisfies

N = H∗TH, where T involves the solution op-
erator to the variational formulation (1).

Under the assumption that ℜ(q) ≥ c > 0 and
ℑ(q) ≤ 0, the ranges of H∗ : L2(Ωh)2 7→ ℓ2 and

N
1/2
♯ : ℓ2 7→ ℓ2 coincide. It is moreover a classical

result that the sequence

(rn(z)) := e−i(αnz1+
√

k2−α2
nz2)/

√
k2 − α2

n, n ∈ Z,

belongs to range of H∗ if and only if z belongs to D.
Finally, the main result is the following.

Theorem 2. Assume that ℜ(q) ≥ c > 0 and
ℑ(q) ≤ 0, and that (λj , (ψj,n)) is the eigensystem
of N♯. Then z is in D if and only if

∑∞
j=1

|〈rn(z), ψj,n〉|2/λj < ∞.

Figures 1 and 2 contain two numercial examples for
imaging of sine-profile grating and piecewise linear
grating for wave number k = 3.5. These numerical
examples use data generated by a volume integral
equation method [5].
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Figure 1: q = 1.5, 2% noise
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Figure 2: q = (x2 + 1)(sin2(x1) + 0.5) − 2i, 2%
noise
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Applications of elliptic operator theory to the interior transmission eigenvalue problem
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Introduction

The talk concerns isotropic interior transmission
eigenvalue (ITE) problem. This problem is not el-
liptic, but we show that, using the Dirichlet-to-
Neumann map, it can be reduced to an elliptic one.
This leads to the discreteness of the spectrum as well
as the existence of at most a finite number of eigen-
values inside any closed sector of complex plane that
does not contain real positive semi-axis. If the re-
fraction index n(x) is real, we get a result on the
existence of infinitely many positive ITEs and lower
bounds of the Weyl type on its counting function.
All the results are obtained under the assumption
that the index of refraction n(x)−1 does not vanish
at the boundary of the obstacle or it vanishes iden-
tically, but its normal derivative does not vanish at
the boundary. We consider the classical transmission
problem as well as the case when the inhomogeneous
medium contains an obstacle. Some results on the
discreteness and localization of the spectrum are ob-
tained for complex valued n(x).

Main results

Let us recall that λ ∈ C is called an interior trans-
mission eigenvalue (ITE) if the homogeneous prob-
lem

−∆u− λu = 0, x ∈ O, u ∈ H2(O), (1)

−∆v − λn(x)v = 0, x ∈ O, v ∈ H2(O), (2)

u− v = 0, x ∈ ∂O,
∂u
∂ν − ∂v

∂ν = 0, x ∈ ∂O, (3)

has a non-trivial solution. Here O ⊂ Rd is a bounded
domain, H2(O), Hs(∂O) are the Sobolev spaces,
n(x) 6= 0, x ∈ O, and ν is the outward unit normal
vector.

Problem (1)-(3) appears naturally when the scat-
tering of plane waves is considered, and the inhomo-
geneity in Rd is located in O and is described by the
refraction index n. We also consider the case when
O contains a compact obstacle V ⊂ O, ∂V ∈ C∞. In

this case, equation (2) is replaced by

−∆v − λn(x)v = 0, x ∈ O\V, v ∈ H2(O\V);
v(x) = 0, x ∈ ∂V,

while equation (1) remains valid in O.
There are many results on the discreteness of ITEs,

their location, and estimates on positive ITEs un-
der some specific assumptions on n(x). Similar re-
sults are obtained in the case of anisotropic media.
Recently we showed [1-3] that the proofs of many
results on the discreteness and localization of ITEs
in the anisotropic case can be simplified and the re-
sults can be extended using the parameter-ellipticity
of the anisotropic problem. We also suggested a new
approach to study the Weyl type estimates on posi-
tive ITEs. While the problem in the anisotropic case
is elliptic, it is not symmetric, and the existence of
positive ITEs and estimates on positive eigenvalues
are based on the study of the spectrum of the opera-
tor, which is the difference between the Dirichlet-to-
Neumann map for equations (1) and the Dirichlet-
to-Neumann map for the anisotropic analogue of (2).
The talk will be devoted to the extension of our re-

sults to the isotropic problem (1)-(3). The isotropic
problem is more complicated since it is neither ellip-
tic, nor symmetric. The properties of its spectrum
can not be obtained by soft arguments.
We prove that the set of the ITEs is discrete when

n is complex-valued and either

n(x)− 1 6= 0, x ∈ ∂O, (4)

or

n(x)− 1 ≡ 0,
∂

∂ν
n(x) 6= 0, x ∈ ∂O. (5)

We show that there are at most finitely many ITEs
in any closed sector Λ ∈ C if it does not contain any
points of the following set N :

N = {1} ∪
{

1

n(x)
, x ∈ ∂O

}
. (6)

In the case of real refraction index n(x), x ∈ ∂O, it
means that Λ

⋂
R+ = ∅.
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We also prove the existence of infinitely many real
ITEs when n(x)>0, x∈O, is a real function and

γ := σ

(
V ol(O)−

∫

O\V
nd/2(x)dx

)
> 0,

where

σ = sgn(n(x)− 1), x ∈ O, dist(x, ∂O)¿ 1, (7)

is the sign of n− 1 in a neighborhood of ∂Ω strictly
inside of Ω. The constant σ is well defined due to
the conditions imposed on n. Moreover, we obtain
the following Weyl type lower bound on the counting
function NT (λ) of the positive ITEs:

NT (λ) ≥
ωd

(2π)d
γλd/2 +O(λ(d−1)/2), λ→∞,

where ωd is the volume of the unit ball in Rd.

Let

F (λ), Fn(λ) : H
3/2(∂O)→ H1/2(∂O) (8)

be the Dirichlet-to-Neumann map for equations (1)
and (2), respectively. If λ = λ0 is not a pole of either
F (λ) or Fn(λ) (i.e., λ0 is not an eigenvalue of the
Dirichlet problem for equation (1) or (2)), then λ0 is
an ITE if and only if operator F (λ0)− Fn(λ0) has a
nontrivial kernel. Operators (8) are elliptic pseudo
differential operators (p.d.o.) of the first order, but
their principal symbols are canceled when the dif-
ference is taken. Our approach is based essentially
on the fact that operator Fn(λ)− F (λ) is an elliptic
p.d.o. of order −1 or −2 with the principal symbol

(1− n(x)) λ

2|ξ| , if (4) holds,

1

4

∂n(x)

∂ν

λ

|ξ|2 , if (5) holds.

Here x ∈ ∂O, ξ ∈ Rd−1.

We also hope to discuss some results on the com-
pleteness of eigenfunctions.
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Abstract

We consider the problem of detecting and imag-
ing extended reflectors submerged in a homogeneous
two-dimensional waveguide, using acoustic waves
produced by an active array. We assume that the
available data is the array response matrix for the
scattered field. We use the Kirchhoff migration imag-
ing functional and an alternative one, based on the
projection of the response matrix on the propagating
modes. Our main goal is to examine the behavior of
the imaging functionals when selective imaging tech-
niques are used in order to focus in different parts of
a single extended scatterer. We present the outcome
of some numerical experiments and analyze theoreti-
cally the imaging method for a simplified model prob-
lem where the scatterer is a vertical one-dimensional
perfect reflector. In this case, we derive a relation be-
tween the number of significant singular values of the
array response matrix and the size of our scatterer.

Introduction

We consider an acoustic waveguide consisting of
a single homogeneous water layer confined above by
the sea surface and below by the seafloor, both as-
sumed to be horizontal, see Figure 1. Our data for
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Figure 1: Schematic representation of our
waveguide problem and of the array imaging setup.

solving the inverse problem is the array response ma-
trix whose elements, Π(~xs, ~xr, t), correspond to the
‘scattered’ acoustic pressure field recorded as a func-
tion of time t at receiver location ~xr and due to a
pulse emitted from a source located at ~xs. The re-

flector that we wish to image is an acoustically hard
scatterer occupying the domain O.

Moreover, we are interested in imaging specific
parts of extended reflectors. A way to achieve this is
by a selective imaging technique called the subspace
projection method [1]. This method is based on the
singular value decomposition (SVD) of the array re-
sponse matrix which was originaly used in the DORT
method [3] to achieve selective focusing in the case
of multiple point (or small) scatterers.

1 Imaging

Here we will specifically consider the Kirchhoff mi-
gration (KM) functional, see e.g. [2], to create an
image, defined for some ~y s ∈ S and for a single fre-
quency ω as

IKM(~y s, ω) =
N∑

r=1

Ĝ0(~xr, ~y
s, ω)

N∑

s=1

Π̂(~xr, ~xs, ω) ×

× Ĝ0(~xs, ~y
s, ω), (1)

where the bars denote complex conjugation and
Π̂(~xr, ~xs, ω) is the Fourier transform of Π(~xr, ~xs, t).
In (1), Ĝ0 is a model for the Green’s function in the
propagation medium defined in our case as

Ĝ0(~x, ~xs, ω) =
i

2

∞∑

n=1

eiβn|z−zs|Xn(xs)Xn(x). (2)

Here k is the wavenumber, µn, Xn are the eigen-
values and corresponding orthonormal eigenfunctions
of the operator −d2/dx2 in H2(0, D) ∩ H1

0 (0, D),

βn =

{ √
k2 − µn, 1 ≤ n ≤M,

i
√
µn − k2, n ≥M + 1,

are the horizontal

wavenumbers, and M is the number of propagating
modes. In the case where the array spans the whole
depth of the waveguide and the inter-element array
distance h is small enough, we introduce an M ×M
matrix P̂(ω), with entries

P̂mn(ω) = βmβn

∫ D

0

∫ D

0
Π̂(~xs, ~xr, ω)Xm(xs)Xn(xr)dxsdxr.
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Then we use for imaging the following functional:

ĨKM(~y s, ω) = − 1

4h2

M∑

m,n=1

e−i(βm+βn)|za−zs| ×

× Xn(xs)Xm(xs)P̂mn(ω). (3)

1.1 Selective imaging

The main idea behind selective imaging lies in com-
puting the SVD of the matrix P̂(ω) and use a filtered
version of it to create the image. If we write the SVD
of P̂(ω) as a sum of the form: P̂(ω) =

∑ρ
i=1 σiUiV

∗
i ,

where ρ = rank(P̂(ω)), then a filtered version of P̂(ω)
may be written as D[P̂(ω)] =

∑ρ
i=1 diσiUiV

∗
i , where

di ∈ {0, 1} are the filter weights. Then we define

ĨKM,f(~y s, ω) = − 1

4h2

M∑

m,n=1

e−i(βn+βm)|za−zs| ×

× Xn(ys)Xm(ys)
(
D[P̂(ω)]

)
mn

.(4)

The corresponding multiple-frequency versions of the
imaging functionals are obtained by summing over
the bandwidth B and then taking the absolute value,

IKM(~y s) =

∣∣∣∣
∫

B
IKM(~y s, ω)dω

∣∣∣∣ , (5)

ĨKM(~y s) =

∣∣∣∣
∫

B
ĨKM,f(~y s, ω)dω

∣∣∣∣ . (6)

2 Numerical results

In Figure 2, we plot the values of the filtered ver-
sion of (1) (left column) and the values of (6) (right
column) for a square shaped scatterer with sidelength
b = 40 m located 450 m far from the array. Here the
central frequency is 75 Hz with corresponding wave-
length λ0 = 20 m and the bandwidth is B = 10 Hz.
The depth of the waveguide is D = 200 m and the
sound speed is c0 = 1500 m/s. Here J indicates the
image produced by projecting on the J-th singular
vector. We observe that the two functionals behave
differently as a function of J . As J increases, ĨKM

focuses at the front edges of the square.

3 Theoretical analysis

We analyze the proposed imaging method for a
simplified model of a vertical one-dimensional reflec-
tor of width b, and we show that the number of ‘sig-
nificant’ singular values of P̂(ω) is equal to [ b

λ/2 ], that
is, the size of the reflector divided by the array res-
olution λ/2. This result has been recently proven in
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Figure 2: Filtered version of IKM (left column)
versus ĨKM (right column) for a square scatterer.

free space (cf. [1, §4.5.2]), but, to the best of our
knowledge, it is a new result for waveguides. For the
example shown in Figure 2 this number is equal to 4.
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Abstract

The time-reversed absorbing conditions (TRAC)
method introduced in [2] enables one to “recreate the
past” without knowing the source which has emitted
the signals that are back-propagated. It has been
applied to inverse problems for the reduction of the
computational domain size and for the determination
of the location and volume of an unknown inclusion
from boundary measurements. The method does not
rely on any a priori knowledge of the physical prop-
erties of the inclusion. Here we extend the TRAC
method to the situation of partial aperture with dis-
crete receivers. In particular, the TRAC method is
applied to the discrimination between a single inclu-
sion and two nearby inclusions. Our numerical re-
sults show that the TRAC method is rather insensi-
tive to noise in the data.

Introduction

Since the seminal paper by Fink et al. [3], time
reversal has been a subject of active research. The
main idea is to take advantage of the reversibility of
wave propagation, as it occurs in acoustics, elastic-
ity or electromagnetism in a non-dissipative unknown
medium to back-propagate signals to the sources that
emitted them.

In [2], we introduce the time-reversed absorb-
ing conditions (TRAC) method which enables one
to “recreate the past” without knowing the source
which has emitted the signals that are back-
propagated. It has been applied to inverse problems
for the reduction of the computational domain size
and for the determination of the location and vol-
ume of an unknown inclusion from boundary mea-
surements.

In this paper, we extend the TRAC method to the
situation of partial aperture with discrete receivers.
In particular, the TRAC method is applied to the
discrimination between a single inclusion and two
nearby inclusions, see also [1].

1 Principle of the TRAC method

We consider an incident wave uI impinging on an
inclusion D characterized by different physical prop-
erties from the homogeneous surrounding medium.
The total field uT can be decomposed into the in-
cident and scattered fields, so uT = uI + uS . For
simplicity, we consider the problem in two space di-
mensions and assume that the total field satisfies the
linear wave equation:

∂2uT

∂t2
− c2∆uT = 0 in R2 (1)

together with homogeneous initial conditions. The
scattered field uS has a finite energy at any time.

Let ΓR be a curve that defines a bounded domain
Ω and encloses the inclusion D (see Figure 1). Af-
ter a time Tf , the total field uT is negligible in Ω.
The scattered field uS is recorded on ΓR on the time
interval [0, Tf ]. Let uSR := uS(Tf − t, ~x) denote the
scattered time reversed field which also satisfies (1).

Ω

D

Bρ

O

ΓR

Figure 1: Geometry

Our aim is to reconstruct the time reversed field
uSR from the measurements on ΓR. For this purpose,
we derive a boundary value problem whose solution is
uSR in Ω. Yet we know neither the physical properties
nor the exact location of the inclusion D, but only
the physical properties of the surrounding medium.
Therefore, we introduce a subdomain B which en-
closes the inclusion D. Then, we have to determine
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a boundary condition for uSR on the boundary ∂B so
that the solution to this problem will coincide with
uSR restricted to Ω \B.

Let us choose B as a ball of radius r. On ∂B, we
approximate the radiation condition satisfied by uS

with the first-order Bayliss-Turkel (BT 1) absorbing
boundary condition:

ABC(uS) :=
∂uS

∂t
+ c

∂uS

∂r
+ c

uS

2r
= 0 on ∂B (2)

Next we “time reverse” this relation using uSR(t, ·) =
uS(Tf−t, ·). In doing so, we note that ∂/∂r = −∂/∂n
on ∂B where n is the outward normal to Ω\B. Hence
we obtain:

TRAC(uSR) :=
∂uSR
∂t

+ c
∂uSR
∂n

− c
uSR
2r

= 0 . (3)

Hence the time reversed problem for the scattered
field, analogous to (1), reads:




∂2uSR
∂t2

− c2∆uSR = 0 in (0, Tf )× Ω \B
TRAC(uSR) = 0 on ∂B

uSR(t, ~x) = uS(Tf − t, ~x) on ΓR

homogeneous initial conditions.

(4)

Note the “anti-absorbing” term (−cuSR/2r) in the
TRAC condition.

2 Discrimination between one and two
nearby inclusions

Here we consider the partial aperture case with dis-
crete receivers and denote by vSR the solution of (4).
Hence, vSR does not correspond to the time reversal
of the scattered field but only to its approximation
within the convergence cone defined by the aperture
of the source-receivers array.

To quantify the discrimination error, we introduce
a criterion from reverse time migration (RTM) tech-
niques. The cross-correlation fonction we use reads:

f(~x) :=

∫ t=Tf

t=0
vSR(Tf − t, ~x)× uI(t, ~x) dt . (5)

It is used throughout Ω \B to image the interface of
the inclusion which has been highlighted by the inci-
dent wave uI . From 5, we infer the cross-correlation
criterion JCC :

JCC(B) :=

∥∥∥
∫ t=Tf
t=0 vSR(Tf − t, .)× uI(t, .) dt

∥∥∥
L∞(Ω\B)∥∥∥

∫ t=Tf
t=0 |uI(t, .)|2 dt

∥∥∥
L∞(Ω)

.

(6)

Figure 2 illustrates the result of the discrimination
between one single inclusion (right column) and
two a-half-wavelength separated inclusions (left
column). Here we compare the result of the TRAC
method with two connected subdomains B (bottom
line) to the classical case (top line), i.e. B = ∅.
The remaining signal on the bottom-left picture is
significatively smaller than that on the bottom-right;
thus, we enclose correctly all the inclusions on the
left, not on the right. However, the BT1 boundary
condition shows its limits, because it does not take
into account interactions between both inclusions.
Therefore, we work on the improvement of the
discrimination accuracy by including absorbing
boundary conditions for multiple scattering [4] to
the TRAC method.

Figure 2: Cross-correlation fonction f . Left: two
inclusions; right: single inclusion. Top: classical

case; bottom: TRAC with two disjoint subdomains
B, TRAC condition from BT 1 boundary condition.
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Abstract

In coherent x-ray imaging one has to reconstruct
the boundary values of a solution to the Helmholtz
equation in a half-space from measurements of the
squared absolute values g of the solution restricted to
a plane. Typically the Fresnel or Fraunhofer approx-
imations to the Helmholtz equation are applicable.
Data consist of photon counts, and the distribution
of the collected photons is described by a Poisson pro-
cess with intensity g. For inversion methods it is nat-
ural to use the negative log-likelihood as data misfit
functional. In expectation this yields the Kullback-
Leibler divergence up to an additive constant. Us-
ing a concentration inequality for Poisson processes
and regularization theory in Banach spaces we show
a convergence in expectation result for Newton-type
methods as the expected number of collected photons
tends to infinity.

1 X-ray diffraction imaging

In coherent x-ray diffraction imaging a sample is
illuminated by a coherent x-ray beam with the aim
is to retrieve information on the refractive index n of
the sample from measurements of the squared abso-
lute values of the field. The Maxwell equations re-
duce in good approximation to the Helmholtz equa-
tion

∆u+ κ2n2(x)u = 0 .

We assume a parallel incident beam moving in x3

direction, a bounded sample contained in the strip
{x ∈ R3 : x3 ∈ (−R, 0)} and measurements of
|u(x′,Γ)|2 for all x′ ∈ R2 at a distance Γ > 0. We
factor out the rapidly oscillating part of the solution
by writing u(x) = ũ(x) exp(iκx3), write down a dif-
ferential equation for ũ, divide by 2iκ, and neglect
all terms that vanish as κ → ∞. This yields the so-
called projection approximation uP of ũ also used in
x-ray tomography: ∂uP

∂x3
= iκ

2 (n2(x)−1)uP. As the re-
fractive index of matter for x-ray frequencies is very
close to 1 and <n ≤ 1, it is common to write

n(x) = 1− δ(x) + iβ(x), 0 ≤ δ, β � 1

Then n2− 1 ≈ −2δ+ 2iβ, and we obtain the approx-
imation

u(x′, 0) ≈ uP(x′, 0) (1)

≈ uP(x′,−R) exp

(
iκ

∫ 0

−R
(δ(x′, x3)− iβ(x′, x3))dx3

)
.

As n(x) = 1 for x3 ≥ 0, the Fourier transform
(Ff)(ξ) :=

∫
exp(−2πix′ · ξ)f(x′) dx′ with respect

to the first two variables yields (Fu(·, x3))(ξ) =

exp
(
ix3

√
κ2 − (2π|ξ|)2

)
(Fu0)(ξ) for ξ ∈ R2, x3 > 0

where u0(x′) := u(x′, 0). If |ξ| � κ for all ξ for which
|Fu0(ξ)| is not neglectible, we can use the Taylor

approximation
√
κ2 − (2π|ξ|)2 ≈ κ − (2π|ξ|)2

2κ to ob-
tain the Fresnel approximation (also called paraxial
or Schrödinger approximation) u ≈ uF defined by

uF(x′, x3) = eiκx3F−1
(
e−i2π

2 x3
κ |ξ|

2 · Fu0

)
(x′) . (2)

We introduce the chirp functions χα(x′) :=
exp

(
iαπ|x′|2

)
with parameter α ∈ C and note that

Fχiα = 1
αχi/α for <α ≥ 0, α 6= 0. An application of

the Fourier convolution theorem (first for =κ > 0 to
have an integrable convolution kernel) yields

uF(x′,Γ) = − iκ

2πΓ
eiκΓ

∫
χ κ

2πΓ
(x′ − y′)u0(y′) dy′ .

Expanding the square |x′ − y′|2 we obtain

|uF(x′,Γ)|2 =
(

κ
2πΓ

)2∣∣∣F
(
χ κ

2πΓ
u0

)(
κx′
2πΓ

)∣∣∣
2
=:(Hu0)(x′) .

Let us introduce b := sup{|x′| : x′ ∈ suppu0} and

the dimensionless Fresnel number f := κb2

2πΓ . If f� 1,
we have χ κ

2πΓ
u0 ≈ u0, and up to scaling the data are

given by the squared modulus of the Fourier trans-
form of u0 (Fraunhofer approximation).

The phase retrieval problem essentially consists
in inverting H and requires further infomation on
u0 (see [4] for uniquenss results). For example, we
may assume that β = 0 (phase objects) and de-
fine f(x′) := κ

∫ 0
−R δ(x

′, x3) dx3 as unknown. Then

u0 = eifuempty where uempty is the field at x3 = 0
without a sample, and the forward operator is

F (f) := H(eifuempty) .

Let f † be the exact solution and g† := F (f †).
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2 Poisson data

The (ideal) observations consist of the positions
x′1, . . . , x

′
N of photons in the detector plane {x : x3 =

Γ} where both the x′j and N are random. For funda-
mental physical reasons they are distributed accord-
ing to a Poisson point process with density tg† where
t > 0 can be interpreted as an exposure time. This
means in particular that E#{j : x′j ∈ Ω} = t

∫
Ω g
† dx

for all measureable Ω ⊂ R2. More generally, writing
Gt := 1

t

∑N
j=1 δx′j we have

E

∫
ψdGt =

∫
ψg† dx Var

∫
ψdGt = 1

t

∫
ψ2g† dx

whenever the integrals on the right hand side exist.
The latter identity indicates that t−1/2 can be inter-
preted as a noise level, but there is no pointwise noise
level or norm bound. We introduce the data-misfit
functional

S (Gt, g) :=

∫
g dx−

∫
ln (g + σ) (dGt + σdx)

with σ > 0 which is the negative log-likelihood func-
tional for σ = 0. The (deterministic) ideal data mis-
fit functional T

(
g†, g

)
:= ES (Gt, g) − ES

(
Gt, g

†)

is given by the (shifted) Kullback-Leibler divergence,
T
(
g†, g

)
= KL(g†+σ, g+σ). An essential ingredient

of our analysis is a uniform concentration inequality
for the error |S (Gt, g)−ES

(
Gt, g

†)−T
(
g†, g

)
| based

on results in [3], which is only available for σ > 0.

3 inversion methods and convergence results

We first consider a Tikhonov-type regularization:

f̂α ∈ argminf∈B
[
S (Gt, F (f)) + α‖f‖2L2

]
(3)

Unfortunately, (3) is a non-convex minimization
problem, and no globally convergent algorithms for
its solution are known. As an alternative, we con-
sider a Newton-type method: Choose αk = α0ρ

k for
some ρ ∈ (0, 1) and set

f̂k+1∈argmin
f∈B

[
S
(
Gt, F

′[f̂k](f−f̂k)+F (fk)
)
+αk‖f‖2L2

]

In each Newton step the solution to this convex op-
timization problem is computed using an algorithm
proposed in [1].

Theorem 1 Assume there exists β ∈ (0, 1] and a
concave, increasing function ϕ : [0,∞) → R with
ϕ(0) = 0 such that

β‖f − f †‖2 ≤ ‖f‖2 − ‖f †‖2 + ϕ
(
T
(
F (f †), F (f)

))

Figure 1: left: simulated phase object f †; middle:
data Gt with 106 expected photons in Fraunhofer
regime; right: Newton reconstruction f̂8, σ = 10−6

for all f ∈ B and that −1/α ∈ ∂(−ϕ)(t−1/2). Then

E‖f̂α − f †‖2 = O
(
ϕ
(
t−1/2

))
, t→∞ . (4)

For linear operator equations in Hilbert spaces vari-
ational formulations of source conditions as in this
theorem have been shown to be both necessary and
sufficient for certain rates of convergence.

Several extensions of this result are shown in [2],
[5]: The regularization parameter α can be chosen
adaptively without knowledge of the function ϕ by a
Lepskĭı rule. For more general nonquadratic convex
penalty terms we showed convergence rates with re-
spect to Bregman distances. Finally, similar rates of
convergence can also be shown for the Newton-type
iteration if an additional assumption concerning the
approximation quality of the first order Taylor ex-
pansion of F is imposed.
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Abstract

In this paper we explore the capacity of Qualita-
tive Inversion Methods to detect macroscopic cracks
or a lattice of small cracks in concrete-like materi-
als. These materials are difficult to probe since the
heterogeneities size inside the medium and the wave-
length of classically used sensors are of the same order
of magnitude. We shall demonstrate how this diffi-
culty can be avoided in the case of macroscopic cracks
by using so-called differential measurements and ap-
plication of the Linear Sampling Method. For a lat-
tice of small cracks we rather propose to construct a
macroscopic indicator based on the eigenvalues of a
suitable transmission problem.

Introduction

We are interested in using elastic waves to perform
complete non destructive testing of concrete-like ma-
terials. The main difficulty in controlling concrete is
its heterogeneous nature. Concrete is made of cement
paste, water and aggregates. After a drying period,
this mixture results in a heterogeneous material. As
far as waves propagation is concerned, the main char-
acteristics is the difference of celerity between aggre-
gates and cement paste, especially as the wavelength
and the size of the aggregates are similar, thus, in
what follows, we will model concrete as a biphasic
material.This concrete-like material has the following
properties: the celerity of pressure wave is 5700ms−1

in aggregates and 4300ms−1 in cement paste. Defect

Figure 1: Simulated concrete and numerical
set-up for direct and inverse problem

appears in concrete materials mainly in two forms.
First a lattice of small cracks which are located at
the interface between aggregates and cement paste.
When this lattice is too dense, a macroscopic crack

which has a length larger than the aggregates ap-
pears and grows until it reaches the surface. Those
two types of defects are of interest and we will ex-
pose our preliminary results on how to detect them.
Although waves in concrete are elastic, we start with
the simpler case of acoustic waves and postpone the
treatment of the elastic one. We therefore assume
that the pressure field, u is solution to the well-known
Helmholtz equations:





∆u+ k2nu = 0, u = ui + us in R2\Γ
lim
r→∞

√
r(∂u

s

∂r − ikus) = 0
∂u
∂ν = 0 on Γ

where Γ is the crack(s) inside the medium, ν is a unit
normal vector on Γ, n is the relative index with re-
spect to the celerity in the air and ui is the incident
field created by a point source located at the interface
air-concrete. For our numerical simulations, in order
to simulate the heterogeneities in concrete we used
synthetic geometries generated by [4] (See Figure 1,
left) and eliminated the aggregates, which have an

area smaller than λ2

102
, where λ = 2π

k . This results in
the medium represented by Figure 1, right. Accord-
ing to the remarks above, the index of the aggregates
equals 2, 8.10−3 and of the cement equals 4, 8.10−3.

1 The inverse crack problem

We here investigate the inverse problem of finding
cracks in concrete using the framework of the lin-
ear sampling method [5]. First we concentrate on
the macrocracks and then on the small cracks lat-
tice. We use multistatic measurements with sensor
(sources and receivers) located on the interface Σ be-
tween air and concrete, namely these measurements
are us(x, x0) x, x0 ∈ Σ. In the sequel we introduce
the subscript b which indicates the solution of the
direct problem without defect and the subscript h
which indicates the direct problem without defects
and aggregates. The function Φ(z, ·) denotes the fun-
damental outgoing solution with Dirac source at po-
sition z.
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Figure 2: Identification of cracks using Φb(left)
and Φh(right)

1.1 Macroscopic Cracks

We introduce the near field operator for
differential-measurements (i.e. measurements of
us and usb),

[Nbg](·) =

∫

Σ
[us(·, x0)− usb(·, x0)]g(x0)ds(x0)

Following the framework of the Linear Sampling
Method for cracks developed in [2], one can find the
support of the scattering crack, by looking for every
z at the value of ‖gz‖, where gz is the (regularized)
solution to [Nbgz](·) = ∂Φb

∂ν(z)(z, ·) (We refer to [2] for
the details on how one copes with the unknown nor-
mal ν(z)). Using this algorithm in our configuration
yields to a quite good reconstruction as demonstrated
by Figure 2 (left). However, although in practice usb
can be known in a differential measurement frame-
work, Φb will always be unknown. Considering gz
the solution of [Nbgz](·) = ∂Φh

∂ν(z)(z, ·) shows (Figure 2,

right) that the quality of the reconstruction consider-
ably deteriorates, although one can still distinguish
the existence of a defect different from aggregates
shape. This can be enough for qualitative inspection.
We shall explore in the near future how one can im-
prove the reconstruction by optimizing the choice of
the background as in [3]. We shall also numerically
analyze the feasibility of control with non-differential
measurements. Finally, on the theoretical level, sen-
sors at the interface are a realistic set up which is
not yet justified for the LSM and we shall seek for a
formal justification.

1.2 The case of lattice of microscopic cracks

When the cracks are small and numerous the LSM
algorithm would not be able to locate them even in
a differential setting. We shall rather use a macro-
scopic indicator based on the interior transmission
eigenvalues which are computable from the measure-
ments using following near field operator:

[Nhg](·) =

∫

Σ
[us(·, x0)− ush(·, x0)]g(x0)ds(x0)

With this operator, since it also contains the con-
tribution of the aggregates in the scattering effect,
LSM will produce a support that covers almost all
the heterogeneous material. It is well known [5] that
the LSM fails for some frequencies which are, in our
case, the eigenvalues of the following transmission
problem:





∆v + k2v = 0 in D
∆u+ nk2u = 0 in D\Γ
u = v, ∂u∂ν = ∂v

∂ν on ∂D
∂u
∂ν = 0 on Γ

where D will be the scatterer (including the aggre-
gates convex support and the cracks). Motivated by
[1], we shall investigate the evolution of those fre-
quencies with respect to the presence of cracks. In or-
der to ensure that first transmission eigenvalues stay
in the frequency range of the sources, we may intro-
duce an artificial contrast in the equation solved by
v, (characterized by an index na 6= n) localized in a
region of size comparable to the incident wavelength.
We finally recall that our interior transmission prob-
lem is still open in terms of existence and evolution
of the eigenvalues with respect to Γ.
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Abstract

In this paper we explore using the point source
method [1] to determine the location of a scattering
object from measurements of the total acoustic field
in a waveguide. The analysis of the method in the 2D
case is briefly discussed and sample numerical results
are presented.

Introduction

There has been a large development in the last fif-
teen years of new mathematical algorithms for acous-
tic inverse problems [1], [2], including applications to
problems of scattering in waveguides [3], [4]. Many
mathematical techniques for solving the inverse scat-
tering problem require large quantities of initial mea-
sured data, in particular this is true for the linear
sampling methods of [3], [4]. In contrast to this,
the point source method of Potthast [1] only requires
measurements of the total field for a single incident
field.

In this paper we consider the application of the
point source method [1] to inverse scattering in a
waveguide. We produce numerical examples for the
simplest case, when a sound-soft (Dirichlet) bound-
ary condition holds on the obstacle.

1 An Inverse Waveguide Problem

We consider a 2D sound-hard waveguide of fixed
height L > 0 (see Figure 1). We assume the incident
field, the field in the absence of a scattering object,
is time harmonic (e−iωt time dependence) and due to
a point source at z. Perhaps the simplest represen-
tation of this incident field is [6]

uik(x, z) :=
i

4

∞∑

m=−∞
H

(1)
0 (k|x− z(m)|)

+
i

4

∞∑

m=−∞
H

(1)
0 (k|x− ẑ(m)|)

with z(m) = (z1, z2 + 2mL) and ẑ(m) = (z1,−z2 +
2mL). This series converges if and only if the
wavenumber k = ω/c ∈ RL := R \ {nπL : n ∈ Z},
and we shall impose this condition on k for the rest
of this paper.

Figure 1: Waveguide setup

The direct scattering problem then entails calcu-
lating the total acoustic field Gk(·, z) as the sum of
the incident field and some scattered field usk(·, z) :=
Gk(·, z) − uik(·, z), given the geometry of the scat-
tering object Γ, and a boundary condition on the
acoustic field on its boundary, ∂Γ. We shall assume
the Dirichlet condition that the total acoustic field
vanishes on ∂Γ.

The inverse scattering problem we consider is to
locate the scattering object Γ based on measurements
of the total field.

2 The Point Source Method

Let m > z1 and assume we measure the to-
tal acoustic field along the finite vertical line γ =
{(m,x2) : 0 < x2 < L}. Following [1], [5] we initially
construct an approximation Gαk (·, z) to the total field
and then seek the location of the scattering object as
a minimum of |Gαk (·, z)|. To eliminate faux results,
i.e., minima created by the oscillatory behaviour of
the field, we note the merit of a time domain style
approach of considering several wavenumbers k and
calculating the minimum of

∑

k

|Gαk (·, z)|2 . (1)

We proceed by approximating the total field at a
point x∗. For h > x∗1, let Γ∗h denote the finite vertical
line Γ∗h = {(h, x2) : 0 < x2 < L}, and consider the
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integral equation∫

γ
uik(x, y)φx∗(y) ds(y) = uik(x, x

∗), x ∈ Γ∗h, (2)

in operator form Kφ∗ = g. This integral equation is
ill-posed; the inhomogeneous term g does not lie in
the range of K : L2(γ) → L2(Γ∗h). However, K has
dense range and so g lies in the closure of L2(Γ∗h).
Thus we can find a solution φαx∗ ∈ L2(γ) which solves
(2) to arbitrary accuracy. Standard results from the
theory of Tikhonov regularisation motivate finding
φαx∗ as the unique solution of

αφαx∗ +K∗Kφαx∗ = K∗g (3)

where K∗ denotes the adjoint of K and α > 0 is the
regularisation parameter.

Replacing the incident field uik(x, ·) with the scat-
tered field usk(x, ·) in (2), and using continuous de-
pendence results for the direct problem, we see that,
at least whenever Γ∗h lies to the left of Γ,

∫

γ
usk(z, y)φαx∗(y) dS(y) ≈ usk(z, x∗). (4)

Our method to approximate the total field G(x∗, z)
at a point x∗ in the domain is to first solve (3) and
then, using (4) and reciprocity, approximate the total
field by

Gαk (x∗, z) := uik(z, x
∗) +

∫

γ
usk(z, y)φαx∗(y) dS(y)

= uik(z, x
∗)

+

∫

γ

[
Gk(z, y)− uik(z, y)

]
φαx∗(y) dS(y).

In this last expression, Gk(z, y) = Gk(y, z), y ∈ γ, is
the (known) measured data.

3 Numerical results

In the numerical examples we take the height of
the waveguide as L = 3, locate the point source at
z = (−12.5, 2.1), and take ∂Γ to be the graph of the
function x1 = x22/9, for 0 < x2 < 3. The numeri-
cal implementation uses a boundary element method
to calculate “measurements” of the total field at 15
equally spaced points on the line x1 = −11.

Figure 2 shows, starting from the top, the recon-
structed total field |Gαk (·, z)|, in the part of the waveg-
uide −10 < x1 < 4, for k = 20π/11, k = 20

√
2π/11

and k = 40π/11. The fourth image is (1) for these
three wavenumbers and the final plot shows a pre-
diction of the location of ∂Γ obtained by plotting, on
each horizontal line, the minimum of (1).

Figure 2: Reconstructions, in −10 < x1 < 4, of
the total field and ∂Γ, from 15 measurements of the

total field on the line x1 = −11.
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The model problem that we consider in this paper
is the propagation of a time harmonic scalar wave in
a perfect 2D periodic waveguide. More precisely, we
shall assume that the geometry Ω = R×(0, 1) as well
as the material properties of the medium (typically
the refractive index) np ∈ L∞(Ω) - with np ≥ c > 0 -
are periodic in one direction (without loss of gener-
ality, we will suppose the period equal to 1) :

• Ω =
⋃

p∈Z
C + (p, 0) where C = (−1/2, 1/2) × (0, 1)

• np(x1 + 1, x2) = np(x1, x2), ∀(x1, x2) ∈ Ω.

The Green function of the periodic waveguide, de-
noted G(·, y) for y ∈ Ω is the outgoing solution of

{
−(△ + k2n2

p)G(·; y) = δy in Ω

∂νG(·; y) = 0 on ∂Ω
(1)

In order to define what ”outgoing” means in a peri-
odic waveguide, we use the limiting absorption prin-
ciple and define G(·, y) for y ∈ Ω as the limit when ǫ
tends to 0+ of Gǫ(·, y), unique solution in L2(Ω) of

{
−(△ + (k2 + ıǫ)n2

p)Gǫ(·; y) = δy in Ω

∂νGǫ(·; y) = 0 on ∂Ω
(2)

Using the Floquet modes of the periodic medium,
we are able to give a semi-analytic expression of the
”outgoing” Green function. We investigate then the
asymptotic behaviour of the Green function, i.e. the
radiation condition when x1 tends to ±∞ . We finally
show the uniqueness of the ”outgoing” solution of
the Helmholtz equation set on a periodic waveguide,
satisfying this radiation condition.

1 Limiting absorption principle

Using the Floquet Bloch Transform in the x1-
direction and the well posedness in L2(Ω) of problem
(2), it is easy to show that ∀(x, y) ∈ C, ∀(p, q) ∈ Z,

Gǫ(x1 + p, x2; y1 + q, y2) =

1

2π

∑

n∈N

∫ π

−π

ϕn(x; ξ)ϕn(y; ξ)

λn(ξ) − (k2 + ıǫ)
eı(p−q)ξdξ (3)

where, for all ξ ∈ (−π, π), λn(ξ) is the n-th eigen-
value and ϕn(·; ξ) an associated eigenvector of the
self-adjoint and positive operator

A(ξ) = − 1

n2
p

△

D(A(ξ)) = {u ∈ H2(C), such that ∂νu|∂C∩∂Ω = 0

and
u(1/2, x2) = eıξu(−1/2, x2)
∂x1u(1/2, x2) = eıξ∂x1u(−1/2, x2)

}.

We can easily show that for all n ∈ N and ξ ∈ (−π, π)

λn(ξ) = λn(−ξ). (4)

Let us define the finite sets

I(k) = {n ∈ N, ∃ ξ ∈ (−π, π), λn(ξ) = k2}
and for n ∈ I(k)

Ξn(k) = {ξ ∈ (−π, π), λn(ξ) = k2}.
Note that if ξ is in Ξn(k), −ξ is too.

Using the abstract result of [3], or the more
explicit result of [2], the limiting absorption prin-
ciple can be shown except for a countable set of
frequencies

σ0 =
{
k ∈ R+, ∃ n ∈ I(k), ∃ ξ ∈ Ξn(k), λ′

n(ξ) = 0
}

Theorem 1 For all k /∈ σ0, y ∈ Ω and p ∈ Z

lim
ǫ→0

‖G(·; y) − Gǫ(·; y)‖L2(C+(p,0)) = 0

where G(·; y) is a solution of (1) and defined by
∀(x, y) ∈ C, ∀(p, q) ∈ Z,

G(x1 + p, x2; y1 + q, y2) =

1

2π

∑

n/∈I(k)

∫ π

−π

ϕn(x; ξ)ϕn(y; ξ)

λn(ξ) − k2
eı(p−q)ξdξ

+
1

2π

∑

n∈I(k)

[
p.v.

∫ π

−π

ϕn(x; ξ)ϕn(y; ξ)

λn(ξ) − k2
eı(p−q)ξdξ

+ ıπ
∑

ξ∈Ξn(k)

ϕn(x; ξ)ϕn(y; ξ)

|λ′
n(ξ)| eı(p−q)ξ

]
. (5)
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2 Asymptotic behaviour of the Green func-
tion

In the following k /∈ σ0, y ∈ C and q ∈ Z. To prove
the asymptotic behaviour of the Green function, the
main property is the C∞-regularity of the eigenvalues
ξ 7→ λn(ξ) and of the eigenvectors ξ 7→ ϕn(ξ) with
respect to ξ for n ∈ I(k). Using [4], such property
holds except for a countable set of frequencies

σ̃0 = {k ∈ R+, ∃n,m ∈ I(k), ∃ξ, λn(ξ) = λm(ξ)}.

Then the proof relies on

• analyticity arguments to deal with the first sum,
denoted Ĝ, in the right hand side of (5). More
precisely, one shows that for all x ∈ C, p ∈ Z
and N ∈ N

Ĝ(x1 + p, x2; y1 + q, y2) = OL2

(
p−N

)
;

• non stationary phase theorem to deal with each
principal value, denoted G(n), of the second sum
in the right hand side of (5). More precisely, one
shows that for all n ∈ I(k), x ∈ C, p ∈ Z and
N ∈ N

G(n)(x1 + p, x2; y1 + q, y2) = OL2

(
p−N

)
+

+ ıπsign(p)
∑

ξ∈Ξn(k)

ϕn(x; ξ)ϕn(y; ξ)

λ′
n(ξ)

eı(p−q)ξ

Theorem 2 Suppose in the following k /∈ σ0 ∪ σ̃0,
y ∈ C and q ∈ Z. For all x ∈ C, p ∈ N and N ∈ N

G(x1 ± p, x2; y1 + q, y2) = OL2

(
p−N

)
+

+ ı
∑

n∈I(k)

∑

ξ∈Ξn(k)

±λ′
n(ξ)>0

ϕn(x; ξ)ϕn(y; ξ)

|λ′
n(ξ)| eı(p−q)ξ

For a given y, the Green function G(x, y) behaves
when x → +∞ (resp. x → −∞) as a linear combina-
tion of the Floquet modes ϕn(x, ξ) which propagate
to the right (resp. to the left) as λ′

n(ξ) > 0 (resp.
λ′

n(ξ) < 0).

3 Radiation condition and uniqueness of the
solution

We use the last result to define a radiation condi-
tion and establish, thanks to arguments used in [5],
the well-posedness of the Helmholtz equation set in
a periodic waveguide.

Definition 3 We say that u satisfies the outgoing
radiation condition if and only if there exist (u±

n )n
such that ∀x ∈ C, p ∈ N, N ∈ N

u(x1 ± p, x2) = OL2

(
p−N

)
+

+
∑

n∈I(k)

∑

ξ∈Ξn(k)

±λ′
n(ξ)>0

u±
n ϕn(x; ξ)eıpξ

Theorem 4 Suppose k /∈ σ0. Let u be a solution of

{
−(△ + k2n2

p)u = 0 in Ω

∂νu = 0 on ∂Ω

which satisfies the outgoing radiation condition.
Then u = 0.

4 Conclusions

This analysis is one of the main tool to solve
inverse problems in locally perturbed periodic
waveguide when the data are far field measurements
of scattering problems (see [1]).

One challenging perspective of this work is to
extend these results to periodic problems in free
space.
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de la propagation des ondes dans des milieux
périodiques localement perturbés, PhD Thesis
Ecole Doctorale de Polytechnique,May 2009.

[3] S. Z. Levendorskii, Acoustic waves in perturbed
periodic layer: a limiting absorption principle,
Asymptot. Anal. 16 (1998), no. 1, pp. 15–24.

[4] T. Kato, Perturbation theory for linear opera-
tors, Springer-Verlag, Classics in Mathematics,
Berlin, 1995.

[5] S.A. Nazarov and B.A. Plamenevsky, Elliptic
Problems in Domains with Piecewise Smooth
Boundaries, vol. 13 of de Gruyter Expositions
in Mathematics, Berlin, 1994.

SONIA FLISS AND PATRICK JOLY 146



On the far field of scattering solutions in a periodic waveguide. Part II : The inverse problem

L. Bourgeois∗, S. Fliss
Laboratoire POEMS, ENSTA ParisTech, 828, Boulevard des Maréchaux
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Introduction

In this paper, we consider the factorization method
to solve the inverse medium problem in a 2D periodic
waveguide. Our objective differs from [1] in the fol-
lowing sense: the aim of [1] is to recover the unknown
periodic boundary of the waveguide from scattering
data, while in the present paper the periodic waveg-
uide is known and our aim is, from the same data,
to recover a defect within such periodic waveguide.
Our paper can be considered as an extension of [2],
in which a homogeneous waveguide is considered. It
is based on the analysis conducted in [4] of the far
field of the Green function in a periodic waveguide.
Such analysis enables us to derive a modal formu-
lation of Kirsch’s factorization method [5], in which
the incident fields are formed by the Floquet modes.

1 Setting of the problem

In the framework of 2D acoustics, let us consider a
periodic waveguide Ω = R × (0, 1) of boundary Γ =
∂Ω and for j ∈ Z, Cj := Ω∩{x = (x1, x2), j− 1/2 <
x1 < j+1/2}. The background medium is character-
ized by a real refractive index np(x) ∈ L∞(Ω) which
satisfies np(x) ≥ c > 0 and np(x1+1, x2) = np(x1, x2)
for all (x1, x2) ∈ Ω. The Green function of the pe-
riodic waveguide, denoted G(·, y) for y ∈ Ω, is the
solution of the system




−(∆ + k2n2
p)G(·, y) = δy in Ω

∂νG(·, y) = 0 on Γ
G(·, y) satisfies RC for |x1| → +∞,

where ν is the outward unit normal to Ω and RC is
the radiation condition, which is specified in [4] and is
well defined except for k ∈ σ0, where the countable
set σ0 is defined by (4). Now let us consider the
forward scattering problem. Assume that a defect
lies within the periodic waveguide, in the cell C0 := C
without loss of generality, so that the effective real
refractive index n ∈ L∞(Ω) differs from np. More
precisely, there exists an open domain D such that
D ⊂ C coincides with the support of the contrast
q = n2 − n2

p. For sake of simplicity we assume that
q(x) ≥ c > 0.

For a given incident wave ui in Ω, that is a field
solving ∆ui + k2n2

pu
i = 0 in Ω and ∂νu

i = 0 on
Γ, the scattered field us is the solution in Ω of the
problem




−(∆ + k2n2)(us + ui) = 0 in Ω
∂νu

s = 0 on Γ
us satisfies RC for |x1| → +∞.

(1)
It results from [3] that the problem (1) is well-posed,
except for at most a countable set of k. In or-
der to introduce the inverse problem, for all ξ ∈
(−π, π) we denote by ϕn(·; ξ) and λn(ξ) the eigen-
functions and eigenvalues of the self-adjoint and pos-
itive operator A(ξ) = −∆ · /n2

p in L2(C, n2
p dx1dx2)

of domain D(A(ξ)) formed by the H2(C) functions
u that satisfy ∂νu = 0 on Γ and the pseudo-
periodicity conditions u(1/2, x2) = eiξu(−1/2, x2)
and ∂x1u(1/2, x2) = eiξ∂x1u(−1/2, x2) for x2 ∈ (0, 1).
With a correct choice of the ϕn, we have:

λn(−ξ) = λn(ξ), ϕn(·;−ξ) = ϕn(·; ξ). (2)

Defining the (finite) sets

I(k) = {n ∈ N, ∃ξ ∈ (−π, π), λn(ξ) = k2}

and for n ∈ I(k),

Ξn(k) = {ξ ∈ (−π, π), λn(ξ) = k2},

which is symmetric with respect to ξ = 0, the Floquet
modes un(·; ξ) are given for n ∈ I(k), ξ ∈ Ξn(k),
x ∈ C and p ∈ Z by

un(x1 + p, x2; ξ) = ϕn(x1, x2; ξ)eipξ,

which are particular incident waves. Let us con-
sider the transverse sections S+ and S− defined by
x1 = 1/2 + N and x1 = −1/2 −M for M,N ∈ N,
respectively. The inverse problem is as follows.

The inverse problem (IP). Assume that we mea-
sure on Ŝ := S− ∪ S+ the scattered fields usn(·, ξ) as-
sociated with the incident fields ui = un(·, ξ) for all
n ∈ I(k) and all ξ ∈ Ξn(k). The objective is to find
the support D of the defect from those measurements.
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2 The factorization method

In view to solve the inverse problem (IP), we de-
fine an intermediate scattering problem based on the
scattered fields us(·, y) solving (1) for the incident
fields ui = G(·, y) for y ∈ Ŝ. Introducing the near
field operator N : L2(Ŝ)→ L2(Ŝ) as

(Nh)(x) =

∫

Ŝ
us(x, y)h(y) ds(y), x ∈ L2(Ŝ),

by adapting the arguments of [5] to our problem, we
obtain that for every z ∈ Ω, we have

z ∈ D ⇔ G(·, z)|Ŝ ∈ R(N
1
2
] ), (3)

where N] is the self-adjoint and positive operator
|ReN |+ |ImN |.
From the analysis of [4] and assuming k /∈ σ0, where

σ0 = {k, ∃n ∈ I(k), ∃ξ ∈ Ξn(k), λ′n(ξ) = 0}, (4)

we obtain the following asymptotic behaviour of the
Green function G: ∀x, y ∈ C, ∀q ∈ Z, G(x1 ±
p, x2, y1 + q, y2) is approximated for large p ∈ N, up
to any power of p, by

G̃(x1 ± p, x2, y1 + q, y2) = i
∑

n∈I(k)

∑

ξ∈Ξn(k)λ′n(ξ)>0

u±n (x1 ± p, x2; ξ)u∓n (y1 + q, y2; ξ)

λ′n(ξ)
,

where u+
n (·; ξ) denote the Floquet modes un(·, ξ) with

λ′n(ξ) > 0 (they propagate from the left to the
right) while by using (2) u−n (·; ξ) := un(·,−ξ) =

u+
n (·, ξ) denote the corresponding Floquet modes

with λ′n(−ξ) < 0 (they propagate from the right to
the left). The scattered field us(·, y) is approximated
for large p ∈ N by the scattered field ũs(·, y) produced

by the incident wave ui = G̃(·, y). By linearity,

ũs(x1 ± p, x2, y1 + q, y2) = −i
∑

n∈I(k)

∑

ξ∈Ξn(k)λ′n(ξ)>0

us∓n (x1 ± p, x2; ξ)u±n (y1 + q, y2; ξ)

λ′n(ξ)
,

where us±n is the scattered field associated with the
incident field u±n .
The idea of the modal formulation of the factoriza-
tion method consists in replacing, in the characteri-
zation (3), the test function G(·, z)|Ŝ by its approxi-

mation G̃(·, z)|Ŝ and the operator N by the operator

Ñ the kernel of which is the scattering field ũs(·, y).

We hence remark that the operator Ñ only depends
on the data of our inverse problem (IP). Our method

consists in solving equation Ñ
1/2
] h = G̃(·, z)|Ŝ for all

z in a sampling grid of Ω and plotting the function
ψ(z) = 1/||h(z)||L2(Ŝ), which vanishes only outside
D. From the practical point of view such equation is
projected on a basis of the transverse sections S±.
With the help of the numerical tools developed in [3],
we produce artificial data for the periodic waveguide
below, for which the number of Floquet modes is 4.
The identification result with our sampling method
based on the scattered fields due to those Floquet
modes for (M,N) = (64, 61) and without noise is
given in the figure below.
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Abstract

This paper proposes to use observers to solve an in-
verse problem for the one-dimensional wave equation
where the source is unknown. The problem is first
discretized and then an adaptive observer is applied
to estimate both the states and the source. Results
of simulation are presented.

Introduction

The theory of observers is known since a long time
in systems theory for the estimation of the state of
dynamical systems from some measurements. How-
ever it is recently that the observers have been con-
sidered for systems governed by partial differential
equations [1]. Observers have been used to solve
some inverse problems for PDE [2], [3], [4] [5], in-
cluding inverse problems for the wave equation to
estimate some unknowns. In Ramdani et al [2], the
initial state of a distributed parameter system has
been estimated using two observers, one for the for-
ward time and the second for the backward time.
Similarly, Chapouly and Mirrahimi [3] estimated the
unknown source term using observers in the mini-
mal observation time. Their observer converged to
the real parameter thanks to forth and back itera-
tions approach. Chapelle et al [4] sought to esti-
mate the initial conditions using observer based on
measurements of the solution in a subset of the do-
main. Moireau et al [5] estimated the states and the
parameters using an observer depending on a space
discretization for a mechanical system. In addition,
they considered partial measurements of the deriva-
tive of the solution.

One advantage of using observers to solve inverse
problems is that it requires solving only direct prob-
lems which are in general well-posed and well stud-
ied. Moreover, unlike optimization based methods
(including regularization), observers operate recur-
sively which implies their implementation ease and
low computational cost especially when it comes to
high order systems. We propose in this paper to
start with fully discretized version of a one dimin-
sional wave equation and then to apply the adaptive
observer presented in [6] for the joint estimation of

the states and the source term from partial measure-
ments of the field. Adaptive observers are widely
used in control theory for parameter estimation in
adaptive control or fault estimation in fault detec-
tion and isolation [6].

1 Method

1.1 Problem

We consider the one dimensional wave equation
given by,





utt(x, t)− c2uxx(x, t) = f(x)
u(0, t) = g1(t), u(L, t) = g2(t)
u(x, 0) = r1(x), ut(x, 0) = r2(x)

, (1)

where x ∈ [0, L] is the space and t ∈ [0, T ] is the time.
g1(t) and g2(t) are the Dirichlet boundary conditions,
and f(x) is the source function that we assume for
simplicity independent on time.

We seek to solve the inverse source problem of (1)
using an adaptive observer with partial measure-
ments of the field u available. We first propose to
rewrite the system in an appropriate form by intro-
ducing two auxiliary variables v(x, t) = u(x, t) and
w(x, t) = ut(x, t) and let

ξ(x, t) =
[
v(x, t), w(x, t)

]T
. (2)

Therefore, system (1) can be written as follows,





∂ξ(x, t)

∂t
= Aξ(x, t) + F,

v(0, t) = g1(t), v(L, t) = g2(t),
v(x, 0) = r1(x), vt(x, 0) = r2(x),
Y = Hξ(x, t),

(3)

where A =

(
0 I

c2 ∂2

∂x2
0

)
, F =

(
0
f

)
, Y is the

output, and H is the observation operator such that

H = (Hd 0) where H =




0 · · · 0
... Id

...
0 · · · 0


 and d refers

to the number of measurements. Id is the identity
matrix of dimension d.
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System (3) is discretized using implicit Euler scheme
in time and central finite difference discretization for
space; thus, it can be written as,
{
ξj+1 = Gξj +Bf j + b,
Y j = Hξj , j = 1, 2, · · · , Nk

(4)

such that

G =

(
kE + I kI
E I

)
;

E =
c2k

h2




−2 1

1 −2
. . .

. . .
. . . 1
1 −2




;B =

(
k2I
kI

)
;

b is a term that includes the boundary conditions,
and Nk is the time grid size. Here h and k refer to
space step and time step respectively.

1.2 Observer design

As known in control theory, a state observer is a sys-
tem that provides an estimate of its internal state,
given measurements of the input and the output of
the real system. We propose to use an adaptive ob-
server for the joint estimation of the states v and w
and the source f . This observer has been proposed in
[6], and it has been developed for joint estimation of
the state and the parameters for a class of systems.
However, we propose to generalize the idea behind
this observer to estimate the input considering each
spatial sample of the input as an independent param-
eter. The adaptive observer is given by the following
system of equations,




ξ̂j+1 = Gξ̂j +BF̂ j + b+ (K + σjZjZj
T
HT )(Y − Ŷ ),

F̂ j+1 = F̂ j + σjZj
T
HT (Y − Ŷ )

Zj+1 = (G−KH)Zj +B,

Ŷ = Hξ̂(x, t),
(5)

where K is the observer gain matrix, σj a scalar gain,
and j = 1, 2, · · · , Nk. We point out that it has been
shown in [6] that for discrete finite dimensional sys-
tems, this observer converges exponentially. The dis-
cretization affects the convergence and we are cur-
rently studying this effect.

2 Numerical Results

Figure. 1 illustrates the efficiency of this observer
to estimate the source where Nk = 10000, and the
space grid size is Nh = 199. Moreover, the state is
estimated with relative error 0.09398.

0 0.5 1 1.5 2
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f

f̂

Figure 1: Real source (blue) and Estimated source
(red) using partial measurements (74% of the state

components taken from the end of the interval)
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Modeling of Imaging Method to Localize Targets Inside Buildings

B. Boudamouz, N. Maaref, P. Millot and X. Ferrieres

In this paper, we are interested in a MIMO radar sys-
tem to localize targets inside buildings. We describe the
principle of the method. Then, we show the advantages of
a MIMO architecture to localize targets in realistic condi-
tions.

1 Introduction

TTW (Through The Wall) surveillance is of great inter-
est for first-aid workers and security guards in situations
like rescue operations or hostages taking. This research
topic has been investigated since the last past decade [1].
Today, imaging methods to find targets inside buildings
are an important field of theorical research and techno-
logical developments [2], [3]. In this application, the key
factor is the wall as propagation through it, induces atten-
uation and distortion on the wave front. Thus, it should
be very efficient to take it into account in the modeling
process. However, in practice, it is very difficult to in-
troduce real wall effects in the inversion process, because
it is not generally well-known, specially for non homoge-
neous walls as brick or cinder block wall. Another way to
mitigate wall effects, is to use spatial diversity by using
MIMO concept. This concept in radar consists in using
information obtained from several transmitters and sev-
eral receivers located at differents positions. By this way,
propagation effects are averaged all through the set of an-
tennas. The goal of this paper is to show the interest of a
MIMO approach to localize targets into a room bounded
by concrete brick walls. The paper is split into 3 sec-
tions where we present, first, the principle of the imaging
methods used and in particular the MIMO approach [4].
Secondly, we present the test case studies and in a third
section we give the results obtained and in particular the
advantage of applying MIMO approach.

2 Principle of the radar imaging method

Basically, the radar imaging method consists in making
an image of the dielectric contrasts existing in a given do-
main Ω. To obtain this image we take some points source
and some points of measurements of the scattered fields in-
duced by the targets localized in the domain Ω considered.
The domain Ω is meshed by a set of NΩ points where signal
processings allow to test the existence of a target. Consid-
ering a source Si localized at a point xi, we assume that
the electric fields at a point x for a frequency f is given
by E(f, x) = E0e

−j2πf‖x−xi‖/c where E0 is the incident
amplitude field and c the speed of the light in the domain
Ω. When the incident field hits a target, a part of the inci-
dent field is backscattered. We assume that this scattered
part is represented by a reflectivity R. Then, the received
scattered field at a point located at xj from a source lo-
cated at xi and backscattered by a target located at x

is given by E(f, x) = RE0e
−j2πf‖x−xi‖/ce−j2πf‖x−xj‖/c.

Then, for a set of nf frequencies fl, the inverse problem
consists in evaluating the NΩ coefficients Rk at the mesh
points of Ω verifying :

min
Rk

nf∑

l=1

ns∑

i=1

nr∑

j=1

NΩ∑

k=1

(Emes(fl, xj) − Gk,l,i,j)
2

with

Gk,l,i,j = RkE0e
−j2πfl‖xk−xi‖/ce−j2πfl‖xk−xj‖/c

In these expressions, ni, nj and Emes define respectively
the number of source points, the number of receivers and
the electric fields measured at the receivers. This inverse
problem can be solved with maximun likelyhood tech-
niques which consists in a linear inversion to obtain the
coefficients Rk [5]. Potential targets are localized at the
points where the coefficient Rk are non-zero. In terms
of source and receiving points spatial distribution, there
are different strategies. SISO radars are single transceive
and single receive systems. In this case, there is no spa-
tial diversity. Then, SIMO radars generally employs one
transmitting antenna and a set of receiving ones. In this
approach, spatial diversity is on reception. Finally, MIMO
approach consists on having a multitude of transceivers
and receivers. And, thus diversity is in this case both
on transmission an reception. Transmitting spatial diver-
sity gives robustness againts complex propagation through
walls and improves indoor probability detection.

3 Configuration of our test case

The configuration studied here implements a dielectric
cylinder (σ = 0.01, εr = 50), located inside a room
bounded by walls constituted of concrete slabs with holes
(see figure 1). In this example, we also define the joint of
cement between the concrete elements. The room heights
h = 2m and the dimension of its sides is L = 4.28m. The
dimensions of the concrete element are 0.5m × 0.2m.2m.
It is constituted of 6 holes (see figure 2). The height of
the cement joint is taken equal to 2cm. Concerning the di-
electric cylinder, its height is equal to 1.8m and its radius
to 0.15m. Its location in the x − y axis is (1.29m, 1.29m).
Thirty one sensors (receivers and emitters) are located
on a cross of center (x = 2.29m,y = −1m,z = 1m).
These sensors are located at a distance of 1m from the
wall. The pulse injected on each sensor is given by
Ez(t) = E0e

−((t−t0)/T0)
2

cos(2π f0 t) with E0 = 377v/m,
t0 = 2.6e−9s, T0 = 1.e−9s and f0 = 2.e9Hz. This wave-
form presents a 2GHz bandwidth. The simulated data
used in the inverse problem are obtained by FDTD.

1
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Figure 1: Configuration studied

Figure 2: Geometry of a concrete brick.

4 Results

Two radar approaches have been simulated. The first
is a SIMO approach and the second a MIMO one. The
figure 3 shows the image obtained in the SIMO case (only
one emitter placed at (1.54m,−1m, 1m)). It is a cut of the
room at z = 1m. Free space is considered in the inverse
process. As one can see, it is difficult to properly localize
the cylinder and to find its correct position. Figure 4
shows the same image by considering the MIMO approach.
Here all the sources contribute to the image formation. We
can see on this image that the cylinder and its position in
the room are well identified.

5 Conclusion

In this paper, we described a radar imaging method to
detect targets located inside a room with realistic walls.
We have studied the advantage of using a MIMO method
for this problem, to avoid the perturbations induced by
the particular shape of the concrete bricks which consti-
tute the wall. A comparison made with a SIMO approach
shows these advantages.
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Figure 3: Image obtained by SIMO approach.
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Figure 4: Image obtained by MIMO approach.
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Abstract

Local helioseismology aims at recovering the mo-
tions (flow velocities) in the solar interior from ob-
servations of solar oscillations on the surface of the
Sun. In time-distance helioseismology, the basic in-
put data are travel times of waves between pairs of
points on the surface. These quantities are linked to
the internal properties of the Sun via an integral op-
erator. In previous publications the reconstruction
of flow velocities from travel times has been studied
by solving an inverse problem. The aim of this paper
is to recover directly the Reynolds stresses instead
of first recovering the velocities then computing the
correlations. This paper is a first attempt in this di-
rection and all the necessary ingredients to perform
directly the inversion are presented.

Introduction

Time-distance helioseismology [1] aims at recov-
ering subsurface structure and dynamics of the Sun
by the measurement and analysis of travel-times for
wave packets moving between two points on the so-
lar surface. Travel-times are obtained thanks to high-
resolution Doppler images of the Sun surface given by
space and ground-based networks. Once these quan-
tities are known, a forward model has to be derived
to link them to internal properties of the Sun. In the
upper layers of the Sun, the convective motions are
described by a flow field with velocity v(x), x ∈ R3,
which we would like to image using helioseismology.
The relation between the travel time τa (between two
surface points r1 and r2) and the flow velocity v(x)
can be expressed as:

τa(r1, r2) =

∫

V
Ka(r − r1,r2, z) · v(r, z)d2rdz

+ na(r1, r2) (1)

where the integration is performed over a volume
V = S × [0, zmin] formed by the product of a surface
S in the (x, y)−plane (supposed planar) by a small
depth interval [0, zmin] under the Sun’s surface. The

superscript a denotes the type of travel time, Ka is
the sensitivity kernel and na the noise generated by
the stochastic excitation of the waves by the small-
est scales of convection (granulation). The position
vector x is written as x = (r, z) where r = (x, y) are
the horizontal coordinates and z points up.

To recover internal properties of the Sun, the in-
verse problem corresponding to (1) has to be solved.
A good knowledge of the sensitivity kernel and of
the noise model is required to perform the inversion
reliably. A methodology to construct the kernels is
presented in [2], [3] and in [4] for the noise model.
If one wants to recover another quantity related to
velocities like the Reynolds stresses one could first
compute the velocities and then deduce the Reynolds
stresses. However, this method is time-consuming
and not very accurate. This paper presents a first at-
tempt to compute directly the Reynolds stresses from
the travel times spatial correlations. In a first part,
inversion methods for travel times are presented, then
we show that the velocity correlations can also be
linked to travel times via an integral operator and so
deduced by inversion methods.

1 Inversion for velocities

Two methods are traditionally used to invert (1):
the Regularized Least Square (RLS) method (equiv-
alent to the Tikhonov method in the mathemati-
cal literature) and the Optimally Localized Averages
(OLA) (equivalent to the approximate inverse). A
modified version of the latter has been recently used
[5] in order to invert (1) in the Fourier space instead
of the real space. It is of great interest as the dif-
ferent modes are not correlated in the Fourier space
so a lot of small matrices (≈ 300 × 300) have to be
inverted instead of a large one. The small size of the
matrices makes possible the calculation of its singular
value and thus, to perform the inversion by singular
value decomposition (SVD). This method is partic-
ularly efficient for our problem. As the problem is
severely ill-posed, a lot of eigenvalues are close to 0
so only few ones are kept for most of the modes.
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2 Inversion for velocity correlations

Using Reynolds’s decomposition, the ith com-
posant of the flow velocity vector can be written as
vi = Vi + v′

i where Vi is the deterministic mean part
of the flow velocity and v′

i the small scale (random)
part. The Reynolds stresses Rij are then defined as:

Rij(x,x′) = 〈v′
i(x), v′

j(x
′)〉 (2)

If we assume that the correlations of the fluctuating
part of the flow are horizontally homogeneous, Rij

depends only on the distance δ = r′ − r, z and z′:

Rij(δ, z, z′) = 〈v′
i(r, z), v′

j(r + δ, z′)〉 (3)

Multiplying τa(r1, r2) and τ b(r1
′, r2

′) (using (1)) and
supposing for the sake of clarity that Vi = 0, one can
link Reynolds stresses and measured travel times:

〈τa(r1, r2), τ b(r1
′, r2

′)〉 = Λab(x1,x2,x1
′,x2

′)+∫

⊙′

∫

z
Kab

ij (r′, z, z′; r1, r2, r1
′, r2

′)×

Rij(r
′, z, z′)dzd2r′dz′ (4)

where Kab
ij (r′, z, z′; r1, r2, r1

′, r2
′) =∫

r
Ka

i (r − r1, r2, z)Kb
j(r + r′ − r1

′, r2
′, z′)d2r (5)

with Ka
i the ith component of Ka and Λab defined in

[4] the noise covariance matrix for travel times.
Eq. (4) gives a relation between the Reynolds

stresses and the travel times correlations via an in-
tegral operator. It turns out that the kernels are
known as they are a correlation between two kernels
for travel times. They can even be computed effi-
ciently by Fast Fourier Transform (FFT):

Kab
ij = F−1

{
F

(
Ka

i

)
F

(
Kb

j

)}
(6)

where Ka
i (r) = Ka

i (−r), F and F−1 represent the
Fourier and inverse Fourier transform.

A 2D case used for kernel computations is pre-
sented in Figure 1. The kernels are computed be-
tween a one-way wave packet traveling west-east from
the point (−10Mm, 0) to (10Mm, 0) and a south-
north one traveling from (0, −10Mm) to (0, 10Mm).
The kernel representing the cross-correlation for the
Reynolds stresses is shown in Figure 1. Once the ker-
nels are known, a noise model for Reynolds stresses
is required. This can be done following the ideas of

Figure 1: Test case for kernels computations
(left); Kaa

xy (x, y, r1, r2, r′
1, r2

′), a refers to a f-mode
measure between pairs separated by 20Mm (right)

[4]. Computations are unfortunately way more com-
plicated. In [4] it was necessary to compute the ex-
pected value of a product of four complex random
Gaussian variables. Here, the moments of order six
and eight are required which lead to about one hun-
dred terms to estimate. However an exact formula
can be derived for this purpose. Knowing the kernels
and a noise model, (4) can be inverted for example
by using a singular value decomposition.

This approach is significantly more efficient both
concerning memory storage and computation time.
In this direct approach, computations are made with
mean values instead of maps on the whole domain if
one wants to first compute the velocities then deduce
the Reynolds stresses. So the size of the matrix to in-
vert is much smaller. This approach will be validated
using a model for flow velocities and travel times.
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Abstract

This paper outlines an approach to reconstructing
an initial tsunami waveform in a tsunami source area
based on the inversion of remote measurements of
water-level data. Tsunami wave propagation is con-
sidered within the scope of the linear shallow-water
theory. Numerical simulation is based on the finite
difference algorithm and the method of splitting. The
ill-posed inverse problem at hand is regularized by
means of the least square inversion using the trun-
cated SV D approach. In this method the inverse
operator is replaced by its restriction to a subspace
spanned by a finite number of the first right singular
vectors [1]. The so-called r-solution [2] is produced
by a numerical process. One of the main advantages
of this method is that it does not require a priori as-
sumption on the fault plane solution, actually, this
method is completely independent of any particular
source model. By analyzing characteristics of a given
tide gauges network, the proposed method allows one
to control numerical instability of the solution and
therefore to obtain an acceptable result in spite of the
ill-posedness of the problem. The algorithm was ver-
ified by numerical simulating with real bathymetry
of the Peru subduction zone and synthetic data.

Introduction

Recently, devastating tsunamis have acutely put
forward the problem for their timely warning. In case
of near field tsunamis that are generated by sources
located at short distances of less than 300 km and
that are the most devastating, the disaster manage-
ment has a little time for decision-making. Mathe-
matical modeling of tsunamis is to provide tsunami-
resilient communities with reliable information of in-
undation heights and arrival times for the purpose to
immediate protective measures. There are two im-
portant aspects of the assessment of tsunami risk in
the coastal areas: the initial waves generated at the
source area and provided further distractive strength
of tsunami impact and the subsequent propagation.
It is known that only after a certain time after the
event, having analyzed the various seismic, tidal and
other data, it appears possible to estimate basic char-

acteristics of triggering mechanisms and simulating
them in more realistic level. The sea level data inver-
sion could be used to make appropriate conclusions
about the static deformation in the source area, i.e.
about the initial condition for real-time tsunami sim-
ulation.

1 Methods

The inverse problem in question is treated as an ill-
posed problem of the hydrodynamic inversion with
tsunami tide gauge records, so it imposes some re-
strictions on the use of mathematical techniques. An-
other words, any attempt to solve this inverse prob-
lem numerically must be followed by a regulariza-
tion procedure. The proposed method is based on
singular value decomposition ( SV D) and r-solution
technique. The unknown function of water surface
displacement ϕ(x, y) in the source area (rectangular
[l1× l2]) can be represented as a series of spatial har-
monics

ϕ(x, y) =
M∑

m=1

N∑

n=1

cmn sin
mπ

l1
x · sin nπ

l2
y

for x ∈ [0, l1], y ∈ [0, l2], with unknown coeffi-
cients ~c = {cmn}. In our case the inverse prob-
lem data are water level oscillations (marigrams)
~η = (η11, η12, . . . , η1Nt , η21, . . . , η2Nt , ηP1, . . . , ηPNt)

T ,
ηpj = η(xp, yp, tj) at the set of points (xp, yp), p =
1, . . . , P and time moments tj , j = 1, . . . , Nt. Then
~η can be expressed as follows:

~η = A~c, (1)

where to obtain the matrix A, one has to solve
numerically a series of direct problems with every
spatial harmonics used as a source. Coefficients
αk of decomposition of ~c into right singular vectors

~c =
∑MN

j=1 αj~vj are expressed as follows αj =
(~η,~uj)
sj

,

where ~uj and ~vj are left and right singular vec-
tors of the matrix A and sj are its singular values.

Then the r-solution is ~c[r] =
r∑
j=1

αj~vj and, finally,

our solution ϕ[r](x, y) =
r∑
j=1

αj
M∑
m=1

N∑
n=1

βjmnϕmn(x, y)
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where ~vj = (βj11, β
j
12 . . . , β

j
MN )

T . The obtained solu-
tion is stable for any fixed r with respect to per-
turbations of the right-hand side and operator it-
self (see [2]). The dependance of r and the condi-
tion number cond of matrix A can be expressed as
r = max{k : sk/s1 ≥ 1/cond}. The value of r is
determined by the singular spectrum of the matrix
A and noise level of the signals observed. A sharp
decrease in the singular values, when their number
increases, is typical for all calculations, due to the
ill-posedness of the problem. In Figure 1.(a) typical
graphs of singular values of matrix A on a common
log scale with respect to their numbers are presented.
The parameter r should be taken only from the first
interval, where the common logarithms of singular
values are slightly sloping. As one can notice, in-
creasing of r leads to increasing of cond and, there-
fore, to the lower stability. On the other hand, r
should be large enough to provide a suitable spatial
approximation of ϕ(x, y). In our numerical experi-
ments the most reasonable choice is r ≥ 70. It is clear
that properties of the matrix A and, consequently,
the quality of the obtained solution are determined
by the location and extent of the tsunamigenic area,
configuration of the observation system and tempo-
ral extent of the signal. A series of calculations with
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Figure 1: a) The typical graphs of singular values
of the matrix A on a common log scale with respect
to their numbers. Markers 3, 4, 9, 10 correspond to
the number of marigrams used in certain variants

of reconstruction; b) Model tsunami source:
ϕmax = 1.959m; ϕmin = −0.67m.

synthetic data and real bathymetry of Peru subduc-
tion zone [3] was carried out by the proposed method
to investigate the influence of certain characteristics
of the observation system on the reconstructing pro-

cess. First, the purpose was to obtain acceptable
results of the recovering using the minimum num-
ber of marigrams. As a model of initial water dis-
placement the function ϕ(x, y) represented in Figure
1.(b) was used. Two variants of the reconstructed
tsunami waveforms are presented in Figure 2.(a)-(b).
The values in parentheses are extreme values of the
reconstructed waveforms after smoothing, err is the
relative error (in the L2 -norm).

a) b)

Figure 2: a) Tsunami source reconstructed with
three marigrams: ϕmax = 1.213m; ϕmin =

−0.738m; r = 41; err. = 0.717; b) Tsunami source
reconstructed with seven marigrams: ϕmax =

1.835(1.5138)m; ϕmin = −0.7016(−0.5484)m; err =
0.262; r = 103; lg(cond) = 6.
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Abstract

This research is motivated by the real problem
to predict short-crested waves in the ocean from se-
quences of radar images, i.e. prediction of waves from
inaccurate wave input. Avoiding the commonly used
3DFFT-method, improved radar images will be used
as sequential input for the dynamic model. Errors in
the radar images, mainly caused by the shadowing
effect, lead to errors in the prediction. We propose
methods to reconstruct the missing information and
to average several inputs in order to improve the ac-
curacy. A nonlinear dynamic model with exact dis-
persion will be used to calculate the waves at down-
stream positions. Instead of using real radar images,
we use long-crested synthetic data to construct shad-
owed images and to qualify the performance of the
reconstruction and averaging methods.

Introduction

With ever increasing human activities in the
coastal zone, seas and oceans, research to predict
properties of waves travelling towards a ship or off-
shore structure has been initiated in the past years,
see for instance ([1], [2], [3]). Using radar obser-
vations and 3DFFT- analysis tools, statistical wave
properties such as period, wave directionality and
(with more problems) significant wave height are cal-
culated. For various operational activities, the main
challenge remains to use the inaccurate radar images
to predict the incoming waves in real time, i.e. a
deterministic, phase-resolved, prediction of the wave
field.

Instead of trying to adjust the 3DFFT-methods,
we proposed in [4] the use of a deterministic dynamic
model and to apply an averaging method for the in-
accurate images to improve the prediction. In this
contribution we will report about the method for ini-
tial value problems. To that end, we will improve
radar information to more accurate input data. Syn-
thetic data are used as obtained by evolving a signal
from measurements of experiments in a wave tank at
Maritime Research Institute Netherlands (Marin).

1 Inaccurate Input and Reconstruction

Starting with elevation profiles from the synthetic
data, the shadowing effect is taken into account to
produce inaccurate input that resembles somewhat
real radar images (although a physical attenuation
by distance from the radar is absent). The shadow-
ing effect results when waves are hidden by higher
waves closer to the radar that prevent them to be
detectable by the radar. As an illustration, the shad-
owed areas are indicated by the characteristic func-
tion (zero elevation when shadowed) in Figure 1 for
a typical irregular wave profile with significant wave
height of 3m as observed by an ideal radar of height
30m at position x = 2500.

Figure 1: The full profile (dashed blue) and the
shadow (solid red line) for the situation that the
radar with height 30 m is located at x = 2500 m.

Analysis of radar images is a difficult subject.
Young et al [5] proposed a 3D-FFT method to get
the directional wave component. This method is still
the common tool; see for instance Naaijen and Blon-
del [6] who applied the method to filter the radar
images and force the frequency components to sat-
isfy the exact dispersion relation.

We propose another approach to avoid the cumber-
some justification of such methods and the require-
ment to have temporal information over a substantial
time interval. The new approach consists of two main
ingredients. One is to reconstruct as good as possible
the original profile from the information given by the
shadowed wave by ’filling the holes’. Since a recon-
struction of irregular waves may still have substantial
errors, the second ingredient is to reduce the input
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errors, for which we apply an averaging method that
is discussed in the next section.

2 Averaging Methods

Consider a spatial domain x ∈ [0, A] in which two
or more reconstructed profiles f0(x) and f1(x) of the
shadowed waves fsha0 (x) and fsha1 (x) at time t0 and
t1 respectively are available. Let B, with B > A,
be the position of the radar where we want to calcu-
late the elevation resulting from f0 or f1. Since the
profiles will contain (substantial) errors, to obtain a
reduced error at B, we proposed a new averaging
method in [4]. A somewhat improved averaging pro-
cess can be described, for 2 profiles for simplicity, as
follows. Starting at time t0, the profile f0 is evolved
until time t1. At that time, we calculate the aver-
aged profile as follows. We average the two profiles,
i.e. the evolution of f0 (denoted as E(f0)) and the
profile f1, with the same factor only at the shadowed
areas of fsha1 and we simply keep the full profile of f1
at the visible areas. Therefore, the averaged profile
can be written as

av(x) =

(E(f0)(x) + f1(x)

2

)
(1− χ(x)) + f1(x)χ(x)

(1)
where χ is the characteristic function which describes
the visible areas of the shadowed profile fsha1 . Using
such averaged profiles as sequential updates, we will
show by comparison with the exact synthetic data
that the wave prediction at the radar position B is
improved considerably.

3 Governing Equation

For uni-directional wave propagation to the right
(positive x-axis direction), we use the so-called
second-order AB equation [7]. This equation with
Hamiltonian structure, has exact dispersion proper-
ties in first and second order, and is given by

∂tη = −C∂x
[
η +

g

4
(C−1η)2 +

g

2
C−1(ηC−1η)

− 1

4g
(C∂xη)2 +

1

2g
C∂x(ηC∂xη)

]
(2)

where C is the phase velocity (pseudo-differential) op-
erator related to the exact dispersion relation. A
pseudo-spectral implementation is used for the wave
advancing.
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Abstract

Eddy current testing (ECT) is widely practiced in
the inspection of steam generators (SG) in nuclear
power plants. In this talk, we consider the deposit
shape reconstruction problem using ECT signals. For
an axisymmetric case, we build a PDE-based di-
rect model with appropriate Dirichlet-to-Neumann
boundary operators in order to truncate the compu-
tational domain. Then we propose and numerically
validate a regularized shape optimization method for
the deposit reconstruction.

1 Industrial background

Conductive magnetic deposits on the shell side of
SG tubes can affect the power production and the
structure safety. In ECT, we introduce in the tube
a probe composed by two coils, each one connected
to a current generator and a voltmeter. The gen-
erator coil creates an electromagnetic field which in
turn induces a current flow in the conductive mate-
rial nearby. The deposits distort the flow and change
the current in the receiver coil, which is measured as
ECT signals ([1]), from which we will estimate the
shape of deposits with known physical parameters.

2 Axisymmetric eddy current model

z

Deposit

r

Tube

Coil 1

Coil 2

Figure 1: : 3-D and 2-D geometrical representations

Maxwell’s equations with the Eddy current hy-
pothesis ǫ ≪ σ/ω yield the second order equation for
the azimuthal part of the electric field u in a cylindric

coordinate system (see Figure 1):




− div

(
1

µr
∇(ru)

)
− iωσu = iωJ in R2

+,

u|r=0 = 0,

(1)

with the condition that u is bounded at infinity. In
order to bound the compuational domain, we intro-
duce first a domain truncation in the r direction by
imposing a Neumann condition at r = r0. Then,
for the z direction, we explicitly express the D-t-N
operators on Γ± (see Figure 2), in the form

T± =

m∑

j=1

√
ν0jQ0j +

∑

k>n

√
νkQk. (2)

{ν0j , νk}, {Q0j , Qk} are eigenvalues and eigenprojec-
tions of a perturbed self-adjoint boundary operator
from the problem (1) (see [2]). The variational prob-

radiation c. at
infinity

z

r

unbounded
domain R2

+

→

“Neumann”
B.C. on r = r0
z

rr0

infinite band
Br0

→

D-t-N operators
T± on Γ±

z

r

Γ−

Γ+

r0

bounded Br0,z0

Figure 2: : Domain truncation

lem for the truncated domain can be written as
∫

Br0,z0

(
1

µr
∇(ru) · ∇(rv̄) − iωσuv̄r

)
dr dz

+

∫

Γ±

1

µ
T±(u|Γ±)v̄r ds =

∫

Br0,z0

iωJv̄r dr dz (3)

for all v ∈ H := {v :
√

rv, 1√
r
∂r(rv),

√
r∂zv ∈

L2(Br0,z0)}. This problem is well posed and we shall
discuss in the talk some issues related to approxima-
tions using standard Lagrange finite elements as well
as the efficiency of the domain truncation startegy in
increasing the speed of the numerical resolution. This
is an important issue for our inversion algorithm.
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3 Inverse problem

From [3, (10a)], a deposit with permeability µ, con-
ductivity σ and the shape ΩD leads to a change of
impedance measurements for the coil k in the elec-
tromagnetic field induced by the coil l:

△Zkl = △Zl(uk) = −2π

I2

∫

ΩD

(
(σ − σ0)uku

0
l r

+
1

iω

µ − µ0

µµ0r
∇(ruk) · ∇(ru0

l )

)
dr dz, (4)

where u0
l is the electric field induced by the coil l in

the deposit free case with µ0, σ0 for vacuum. The
ECT signal Z on a probe position ζ is a linear com-
bination of △Zkl(k, l = 1, 2), depending on the mea-
surement mode. We set Z = Z(ΩD; ζ). To approx-
imate the real deposit shape Ω∗

D using ECT signals
on ζ ∈ [zmin, zmax] is to minimize the cost functional

J (ΩD) =

∫ zmax

zmin

|Z(ΩD; ζ) − Z(Ω∗
D; ζ)|2 dζ.

We shall use a steepest descent method based on eval-
uation of the derivative of the cost functional using
the adjoint state technique. More precisely, if the
original deposit domain Ω0

D is deformed by a shape
perturbation θ: ΩD = (Id + θ)Ω0

D, then we prove
(see [4]) that J (ΩD) is differentiable at θ = 0 and
the derivative, denoted by J ′(Ω0

D)(θ), writes

J ′(Ω0
D)(θ) =

∫

∂Ω0
D

g(u, p)(θ · n) ds,

where g is a functional of the solution u to the di-
rect problem (3) and p is the adjoint state. Then
θ such that θ|∂Ω0

D
= g(u, p)n is a descent direction.

For the numerical algoritm we regularize θ using H1

boundary regularization by solving for λ

λ − α△∂Ω0
D
λ = θ on ∂Ω0

D, (5)

where △∂Ω0
D

is the Laplace-Beltrami operator, α > 0
is a regularization parameter. λ is also a descent
direction and is more regular than θ.

4 Numerical results

We consider deposits with low conductivity (σ =
1 × 104S/m) and constant permeability (µr = 1). In
Figure 3 the real deposit shape is a rectangle. The
inversion algorithm without boundary regularization
is blocked due to singularities (Figure 3b). The reg-
ularized algorithm ends after 60 steps with a good

(a) initializa-
tion with small
semi-disc

(b) without
regularization:
algorithm
diverges

(c) with regu-
larization

Figure 3: : Reconstruct a rectangle

(a) initial. (b) reconstr. (c) initial. (d) reconstr.

Figure 4: : Reconstruction of a semi-disc

estimate (Figure 3c). In Figure 4 we show the recon-
struction of a semi-disc issued from different initial
shapes (Figures 4a and 4c). The corresponding re-
sults shown in Figure 4b (52 steps) and in Figure 4d
(39 steps) are satisfying.
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Abstract

We consider in this work an inverse problem in
scattering theory. We construct an arc γ of the
boundary from the far field pattern u∞ of the scat-
tered wave at fixed energy. This leads to the di-
rect scattering problem for the Helmholtz equation
in a perturbed half-plane with Dirichlet condition on
the boundary. We first show that the direct problem
is well posed and characterize the forward operator
F : γ → u∞ which act between two Hilbert spaces.
The aim of this article is to solve the ill-posed non
linear equation F(γ) = uδ∞ (δ is a noise in data), .
For this we use Newton method developed by Kress
[3] with a strategy of regularization. We also show
some numerical results to illustrate the method.

Introduction

Regularized Newton iteration methods have been
analyzed and successfully applied for the approxi-
mate solution of inverse obstacle scattering problems
for time-harmonic waves in the case of smooth closed
boundary curves in R2 [3], in the case of smooth
open arcs (see [5]) and recently for locally perturbed
half- plane in [4]. In the previous paper [4] the au-
thors consider a particular perturbation such that the
problem is reformulated as an exterior obstacle prob-
lem for a symmetric domain. Our aim is to generalize
this article for perturbation where it is not possible
to use the symmetry.

1 Direct scattering problem

A perturbed half-plane is the open set Ω = {x =
(x1, x2) ∈ R2;x2 > f(x1)} where f is C2 function
such that f(t) = 0 for |t| > a > 0. The boundary
split into Γ = Γ−∪γ∪Γ+ with Γ± = {(x1, 0); (±)x1 >
a} and γ = {(x1, f(x1));−a < x1 < a}. We con-
sider the following direct scattering problem: given
an incident field ui = eikd·x, find the total field
u = ui+ur+us as a solution of the Helmholtz equa-
tion:

∆u+ k2u = 0 in Ω
u = 0 on Γ

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0, r = |x|

(1)

To construct the solution we use the double layer
potential

us(x) =

∫

γ

∂G(x, y)

∂n(y)
ϕ(y)ds(y), x ∈ Ω (2)

where the density ϕ satisfy a boundary integral equa-
tion on γ. We prove that there exists a unique so-
lution us ∈ H1

loc(Ω) which depend continuously on
g = ui + ur, ur = −eikd′·x, d′ = (d1,−d2). The
Green function is G(x, y) = φ(x, y) − φ(x, y′) with

φ(x, y) = i
4H

(1)
0 (k|x− y|). The scattered field us has

the asymptotic behavior

us(x) =
eikr√
r

(
u∞(x̂) +O(

1

r
)

)
, r = |x| → ∞ (3)

uniformly in all directions x̂ = x
r = (cosφ, sinφ) with

the far field pattern defined on the interval [0, π] by

u∞(φ) = c

∫

γ

∂G∞(φ, y)

∂n(y)
ϕ(y)ds(y), (c =

eiπ/4√
8πk

)

(4)
with G∞(φ, y) = eikx̂·y − eikx̂·y′ and ϕ is the density,
solution of a Fredholm integral equation of type ϕ+
Kϕ = −2g on γ.

2 Inverse problem

The inverse scattering problem we consider is:
given the far-field pattern u∞ for one incident wave
ui determine the arc γ. A sound-soft crack in two
dimensions is uniquely determined from the knowl-
edge of the far field pattern for all (θ, φ) ∈ [0, 2π]
with fixed wave number k, see [1]. Using the point
source technique we prove the same uniqueness result
for γ. For the construction, we fix an incident wave
and formulate the inverse problem into a nonlinear
and ill posed integral equation F(f) = uδ∞ where
F : D(F) → L2(0, π), f ∈ D(F) = H1

0 (−a, a) ∩
H2(−a, a) is the parametrization of γ and uδ∞ is the
measured far-field data, which is solved by a Newton
method. This approach was developed by Kress ([4],
[3]) for an obstacle inverse problem.
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2.1 Algorithm

We suggest an iterative method fn+1 = fn + hn
where h solves the linearized equation

F ′(fn)hn = uδ∞ −F(fn) (⇔ Ax = b) (5)

The computation of the the derivative F ′(f ;h) is not
obvious as F is a composition of several operators.
F(f) is a compact, then equation (5) is ill posed.
Therefore we look for the least square solution by
solving the normal equation A∗Ax = A∗b. This is
done with conjugate gradient method as a regularizer
(see [2]). In practice we chose a parametrization of
f with basic functions as polynomials, trigonometric
polynomials or Gaussian’s. The iteration is stopped
according to the discrepancy principle: at the first
n = n(δ) for which the residue ‖F(fn)− uδ∞‖ ≤ δ, δ
is the noise of the data.

2.2 Numerical examples

For the first example, we consider the parabolic arc
given by f(t) = 1− t2, t ∈ [−1, 1]. In the direct prob-
lem we solve integral equation by Nyström method.
We simulate the forward problem with the following
parameters: k = 1, angle of incidence θ = π

6 , n = 32
points for t ∈ [−1, 1], p = 18 points for φ ∈ [0, π].
In the inversion we use M = 4 basic functions in the
parametrization. For initial guess f0 = 0.1f and af-
ter 4 iterations we obtain the profile in figure 1.
In the second example we consider the arc with the
equation f(t) = sin(πt)+0.5 cos(0.5∗πt), t ∈ [−1, 1].
For the reconstruction we use the basic functions

q1(t) = 1− 2 tπ + t2

π2

q2(t) = 1− 2π−tπ + (π−t)2
π2

qi(t) = cos((i− 2)t) ∗ sin(t), i = 3, 4

(6)

After 4 iterations we obtain the profile in the figure
2. This algorithm suffer from two defaults. Once, f0
is chosen proportional to f , indeed if we set f0 = 0
the algorithm diverges. Two, we remark that the
reconstruction is good for grazing incident wave (
θinc ≤ π

6 ), but is bad for normal incidence.

Remark: In the paper [4] we avoid the case
when the perturbation is tangential to the line
at the end points (±a, 0), since the symmetric
domain becames singular (with cuspidal point).
This difficulty is due to the method. But in our case
if f is C2 the solution of (1) has no singularity near
the corners as in the tip of a crack ([5]).

2.3 Illustrations and References

Figure 1: reconstruction of γ with θi =
π
6 , after 4

iterations

Figure 2: reconstruction of γ after 4 iterations
with θi =

π
6
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Abstract

We consider an inverse scattering problem to ex-
tract information about unknown obstacles from
scattering wave field. For this problem, we apply
the enclosure method proposed by Ikehata, specifi-
cally, reconstruction formula for vertexes of polygo-
nal obstacle using the logarithmic differential of the
indicator function. Since the formula is based on
the asymptotic behaviour of the indicator function,
it is difficult to implement this formula directly as a
numerical procedure. To avoid this difficulty, we pro-
pose a method to approximate the formula without
computing the asymptotic behaviour directly. Our
numerical method is examined by some numerical ex-
periments.

1 Introduction

An inverse scattering problem is a mathematical
model of many problems in science and engineer-
ing, e.g. nondestructive evaluation in mechanical
engineering, and acoustic diagnostics in medical sci-
ence[1]. In this paper, we consider a problem to
extract information of unknown obstacles from ob-
servations of scattering wave field governed by the
Helmholtz equation.

Let D ⊂ R2 be an unknown polygonal domain,
and u(x) = ui(x)+us(x) denotes the total wave field
that satisfies

∆u + k2u = 0 in R2\D, (1)

∂u

∂ν
= 0 on ∂D, (2)

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0, (3)

where ui(x) = eikx·d denotes the incident plain wave,
k > 0 the wave number, d ∈ S1 the direction of the
incident wave, ν the outward unit normal relative
to R2\D, and r = |x|. The boundary condition (2)
describes the sound-hard scattering on the boundary
of D, and the condition (3) shows that the scattering
wave us satisfies the Sommerfeld radiation condition.

Let BR be an open disc with radius R centered at
the origin satisfying D ⊂ BR, and we assume that
the total field u and its normal derivative ∂u

∂ν are ob-
served on ∂BR. Then, our problem becomes to ex-
tract information about the unknown domain D from
observations u and ∂u

∂ν on ∂BR.

For ω ∈ S1, let us define the support function of D
by hD(ω) = supx∈D x · ω. We say that ω is regular
with respect to D if the set ∂D ∩ {x ∈ R2 | x · ω =
hD(ω)} consists of only one point.

For τ > 0, let

vτ (x; ω, k) = exp
(
x ·

(
τω + i

√
τ2 + k2ω⊥

))
, (4)

where ω⊥ ∈ S1 is perpendicular to ω, and define the
indicator function by

I(τ ; ω, d, k) =

∫

∂BR

(
∂u

∂ν
vτ − ∂vτ

∂ν
u

)
dS. (5)

Using the indicator function I(τ ; ω, d, k), Ikehata es-
tablished the following formula that extracts infor-
mation about the locations of vertexes of the convex
hull of the polygon D [2]:

Theorem 1 Let ω be regular with respect to D. Let
x0 ∈ ∂D be the point with x0·ω = hD(ω). Then, there
exists τ0 > 0 such that |I(τ ; ω, d, k)| > 0 for all τ ≥
τ0, and the logarithmic differential of the indicator
function I(τ ; ω, d, k) satisfies

lim
τ→∞

I ′(τ ; ω, d, k)

I(τ ; ω, d, k)
= hD(ω) + ix0 · ω⊥. (6)

In this paper, we propose a numerical method to ex-
tract information about unknown obstacles based on
the reconstruction formula (6). We also discuss the
effectiveness of the method by some numerical exper-
iments.

2 Numerical Method

Since the reconstruction formula (6) is based on
the asymptotic behaviour of the indicator function
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as τ → ∞, it is difficult to implement this formula
directly as a numerical procedure . Therefore, we dis-
cuss a method to approximate the formula (6) with
some numerical experiments.

Figure 1 shows a typical behaviour of numerical es-
timates of the logarithmic differential of I(τ ; ω, d, k).
The logarithmic differential of I(τ ; ω, d, k) behaves
as a constant in a finite interval (in Figure 1, 10 ≤
τ ≤ 25), and varies violently for large τ caused by
the error in the numerical evaluation of the indicator
function. From this numerical result, we propose the
following procedure to approximate the formula (6):

Step 1. Choose τ̃ in the interval in which the loga-
rithmic differential of the indicator function be-
haves as a constant.

Step 2. Using this τ̃ , approximate the formula (6)
by

hD(ω) + ix0 · ω⊥ ≃ I ′(τ̃ ; ω, d, k)

I(τ̃ ; ω, d, k)
. (7)
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Figure 1: A typical behaviour of numerical
estimates of I ′(τ̃ ; ω, d, k)/I(τ̃ ; ω, d, k).

3 Numerical Experiments

We present numerical experiments for our pro-
posed method. We consider the case where a kite-
shape obstacle is placed in B1 as shown in Figure 2,
and we set k = 5.0 and d = (cos π/5, sin π/5). Obser-
vations of u and ∂u

∂ν are given at 64 points on ∂B1. To
consider the effect of noises in observations, we use
observations without noise (case (a)), and with 0.5%
noise (case (b)). For the approximation formula (7),
we choose τ̃ = 22.0 for case (a), and τ̃ = 7.0 for case
(b). The points hD(ω) + ix0 · ω⊥ are estimated for
32 directions of ω.

Small circles in Figure 2 show the identified re-
sults of the points hD(ω) + ix0 · ω⊥ for various ω.

From Figure 2, one can see that the vertexes of un-
known obstacle are identified well for case (a), and
the identification result becomes rather bad for case
(b). However, we may consider that the shape of un-
known obstacle is reconstructed successfully in both
cases.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

X

Y

case (a): without noise
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case (b): with 0.5% noise

Figure 2: Identification results of vertexes of
unknown obstacle.
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Abstract

This paper deals with an inverse source problem
for a fractional advection-dispersion equation on a
finite domain where the unknown source term is to
be determined from a final observation. The prob-
lem is first discretized using finite difference scheme
based on the shifted Grunwald formula. Then, the
Tikhonov regularization is used to determine the
source term in presence of noise.

Introduction

Fractional derivatives have proven their efficiency
and accuracy in modeling and solving equations in
many scientific fields [1], such as physics, chem-
istry, biology, mechanical engineering, signal process-
ing and systems identification, control theory and fi-
nance,etc... [1],[3]. Thanks to their memory effect
and non-locality properties [1],[4], fractional deriva-
tives are very useful in describing anomalous diffu-
sion, such as contaminants transport in the soil, oil
flow in porous media, groundwater flow and turbu-
lence [5],[6]. Recently, many studies have been inter-
ested in modeling with fractional partial differential
equations and their analysis. However, few studies
considered the inverse problem for such equations
[3],[7]. In this paper, we are interested in an in-
verse problem for the fractional advection-dispersion
equation that can be used for example for modeling
groundwater transport in heterogeneous porous me-
dia [6].

Recently, the inverse problem of the space frac-
tional advection-dispersion equation have been con-
sidered by Chi et al [7] where they have solved the
inverse problem numerically in presence and in ab-
sence of a noise using an optimal perturbation reg-
ularization algorithm. However, the stability of the
proposed method depends on the initial guess and the
choice of some base functions. Moreover, Zhang and
Li et al [8] have solved this inverse problem using
the same optimal perturbation regularization algo-
rithm when the fractional order, the diffusion coeffi-
cient and the average velocity are unknown . In this
paper, we propose to analyze this inverse problem.

We propose first to discretize the problem. Then,
because of the ill-posedness of the problem, a regu-
larization strategy is needed. For this purpose, we
use a Tikhonov regularization to recover the source
term from a final observation, when the velocity and
the dispersion coefficient are known.

1 Methods

We consider a space fractional advection-dispersion
equation with the following initial and Dirichlet
boundary conditions:





∂u(x,t)
∂t = −v ∂u(x,t)

∂x + d∂
αu(x,t)
∂xα + f(x),

u(x, 0) = u0(x),
u(0, t) = h1(t),
u(L, t) = h2(t),

(1)

where t ≥ 0, 0 ≤ x ≤ L. v is the velocity, u is the
concentration, d is the dispersion coefficient, and α is
the derivative order with 1 < α ≤ 2. Moreover, the
fractional derivative is a left-sided Riemann-Liouville
fractional derivative over the x domain.

For the direct problem, we will use a finite difference
scheme based on the shifted Grunwald formula [2],
[5]. Then, the discretization form of equation (1) is
given by:

(1− d∆tδα,x)uj+1
i = −∆t

∆xv(uji+1 − u
j
i ) + fi∆t,

i = 1, . . . , N − 1 and j = 1, 2, . . .
(2)

where

δα,xu
j
i =

1

(∆x)α

i+1∑

k=0

gku
j
i−k+1,

and

gk =
Γ(k − α)

Γ(−α)Γ(k + 1)
,

with tj = j∆t, xi = i∆x, uji = u(xi, tj), fi = f(xi),

uj0 = h1(tj), and ujN = h2(tj).

Thus, the matrix form of the implicit finite difference
scheme is given by:

(I −M)U j+1 = CU j + F, (3)
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for n = 1, 2, ....N + 1 and m = 1, 2, ...., N + 1,

Mm×n =
d(∆t)

(∆x)α





0 m = 1, N + 1
gm−n+1 n ≤ m− 1, 2 ≤ m ≤ N
g1 n = m, 2 ≤ m ≤ N
g0 n = m+ 1, 2 ≤ m ≤ N

,

(4)

Cm×n =
−vd(∆t)

(∆x)α




−1 n = m, n,m 6= 1, N + 1
1 m = n− 1, n 6= N + 1
0 o.w

,

(5)

F = ∆t× [f0, f1, ......, fN−1, fN ]T ,

U j+1 = [uj+1
0 , uj+1

1 , ...., uj+1
N ]T .

If we assume that the final observation is known then,
we can rewrite (3) in the following form: Y = KF ,
where K(N+1)×(N+1) = A(I − A)−1(I − AN+1) and

Y = UN+1 − (AC)N+1U0 with A = (I −M)−1, and
UN+1 the final observation.
In order to estimate the unknown source, we pro-
pose to minimize the following cost function with a
Tikhonov regularization:

J =‖ d−KF ‖22 +λ ‖ F ‖22, (6)

where d denotes the observation of Y . The solution of
argminFJ is given by: F̂ = (K∗K +λI)−1KY . The
regularization parameter λ is determined using the
L-curve. Results of simulation are shown in Figure 1
for different levels of noise.

2 Conclusion

In this paper, we have discussed the inverse source
problem of a space fractional advection-dispersion
equation on a finite domain. The problem is ill-posed
then, the Tikhonov regularization has been used. It
produces slightly larger errors than the perturbation
regularization algorithm introduced by Chi et al [7].
However, in the latter, the stability and the accuracy
of the perturbation regularization algorithm depends
on the choice of the initial guess and the basis func-
tions. It is not obvious if the properties of the source
term are unknown.
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Abstract

In this talk, we consider the propagation of elec-
tromagnetic waves in an anisotropic medium. An im-
portant case is when the medium is non-scattering.
Through testing by plane waves, we derive an equa-
tion characterizing corresponding permitivities and
permeabilities. We construct some specific cases of
non-scattering media from this characterization.

1 Introduction

We consider a solution pair (E,H) to the inhomo-
geneous Maxwell Equations

∇× E − i k µH = 0 ,

∇×H + i k εE = 0 .
(1)

Here k denotes the circular frequency and ε and µ
the space dependent permitivity and permeability,
respectively, with values in C3×3. We will assume
that both ε and µ are equal to the identity matrix
outside some ball B and that they are symmetric in
B.

It is the goal in this paper to characterize fam-
ilies of such ε, µ, so that no scattered field arises.
The subject has recently obtained considerable at-
tention in the context of cloaking, i.e. the hiding of
scattering objects behind a non-scattering coat. It
is well-known that non-scattering ε, µ can be con-
structed from appropriate coordinate transforms. It
is an open question whether there are other possibil-
ities to explicitely construct suitable cloaks and how
to do this.

We will consider the problem under the assump-
tion of weak scattering, i.e. the Born approximation.
We will explicitely derive conditions on the Fourier
transforms of ε, µ that lead to non-scattering. From
these we will be able to construct such media.

2 A Characterizing Equation

In addition to (E,H), consider a pair (E0, H0) of
entire solutions to the homogeneous Maxwell system

∇× E0 − i kH0 = 0 ,

∇×H0 + i k E0 = 0 .
(2)

We multiply the equations in (1) by E0 and H0, re-
spectively, add them and integrate over B. After a
after partial integration, we obtain

1

i k

∫

∂B
(E ×H0 +H × E0) · ν ds(x)

=

∫

B

[
E0 · δεE −H0 · δµH

]
dx . (3)

Here ν denotes the outward drawn unit normal to
∂B and we have set δε = ε− I3, δµ = µ− I3.

Assume now, that (E,H) is the total field of a
scattering problem

E = E0
2 + Es2 , H = H0

2 +Hs
2 ,

where (E0
2 , H

0
2 ) is an entire solution to (2) (the in-

cident field) and (Es2, H
s
2) is the corresponding scat-

tered field satisfying the Silver-Müller radiation con-
dition. Note that (3) remains valid for (E,H) re-
placed by (E0

2 , H
0
2 ) and δε = δµ = I3, so that we

conclude
∫

∂B
(E0

2 ×H0 +H0
2 × E0) · ν ds(x) = 0 .

A careful asymptotic analysis yields the following
lemma:

Lemma 1 Suppose that the far field asymptotics of
(Es2, H

s
2) are given by

Es2(x) =
eik|x|

|x|

(
ls2(x̂) + O

(
1

|x|

))
,

Hs
2(x) =

eik|x|

|x|

(
x̂× ls2(x̂) + O

(
1

|x|

))
,

for |x| → ∞ and that (E0, H0) denotes the plane
wave given by

E0(x) = l0 eik θ̂·x , H0(x) = θ̂ × l0 eik θ̂·x .

Then for BR(0) = {x ∈ R3 : |x| < R} there holds

lim
R→∞

∫

∂BR(0)
(Es2 ×H0 +Hs

2 × E0) · ν ds(x)

= −4π i

k
ls2(−θ̂)>l0 .
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Applying Lemma 1 to equation (3) for some R large
enough so that B ⊆ BR(0), we obtain

− 4π

k2
ls2(−θ̂)>l0 =

∫

B

[
E0 · δε (E0

2 + Es2)

− H0 · δµ (H0
2 +Hs

2)
]

dx . (4)

We now use the Born approximation that

E0
2 + Es2 ≈ E0

2 , H0
2 +Hs

2 ≈ H0
2

in B, and also assume that (E0
2 , H

0
2 ) is a plane wave,

E0
2(x) = l02 eik ψ̂·x ,

H0
2 (x) = ψ̂ × l02 eik ψ̂·x .

Denote by Bψ̂ the linear operator mapping l02 (where

l02
>
ψ̂ = 0) onto the far field pattern of the cor-

responding scattered field in Born approximation.
Then from (4), we conclude

− 4π

k2
l0
>
B(θ̂, ψ̂) l02 =

∫

B

[
E0 · δεE0

2

− H0 · δµH0
2

]
dx . (5)

Suppose now that ε, µ are non scattering. Then the
left hand side of (5) vanishes. The right hand side can
easily be rewritten as a Fourier transform. Denoting
by δ̂ε and δ̂µ denoted the Fourier transform of δε
and δµ evaluated at ψ̂ + θ̂, respectively, we obtain
the characterizing equation

0 = l0
>
δ̂ε l02 − (θ̂ × l0)>δ̂µ (ψ̂ × l02) (6)

for all θ̂, ψ̂ ∈ S2 and l0, l02 ∈ C3 such that l0
>
θ̂ = 0,

l02
>
ψ̂ = 0.

3 Representations of δ̂ε, δ̂µ and Conse-
quences

Set ŝ = δ̂ε+ δ̂µ, d̂ = δ̂ε− δ̂µ. These matrices have
particular representations.

Theorem 2 If θ̂ and ψ̂ are linearly independent,
then there exists an orthogonal matrix M and num-
bers s1, s2, s3, d ∈ C such that

M>ŝM =



s1 s2 s3
s2 −s1 0
s3 0 −s1




and

M>d̂M = d


I +



r2+ 0 0
0 −r2+ 0
0 0 −r2+




 .

Here r+ = |θ̂ + ψ̂|/2.

An immediate consequence is the following propo-
sition that a non-scattering medium cannot be ob-
tained by perturbing either only ε or only µ:

Corollary 3 There holds δε = 0 iff δµ = 0.

It also possible to use the representations of ŝ and d̂
to construct specific examples of non-scattering me-
dia. For example, the case d̂ = 0 leads to the repre-
sentation

δ̂ε(ξ) = ŵ(ξ) ξ> + ξ ŵ(ξ)> − tr(ξ ŵ(ξ)>) I (7)

for ξ ∈ R3, 0 < |ξ| < 2 and some vector field ŵ. This
representation can be seen to hold whenever scatter-
ing by a non-scattering inhomogeneity obtained by a
diffeomorphism which is a local perturbation of the
identity is studied in Born approximation. Thus the
case d̂ = 0 corresponds to the non-scattering media
obtained in transformation optics. Other cases will
be discussed in the conference presentation.
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Abstract

In [1] is proved theoretically the existence of small
perturbations of the rigid boundary of a 2D acous-
tic waveguide which are invisible at some given fre-
quencies, in the sense that they do not perturb prop-
agative modes in the far field. This communication
concerns the numerical computations of such defor-
mations.

Introduction

The practical realization of invisibility cloaks is a
topic which gives currently rise to a very intensive
research activity in optics. Here we want to achieve
invisibility only at one given frequency (or at a fi-
nite number of given frequencies). The specificity
is that we consider propagation in a waveguide, and
not in the free space. Following [1] (where the ap-
proach of [2] is used) the deformation of the bound-
ary is searched as a linear combination of known
(compactly supported) functions. The coefficients of
the linear combination are solution of a contractant
fixed point equation, expressed thanks to the scatter-
ing coefficients of the deformation. These scattering
coefficients can be computed numerically. To avoid
remeshing at each iteration of the fixed point algo-
rithm, we use a multimodal method written in the
straight waveguide as in [3].

1 Setting of the problem

We consider a 2D acoustic waveguide defined as
follows:

Bε
h = {(x, y) such that 0 < y < 1 + εh(x)}

where ε is a small positive parameter and h a
smooth function compactly supported in [−1, 1]. The
time harmonic pressure field u satisfies the following
boundary value problem:





∆u + k2u = 0 (Bε
h),

∂u

∂n
= 0 (∂Bε

h),
(1)

where k > 0 is the wavenumber.
For the sake of simplicity, we consider here the

monomode case where k < 1 so that the only prop-
agative mode is the plane mode e±ikx. Suppose this
plane mode is incident from the left, then the diffrac-
tion problem consists in finding u solution of (1) such
that

u(x, y) =

eikx + Re−ikx +
∑

n≥1

u−
n e

√
n2π2−k2x cos(nπy) x < −1,

T eikx +
∑

n≥1

u+
n e−

√
n2π2−k2x cos(nπy) x > 1,

where R, T and the u±
n are complex coefficients. We

look for a non-trivial perturbation h such that the
reflection coefficient R vanishes. Then, we deduce
from

|R|2 + |T |2 = 1

that |T | = 1. If this occurs, it means that the field
reflected by the perturbation is purely evanescent,
so that the presence of the perturbation is not ob-
servable in the far-field. Concerning the transmitted
field, a phase shift can be observed (since we ensure
|T | = 1 but not necessarily T = 1). Moreover, it is
easy to check that the same conclusion holds for an
incident wave coming from the right.

2 The theoretical results

We look for a deformation h of the form

h = h0 + τ1h1 + τ2h2

where τ1 and τ2 are real parameters to be determined,
and h0, h1 and h2 are given functions satisfying the
following requirements:

∫ 1

−1
cos(2kx)hj(x) = δj1 and

∫ 1

−1
sin(2kx)hj(x) = δj2.

Then it can be proved by an asymptotic analysis that

T = 1 + ε2T̃ε(τ)
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and
R = ikετ + ε2R̃ε(τ)

where τ = τ1 + iτ2, with the estimates:

|T̃ε(τ)| + |R̃ε(τ)| ≤ C

for some constant C independent of ε and τ , for τ
bounded. Finally the invisibility condition R = 0 is
written as a fixed point equation in τ :

τ = Fε(τ)

where

Fε(τ) =
iε

k
R̃ε(τ).

This fixed-point equation is proved to be contractant
for small ε.

3 The numerical algorithm

For the numerical computations, we solve for a
given ε the above fixed point equation by the classical
fixed point algorithm

τ (n+1) = Fε(τ
n).

For the evaluation of Fε(τ), we use the multimodal
method presented in section 3.3 of [3], which has al-
ready been used for optimum design purposes. Con-
trary to a 2D finite elements method, the multimodal
approach avoids remeshing at each iteration (remem-
ber that the deformation h(x) depends on the param-
eter τ).

On the one hand, we use the change of variables

H : (x, y) ∈ Bε
h →

(
X = x, Y =

y

1 + εh(x)

)
∈ B,

to set the initial problem in a straight waveguide
B =] − 1, 1[×]0, 1[. On the other hand, exact trans-
parent boundary conditions are imposed on the ar-
tificial boundaries x = ±1. This leads finally to the
following variational problem :

Find U ∈ H1(B) such that ∀V ∈ H1(B)
∫

B
(H∇U) · ∇V − k2(1 + εh(x))UV

− 〈T(−1)U, V 〉 − 〈T(1)U, V 〉 = V (−1)

where H is the matrix

H =




1 + εh(X) −Y εh′(X)

−Y εh′(X)
1 + ε2Y 2h′(X)2

1 + εh(X)




and T is the Dirichlet-to-Neumann operator defined
by:

〈T(±1)U, V 〉 =

ikU0(±1)V0(±1) −
∑

n>0

√
n2π2 − k2Un(±1)Vn(±1)

where

Un(X) =

∫ 1
0 U(X, Y ) cos(nπY )dY

∫ 1
0 cos(nπY )2dY

.

Finally, the problem is discretized by using a
Galerkin approximation, replacing H1(B) by the
finite-dimensional space of functions of the form

U(X, Y ) =
∑

0≤n≤N

∑

0≤p≤P

wp(X) cos(nπY )

where the wp(X) form a finite element basis. In other
words, we use a modal decomposition in Y and finite
elements in X.

4 Extensions

The proposed algorithm can be directly extended
to other cases described in [1]. For instance, one
can find a deformation which is invisible at several
frequencies k1, k2 · · · kM below the cut-off π, using
2M + 1 design functions hj . Also invisibility in the
first interval of the spectrum ]π, 2π[ can be investi-
gated.
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Abstract

An Ultrawideband (UWB) planar monopole an-
tenna is designed using the material distribution ap-
proach to topology optimization. The design variables
are the local conductivity values in a 75×75 mm area
where the radiating element can be located. The
antenna is optimized for maximum reception, in an
attached coaxial cable, of incoming plane waves. The
wave propagation is modeled using the time domain
3D Maxwell equations discretized using FDTD, and
the optimization is carried out using a gradient-based
optimization method, in which the derivatives are
supplied through solving corresponding adjoint equa-
tions. The outer dimensions of the optimized antenna
is 75 × 60 mm, and its reflection coefficient |S11|,
with respect to a feeding signal in the coaxial cable,
stays below −10 dB throughout the frequency band
1.2–9.7 GHz.

Introduction

A well established method for computational de-
sign optimization of load-carrying elastic structures
is the material distribution approach to topology opti-
mization, in which a function indicating local density
of material is the decision variable subject to opti-
mization [1]. The method has been generalized to
the design of devices that interact with acoustic as
well as electromagnetic waves. However, the method
has not much been used to design metallic antennas
through optimization of the local conductivity. To
the best of our knowledge, the only contribution that
uses a large design space is by Erentok & Sigmund [2].
These authors, who have an extensive experience from
applying topology optimization to a wide class of prob-
lems, report that this problem is unusually sensitive
to various parameters in the optimization.

There are no ohmic losses in a material with vanish-
ing or infinite values of the conductivity, but any in-
between value leads to energy losses. A gradient-based
optimization algorithm, however, needs to operate on
the continuum between insulator and conductor, and
cannot avoid intermediate lossy values. Thus, when
such an algorithm is used to maximize transmission,
any intermediate conductivity value will quickly be

forced to one of the extreme values in order to mini-
mize energy losses: the problem is “self penalizing” to
extreme values of the conductivity. Moreover, it will
be difficult to change a vanishing or very large (infi-
nite) conductivity value to its opposite, since it needs
to pass through a “barrier” of intermediate lossy val-
ues. Thus, a gradient-based optimization algorithm
for transmission optimization of metallic antennas
will quickly be trapped in a local optimum with bad
performance if no precaution is taken. Among mate-
rial distribution problems for devices in the context of
wave propagation, this complication is rather unique
and does not occur when optimizing, for instance,
the distribution of sound-hard material for acoustics
problems [5] or the distribution of material for di-
electric resonator antennas [3]. We believe that the
difficulty of handling lossy intermediate values of the
conductivity is the reason for the lack of progress up
to recently in the application of topology optimization
techniques to the design of metallic antennas.

Problem statement

As a reference configuration, we consider a rectan-
gular monopole antenna, occupying area Γm, mounted
perpendicularly and close to an infinite ground plane.
For the optimization, we consider the antenna in its
receiving mode. The objective function is the energy
picked up in a coaxial cable mounted in the middle
of the edge facing the ground plane,

Ec(σ) =
1

2Zc

∫ T

0
(V − ZcI)2 dt , (1)

where V and I are the voltage and the current at a
point in the cable, Zc its characteristic impedance,
and V − ZcI is the characteristic variable associ-
ated with the receiving signal. The optimization
problem is to maximize Ec over all σ ∈ L∞(Γm),
0 ≤ σ(x) ≤ σmax. The state equation is the 3D
Maxwell equations with a variable conductivity in
Γm. No feeding signal is provided through the coaxial
cable, which means that the associated characteristic
variable vanishes: V (t) + ZcI(t) = 0. The coupling
between the voltage and current in the coaxial cable
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and the electromagnetic fields in the domain is accom-
plished through boundary conditions on the annular,
dielectric cross section Γcoax of the cable.

Results

The aim is to design an Ultrawideband (UWB) an-
tenna in the GHz region. The 3D Maxwell equations
are numerically solved in time domain using the clas-
sical Yee scheme (FDTD) with a Perfectly Matched
Layer (PML) to absorb outgoing waves and with an
attached 50 Ω coaxial cable. The potential antenna
area Γm is 75×75 mm and is discretized by 100×100
Yee cell faces. The conductivity at each edge in Γm

is subject to design, which yields a total of 20200
design variables. The Method of Moving Asymptotes
(MMA) [4] is used to solve the optimization problem,
and the required gradients are computed using the
associated adjoint equations, derived in the fully dis-
crete case. In order to create a rich source of waves for
the antenna, we expose it to circularly polarized waves
from all 4 sides. The wave amplitude is a truncated
sinc pulse covering the frequency band 1–10 GHz.

We address the issue of self penalization discussed
above by a continuation approach and enforce inter-
mediate values of the conductivity, and therefore a
certain amount of losses, from the start of the opti-
mization iterations. We then successively reduce the
losses as the iterations proceed. To enforce interme-
diate values, the conductivity σ used in the Maxwell
equations is obtained by a local averaging (filtering)
of the design variables σ̃ that are actually updated by
the optimization algorithm: σ = KR ∗ σ̃, where the
kernel of the integral operator KR has support in a
disk of radius R. (Such a filter is commonly used also
for topology optimization of elastic structures, but
for other reasons, namely to regularize an ill-posed
problem [1].) The filter leads to a “blurring” of the
design variables σ̃, which imposes a certain amount
of ohmic losses.

We start with an initial filter radius R0 and suc-
cessively reduce the radius by setting Rn+1 = γRn,
where γ < 1, while performing a number of iterations
of the optimization algorithm for each filter radius.
In the numerical experiments, R0 = 1.5 cm, γ = 0.7,
and, for each filter radius, we iterate until a selected
convergence criterion based on the first-order neces-
sary conditions is met, which typically requires 10–20
iterations. The algorithm thus progresses through
a succession of less and less lossy designs until, for
small values of the filter radius, the radiating element
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Figure 1: The reference and optimized antenna and their
reflection coefficients |S11|.

will almost entirely consist of elements with σ being
either 0 or σmax, due to the self-penalizing nature of
the problem.

The MMA algorithm required a total of 126 iter-
ations to converge to the final design shown in fig-
ure 1. Performance is measured, by reciprocity, in
terms of the reflection coefficient S11 with the an-
tenna as a transmitter. Overall, the performance of
the optimized antenna is superior to the reference,
and the reflection coefficient, |S11|, of the optimized
antenna stays below −10 dB for the frequency band
1.2–9.7 GHz.
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Abstract

A homogeneous sphere is excited by a point source
lying inside the sphere. Analytical inversion algo-
rithms are established concerning the determination
of the physical characteristics of the sphere as well
as the location and strength of the source. The basic
quantity utilized in these algorithms is the total field
on the sphere which is assumed to be known. The
investigation of the above described problem is mo-
tivated by various applications in medical imaging.

Introduction

A point source inside a homogeneous spherical con-
ductor constitutes a simplified yet realistic model for
investigating a variety of applications in brain imag-
ing [1], [2]. Locating point sources using surface mea-
surements is an example of an inverse source prob-
lem [3].

We consider the basic static problem consisting of
Laplace’s equation in a ball Vi with boundary ∂V .
The goal is to identify a point source lying in Vi from
Cauchy data on ∂V . There are fields both inside and
outside the sphere, with appropriate interface condi-
tions on the sphere. The inverse problem is to deter-
mine the location and strength of the source knowing
the total field on the sphere. The internal conductiv-
ity is also to be found.

We obtain exact and complete results by develop-
ing analytical inversion algorithms utilizing the mo-
ments obtained by integrating the product of the to-
tal field on the spherical interface with spherical har-
monic functions. All the information about the pri-
mary source and the ball’s physical characteristics is
encoded in these moments. The presented method is
simple, explicit and exact (given exact data). Other
analytic inversion algorithms for determining static
point dipoles as well as acoustic point sources inside
a homogeneous sphere are presented in [4].

1 Mathematical Formulation

Consider a homogeneous spherical object of radius
a, surrounded by an infinite homogeneous medium.
Denote the exterior by Ve and the interior by Vi. A
point source lies inside the sphere at an unknown
location r1 ∈ Vi. We will determine the source, using
information on the spherical interface.

Denote the field outside the sphere by ue and the
total field inside by ui. Then, ui = upr + usec, where
upr is the primary field due to the source (upr is sin-
gular at r1) and usec is the secondary (regular) field.
The field ue is regular and satisfies an appropriate
far-field condition. The fields ue and ui are related
by transmission conditions on the sphere.

For the primary field, we choose a point source,

upr(r; r1) =
A

|r − r1|
, r ∈ R3\{r1}, (1)

where A is a real constant.
Introduce spherical polar coordinates (r, θ, ϕ) for

the point at r so that the source is at (r1, θ1, ϕ1) with
r1 = |r1| < a. Then, the transmission conditions are

ue = ui and
1

ρe

∂ue

∂r
=

1

ρi

∂ui

∂r
at r = a, (2)

where ρe and ρi are constants.
Since we deal with a static problem, both ue and

usec are governed by Laplace’s equation. The field ue

decays to zero at infinity. In the context of electro-
statics, ρe and ρi are inverse conductivities.

2 Inverse Source Problem

A static point source lies at r1 and generates the
field upr. Near the sphere (r1 < r < a), separation of
variables gives the expansion

upr(r; r1) =

∞∑

n=0

n∑

m=−n

fm
n (r1)(a/r)n+1Y m

n (r̂),

where r̂ = r/|r| and Y m
n (r̂) = Y m

n (θ, ϕ) is a spher-
ical harmonic (see [5, §3.2]), and the quantities fm

n
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characterizing the source, are given by

fm
n (r1) =

4πA

a

(−1)m

2n + 1
(r1/a)nY −m

n (r̂1) . (3)

The secondary field inside the sphere is

usec(r) =

∞∑

n=0

n∑

m=−n

αnfm
n (r1)(r/a)nY m

n (r̂), 0 ≤ r < a

whereas the field outside is given by

ue(r) =

∞∑

n=0

n∑

m=−n

βnfm
n (r1)(a/r)n+1Y m

n (r̂), r > a

The transmission conditions at r = a, (2), give

αn =
(1 − ϱ)(n + 1)

n + ϱ(n + 1)
, βn =

2n + 1

n + ϱ(n + 1)
, (4)

where ϱ = ρi/ρe. Note that αn and βn do not depend
on any characteristics of the source.

The field on the sphere is

usurf(θ, ϕ) =

∞∑

n=0

n∑

m=−n

2n + 1

n + ϱ(n + 1)
fm

n (r1)Y
m
n (θ, ϕ).

It is this quantity that we shall use to find the source.
The spherical harmonics are orthonormal,

∫

Ω
Y m

n Y µ
ν dΩ =

∫ π

0

∫ π

−π
Y m

n (θ, ϕ)Y µ
ν (θ, ϕ) sin θ dϕ dθ = δnνδmµ,

where Ω is the unit sphere and the overbar denotes
complex conjugation. Hence, the moments

Mm
n ≡ 1√

4π

∫

Ω
usurfY m

n dΩ

=
1√
4π

2n + 1

n + ϱ(n + 1)
fm

n (r1), (5)

are known, in principle, if u is known on r = a; the
double integral over Ω could be approximated using
a suitable quadrature rule and corresponding point
evaluations of usurf . The problem now is to deter-
mine properties of the source and the interior mate-
rial (namely, ρi = ρeϱ) from Mm

n .
For a point source, (3) and (5) give

Mm
n = (−1)m Ãr̃n

1

√
4π

n + ϱ(n + 1)
Y −m

n (θ1, ϕ1), (6)

with Ã = A
a and r̃1 = r1

a . Thus, there are five un-

knowns, Ã, ϱ, r̃1, θ1 and ϕ1.
As Y 0

0 = (4π)−1/2, we obtain

M0
0 = Ã/ϱ.

This ratio is all that can be recovered if the source
is at the sphere’s centre (r1 = r̃1 = 0). So, let us
assume now that r̃1 ̸= 0.

For n = 1, we can use the expressions of Y 0
1 , Y 1

1 ,
and Y −1

1 (see e.g. [5, eqn (8.28)]) to obtain

M0
1 = Ã

r̃1

√
3

1 + 2ϱ
cos θ1,

M±1
1 = ∓Ã

r̃1

√
3/2

1 + 2ϱ
e∓iϕ1 sin θ1.

If M±1
1 = 0, then θ1 = 0 or π (the source is on

the z-axis and so ϕ1 is irrelevant); to decide which,
note that the sign of M0

0 M0
1 is the sign of cos θ1.

If M±1
1 ̸= 0, ϕ1 is determined by noting that the

complex number M0
0 M−1

1 has argument ϕ1.
If M0

1 = 0, then θ1 = π/2. If M0
1 ̸= 0,√

2M−1
1 /M0

1 = eiϕ1 tan θ1 determines θ1. Also

(1 + 2ϱ)2{(M0
1 )2 − 2M1

1 M−1
1 } = 3(Ãr̃1)

2. (7)

To conclude, we take a measurement with n = 2

ϱ(2 + 3ϱ)M0
0 Mm

2 = (Ãr̃1)
2(−1)m

√
4πY −m

2 (θ1, ϕ1).
(8)

Choosing m such that Y −m
2 (θ1, ϕ1) ̸= 0 (namely take

m = 0 unless P2(cos θ1) = 0), we eliminate (Ãr̃1)
2

between (7) and (8) to give a quadratic equation for ϱ
(which is real and positive). Then, Ã = A/a = M0

0 ϱ
and r̃1 = r1/a follows from Mm

1 or from (7).

References

[1] G. Dassios, Electric and magnetic activity of the
brain in spherical and ellipsoidal geometry, Lec-
ture Notes in Math. 1983 (2009), pp. 133–202.

[2] H. Ammari, An Introduction to Mathematics of
Emerging Biomedical Imaging , Springer, Berlin,
2008.

[3] V. Isakov, Inverse Source Problems, American
Mathematical Society, Providence, 1990.

[4] N. L. Tsitsas and P. A. Martin, Finding a source
inside a sphere, Inverse Problems 28 (2012),
015003.

[5] P. A. Martin Multiple Scattering , Cambridge
University Press, Cambridge, 2006.

NIKOLAOS TSITSAS AND PAUL MARTIN 174



Silent electrical sources in a sphere

L. Baratchart1, M.Clerc2, J. Leblond1,∗
1 Team APICS, INRIA, Sophia-Antipolis, France

2 Team ATHENA, INRIA, Sophia-Antipolis, France
∗ Email: juliette.leblond@inria.fr

Abstract

We discuss uniqueness properties for the in-
verse current source recovery problem of electroen-
cephalography, from boundary values of the associ-
ated electrical potential.

Introduction

The inverse EEG (electroencephalography) prob-
lem consists in recovering a current distribution
within the brain from measurements of the gener-
ated electric potential taken by electrodes on the
scalp. From Maxwell’s equation in their quasi-static
approximation, it is modelled by a conductivity el-
liptic partial differential equations (PDE).

Physical applications come from medical imaging
and engineering, neurosciences, for both therapeu-
tic and functional brain analysis, but are related to
many other non-destructive testing issues.

Such inverse source problems from partial bound-
ary data are severely ill-posed when they concern el-
liptic PDE (this in known since Hadamard), due to
the lack of uniqueness of solutions or of their stabil-
ity properties. One of these strong ill-posedness phe-
nomena is the case of silent sources, that correspond
to non-unique solutions.

We look for a caracterization of silent electrical
sources within a volume Ω of R3: what are the elec-
trical currents localized inside Ω that generate an
electrical potential vanishing identically outside Ω?

1 Problem, model

A classical EEG setup is that of a spherical head Ω
(a ball) composed of 3 nested spherical layers, each
of constant conductivity value, for the brain Ω0, the
skull Ω1 and the scalp Ω2, see [3]: Ω = Ω0 ∪Ω1 ∪Ω2.

The (real-valued) electrical potential u satisfies

∇ . (σ∇u) = ∇ . Jp in Ω ,

where the current source (primary cerebral current)
Jp is supported in Ω0 (as a distribution on R3, thus
with compact support). Hence, u is harmonic in Ω1,
Ω2:

∆u = 0 in Ω1 , Ω2 , (1)

and in the innermost layer (the brain), modelled by
a ball, say Ω0 = B, it satisfies the Poisson equation
(in the distributional sense):

∆u = ∇ . Jp in B , (2)

where the transmission conditions at interfaces imply
that, for i = 1, 2,

u , σ ∂nu are continuous on ∂Ωi−1 ∩ ∂Ωi . (3)

The inverse EEG problem then consists in the fol-
lowing Cauchy-type issue:

being given (partial, overdetermined) boundary
data, namely a set of measured pointwise values of
the potential u on a subset of the boundary ∂Ω,
together with the assumption that the current flux
∂nu = 0 on ∂Ω, find the current source Jp associated
to these data through (1), (2), (3).

It is a typical ill-posed problem (in view of
Hadamard), whose solution may not be unique and,
even in situations where uniqueness holds, may pos-
sess an unstable behaviour with respect to the bound-
ary data (practically furnished by electrodes mea-
surements). Well-posedness however can be granted
provided suitable assumptions are satisfied by the
current source Jp. Namely, a classical model in EEG
consists in modelling Jp by a finite number of point-
wise dipolar sources within B:

Jp =

K∑

k=1

pk δCk
,

with an integer K, moments pk ∈ R3, sources loca-
tions Ck ∈ B. For such (unknown) pointwise dipolar
source Jp, uniqueness properties hold [5] from values
of u on an open subset of ∂Ω (which can be built
from the given pointwise measures, in a robust man-
ner). In particular, pointwise dipolar sources are
never silent. In such situations, efficient source lo-
calization scheme are furnished by constructive best
quadratic rational approximation techniques in pla-
nar sections [2]. Figure 1 provides an illustration
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of this recovery procedure, using the software Find-
Sources3D [6] (matlab); there, pointwise data are
(numerically) given at 128 electrodes locations on the
outermost upper hemisphere of ∂Ω2, from which the
quantity K = 2, the sources locations Ck and associ-
ated moments pk are estimated.

It raises however the uniqueness issue, for other
important models of sources, like those distributed
on surfaces, and motivates the (inverse) silent source
problem:

find those source distributions Jp with support in
(the closed ball) B̄ such that the associated potential
u through (2) has its support contained in B̄.

2 Solutions

A characterization of such silent sources will be ex-
plained, which is obtained using a Helmholtz-Hodge
decomposition formula, Green formula, together with
properties of the Poisson kernel of the ball and of har-
monic functions there. It asserts that silent sources
Jp coincides with gradients of functions that belong
to the Sobolev space W 1,2

0 (B) of functions with van-
ishing trace on the boundary and L2(B) derivative
(or of their distributional derivatives), up to the addi-
tion of a divergence free term. In particular, W 1,2(B)
functions with support strictly contained in B belong
to W 1,2

0 (B). A sketch of the proof will be proposed.
Examples of such silent sources will be provided as
well, some of which being also magnetically silent
(generating a magnetic field that vanishes outside
B), which are of practical interest for magnetoen-
cephalography (MEG) experiments.

Note that similar uniqueness issues are in order
for inverse magnetization problems [1], where the
magnetization of some material (like martian rocks)
is to be recovered from magnetic measurements (by
SQUID microscopy). They also appear to be raised
by many physical issues modelled by Maxwell’s or
Newton’s equations (geophysics).

3 Illustrations and References
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Introduction

We address the Factorization Method (FM) as in-
troduced in [1] applied to the Continuous Model of
Electrical Impedance Tomography (EIT). Most of
the works on the FM in the literature treat the case
of homogeneous background. Our works [2], [3] are
mostly related to numerical issues associated with
EIT in inhomogeneous and uncertain background.

To begin with, we propose a numerical scheme to
solve the dipole-like Neumann boundary-value prob-
lem when the background conductivity coefficient
is inhomogeneous and deterministic, and use this
scheme to design an efficient implementation of the
FM algorithm for inhomogeneous but deterministic
background.

We then discuss the case where the background
conductivity coefficient is piecewise constant with
known spatial distribution but unknown parameter
values. We propose three variants of the FM to cope
with this configuration. In the first algorithm we
simultaneously recover the background parameters
and the location of the inclusion, by means of an op-
timization scheme motivated by the structure of the
sampling operator and the outcome of the FM. This
algorithm is well suited for low dimensional configu-
rations of the parameter space. In addition, a second
approach is proposed, where the optimization scheme
is replaced by a weighting of the FM indicator func-
tion with a misfit indicator for the background. This
procedure requires an extensive sampling of the pa-
rameter space which would be very expensive. How-
ever, in the case where many independent realiza-
tions of the measurement operator are available, we
describe how this strategy can be made efficient. The
third algorithm deals with the case where paired mea-
surements are available, namely measurements for
the inclusion free background and measurements for
the medium with inclusion. In this case, a uniform
weight for the FM associated with random sampling
of the parameter spaces provides an effective indica-
tor function.

Overview of the results

We consider backgrounds that are piecewise constant
in r regions {Ri}ri=1 that are a partition of the com-
putational domain B =

⋃r
i=1Ri, see e.g. Fig. 1. De-

note by m the r-dimensional vector of positive num-
bers that specifies the coefficient value in each region
Ri of the domain B. The background conductivity
coefficient σB is defined as

σB(x) =

r∑

i=1

mi IRi(x), x ∈ B, (1)

where IX(x) denotes the indicator function of the
subdomain X ⊆ B. If m = (1, 1, . . . , 1)> then we
obtain a homogeneous deterministic coefficient, and
Fig. 2 shows the reconstructions obtained with the
geometries shown in Fig. 1. Fig. 3 shows the recon-
structions obtained when the background coefficient
σB is given by (1), with the vector m chosen such
that the coefficient jumps by two orders of magni-
tude across different regions.

More general deterministic inhomogeneous coeffi-
cients σB, nonlinearly depending on x, have been
analysed in [2]. The effect of artificial noise has
been analysed in [2] as well. In Fig. 4-left we report
(from [2]) the reconstruction of ten small obstacles,
obtained with the following background conductivity
coefficient, with ±50% variation,

σB(x) = 1 + 0.25
(

sin(5x1) + cos(5x2)
)
. (2)

In Fig. 4-right the reconstruction is obtained after
the measurements have been contaminated by noise.

To model the background in the uncertain case, we
parametrize σB with the exponential model

σB(x,y) =

r∑

i=1

10yi IRi(x), x ∈ B, y ∈ Γ, (3)

where Γ = [−1, 1]r. The parameter y is a realiza-
tion of the random variable Y ∼ U(Γ) uniformly dis-
tributed over Γ. Again, the coefficient jumps up to

177 WAVES 2013



two orders of magnitude in each one of the r regions.
The corresponding reconstructions are reported in
Fig. 5-left, in the case of arbitrary measurements,
and Fig. 5-right in the case of paired measurements.
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Figure 1: Two geometries of the background and of

the inclusions (displayed in dashed lines). Left: six

regions and one circular inclusion. Right: three regions

and four small circular inclusions. Notice: the inclusion
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homogeneous background, i.e. σB ≡ 1. No artificial

noise.
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Figure 3: Reconstructions obtained in the case of
inhomogeneous but deterministic background, with
σB given by (1) and two orders of magnitude jumps

between different regions. No artificial noise.
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Figure 4: Reconstructions obtained in the case of

inhomogeneous deterministic background (2). Left no

artificial noise. Right 0.1% artificial noise.
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Figure 5: Reconstructions obtained in the case of
uncertain background (3). Left: case of arbitrary
measurements, no artificial noise. Right: case of

paired measurements, no artificial noise.
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Abstract

We are concerned with the inverse problem of iden-
tification of an unknown piecewise constant Robin
parameter arising in the corrosion detection by elec-
trostatic boundary measurements in both two and
three dimensional cases.

Introduction

In this paper, we are interested in the reconstruc-
tion of an unknown piecewise constant Robin param-
eter q by boundary measurements.

Several numerical methods have been proposed for
the identification of the Robin inverse problem in
some admissible sets of regular functions [2], [4], [6].
These methods do not apply in the reconstruction of
discontinuous parameters.

In the case of piecewise constant Robin parameter,
a new variational formulation using a regularization
technique based on Modica-Mortola functional, has
been recently proposed by B. Jin and J. Zou [5]. This
method has the advantage of being robust to noise as
it was shown through the numerical tests presented
in [5]. However, the regularization of the class of
admissible parameters by H1 functions naturally in-
volves a large number of parameters especially when
the unknown Robin parameter has a limited number
of singularities surfaces.

We present in this paper a numerical method for
the identification of a singular piecewise Robin pa-
rameter q by making use of the Kohn-Vogelius cost
function J . We prove differentiability of J with re-
spect to the singularities surfaces of the Robin pa-
rameter in two or three dimensional cases.

1 The Kohn-Vogelius function

Let Ω be a simply connected bounded domain
of R2 or R3 with C1,α boundary ∂Ω; α ∈]0, 1[. We
designate by Γu and Γd two C1,α nonempty connected
disjoint open parts of ∂Ω such that ∂Ω = Γu ∪ Γd.

Let n ∈ N∗ and m > 0. We denote by T the
set of all nonempty connected open subsets of Γu

with Lipschitz boundary, by Vn
ad the set of admissible

singularities surfaces:

Vn
ad =

{
(ϑi)i=0,...,n / ϑi ∈ T ; ϑi ∩ ϑj = ∅ if i ̸= j

and
∪n

i=0 ϑi = Γu

}
,

and by Qn
ad the set of admissible Robin parameters:

Qn
ad =





q =

n∑

i=0

ciχϑi
/(ϑi) ∈ Vn

ad, / ci > 0, and

|ci − cj | ≥ m /if (i ̸= j and ϑi ∩ ϑj ̸= ∅)




,

Let Φ ∈ L2(Γd) denotes the imposed current flux;
ϕ ̸≡ 0 and f be the potential measurement.

For q ∈ Qn
ad, we denote by uq,N the solution of the

following Neumann-Robin problem (N .R):

(N .R)





△u = 0 in Ω,
∂nu = Φ on Γd,
∂nu+ qu = 0 on Γu,

and by uq,D the solution of the following problem:

(D.R)





△u = 0 in Ω,
u = f on Γd,
∂nu+ q u = 0 on Γu.

The inverse problem, subject of our present study is
the following:

(I.P)

{
Given (ϕ, f) on Γd,
recover q ∈ Qn

ad, such that uq,N = f on Γd.

Referring to [1], [3], the inverse problem (I.P) has
only one solution denoted by q which is the unique
minimum of the Kohn-Vogelius cost function J :

J(q) =

∫

Ω
|∇uq,N − ∇uq,D |2 +

∫

Γu

q|uq,N − uq,D |2.

Moreover, the derivative of J w.r.t. ci is given by:

∂ciJ(q) =

∫

ϑi

(u2
q,D

− u2
q,N

).

2 Differentiability of J with respect to the
singularities surfaces of q

In this section, we prove the differentiability of J
with respect to the singularities surfaces of q in both
two and three dimensional cases despite the fact that
the states uq,N and uq,D are not differentiable.

179 WAVES 2013



2.1 Derivative in the two-dimensional case

In this part, we suppose that the curve Γu is pa-
rameterized by a C1,α function ψ : [0, 1] 7−→ R2.

Let q =

n∑

i=0

ciχϑi
∈ Qn

ad, where ϑi = ψ([ αi, αi+1[)

and mi = ψ(αi). Then we have:

∂miJ(q) = (ci−1−ci)
(
u2

q,D
(mi) − u2

q,N
(mi)

)
|ψ′(αi)|.

2.2 Derivative in the three-dimensional case

In this section, Γu is assumed to be a surface pa-
rameterized by a C1,α function Ψ : [0, 1]×[0, 1] −→ R3

for some α ∈]0, 1[ and F be the set of C1,α functions
φ : [0, 1] → [0, 1].

For every φ ∈ F , we denote by Cφ the graph of φ
and by:

Dφ
1 = {(x, y) ∈ [0, 1] × [0, 1] / y ≤ φ(x)}

Dφ
2 = {(x, y) ∈ [0, 1] × [0, 1] / y ≥ φ(x)}.

For i = 1, 2, we denote by: V φ
i = ψ(Dφ

i ). and we
suppose that the set of admissible Robin parameter
Qad is defined by:

Qad =
{
q = c1χV φ

1
+ c2χV φ

2
; φ ∈ F ; c1 ̸= c2; q > 0

}
.

Let h > 0, g ∈ F and D1,h = {(x, y) ∈ [0, 1]2;φ(x) ≤
y ≤ φ(x) + h.g(x)}. For q ∈ Qad, we denote by:

qh = qh(X) =

{
c1 if X ∈ V1,h := Ψ(D1,h)
q(X) else.

a small perturbation of q. Then, we have:

lim
h→0+

J(qh) − J(q)

h
= (c1 − c2)

∫ 1

0
g(x)η(x)dx, where

η(x) =
∥∥∥(∂Ψ

∂x ∧ ∂Ψ
∂y )(x, φ(x))

∥∥∥
[
(u2

q,D
− u2

q,N
)(Ψ(x, φ(x))

]
.

3 Numerical results

In this section, we present some numerical results
in two or three dimensional cases using an algorithm
of gradient type. The potential measurements have
been simulated by synthetic data obtained by means
of numerical computations solving the forward prob-
lem (N .R).

Figures 1 and 2 represent the curves of q (in red),
the initialization q0 (in green) and the reconstructed
parameter q (in blue) where Ω is the unit disk and
Γu = {eiθ ; 0 ≤ θ ≤ π} in the case of 2D and Ω is
the unit cube where Γu = [0, 1 × [0, 1] × {1} in 3D.
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Figure 1: Reconstruction of q in 2D.
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Figure 2: Reconstruction of the discontinuity
curve C of q in 3D.
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3.8 Numerical methods for time dependent wave problems
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Abstract

We are interested in the numerical simulation of wave
propagation phenomena modeled by Friedrichs hy-
perbolic systems of the form (1) on unbounded do-
mains containing heterogeneities. To do so we pro-
pose a hybrid algorithm based on the retarded poten-
tial method combined with a discontinuous Galerkin
(DG) approximation with upwind fluxes and finite
differences in time. The numerical procedure is sta-
ble by construction when the CFL in the interior do-
main is satisfied.

1 Symmetric hyperbolic Friedrichs systems

Our goal is to numerically solve the following PDE
that, for our purposes, it is useful to write as a
transmission problem between two non-overlapping
subdomains Ωe (unbounded and homogeneous) and
Ωi (bounded and eventually heterogeneous) with the
common boundary Γ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

M
∂ui

∂t
+

d∑

j=1

Aj
∂ui

∂xj
= f i, in Ωi,

ui(t = 0) = u0, in Ωi,

M
∂ue

∂t
+

d∑

j=1

Aj
∂ue

∂xj
= 0, in Ωe,

ue(t = 0) = 0, in Ωe,

[[A(n)u]]Γ = 0, on Γ.

(1)

In the previous system Aj, j ∈ {1, . . . , d} and M
are n × n symmetric matrices (the latter is also pos-
itive definite). Additionally n is the normal unit
vector outward to Ωi, A(n) =

∑d
j=1njAj and

[[A(n)u]]Γ = A(n)ue −A(n)ui.

2 The integral equation in Ωe

To derive an integral equation equivalent to the equa-
tions in Ωe we start by introducing the following aux-
iliary problem (for which we assume that the coeffi-
cients in the equations are homogeneous not only in

Ωe but also in Ωi even if we use the same notation)
∣∣∣∣∣∣∣∣∣∣∣

M
∂uϕ
∂t

+
d∑

j=1

Aj
∂uϕ
∂xj

= 0, in Ωi ∪ Ωe,

uϕ(t = 0) = 0, in Ωi ∪ Ωe,

[[A(n) uϕ]]Γ = A(n) ϕ, on Γ,

(2)

where the datum ϕ is a function defined in Γ× [0, T ].
We define the integral operator XΓ(·) by

XΓ ϕ =
1

2

(
A(n)(uϕ)e + A(n)(uϕ)i

)
. (3)

Defining the function w as the extension by 0 of
exterior solution ue we realize that w = uϕ for
ϕ = PImA(n)(ue) (where PY (·) is the projection
from Rn into Y ). In consequence we have (the func-
tion γ is supposed to be strictly positive)

XΓ ϕ + γ PKerA(n) ϕ =
1

2
A(n) ϕ. (4)

Multiplying by a test function and integrating in Γ×
[0, T ] we get the following variational formulation

bT (ϕ,ψ)︷ ︸︸ ︷∫ T

0

∫

Γ

(
XΓ ϕ + γ PKerA(n)ϕ

)
·ψ dγ dt =

1

2

∫ T

0

∫

Γ
A(n) ui ·ψ dγ dt,

(5)

where we have used the transmission condition to
couple with the interior. It can be shown that

bT (ϕ,ϕ) =
1

2

∫

Ωi∪Ωe

Muϕ(T ) · uϕ(T ) dx +

∫ T

0

∫

Γ
γ |PKerA(n)ϕ|2 dγ dt > 0,

which provides the positivity of the bT (·, ·) (a weak
coercivity property for short time can be also shown).
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3 A DG variational formulation in Ωi

To derive a DG formulation of the interior equations
we introduce Th a mesh of Ωi. Let Fh be the set of
internal faces of the mesh. Standard techniques [2]
provide the following variational formulation

∑

K∈Th

d

dt

∫

K
Mui ·w dx

+
∑

K∈Th

d∑

j=1

∫

K

(
Aj

∂ui

∂xj
·w − Aj

∂w

∂xj
· ui

)
dx

+
1

4

∑

F∈Fh

∫

F

(
[[A(n) ui]] · [[w]] − [[A(n) w]] · [[ui]]

)
dγ

+
1

2

∑

F∈Fh

∫

F
α|A(n)| [[ui]] · [[w]] dγ

− 1

2

∑

K∈Th

∫

K
div A ui ·w dx

+
1

2

∫

Γ
A(n) ϕ ·w dγ =

∑

K∈Th

∫

K
f i ·w dx,

(6)
where the matrix div A =

∑d
j=1 ∂Aj/∂xj is as-

sumed to be positive and where we have selected the
following numerical fluxes for the internal boundaries
of the element K (α ∈ [0, 1])

FK(uK ,u
K̃

) = A(n)
uK + uK̃

2
+

α

2
|A(n)|(uK−u

K̃
).

The bilinear forms involved in (6) have the following
properties: i) the one in the first line is symmetric
and positive definite, ii) the one composed by the
second and third lines is skew, iii) those in the fourth
and fifth lines (including the minus sign) are symmet-
ric and positive, v) the one in the sixth line accounts
for the coupling.
In consequence the coupled problem is given by equa-
tions (5) and (6). From both equations we can get the
following energy decay (in absence of volume forces)

∑

l∈{i,e}

1

2

∫

Ωl

Mul(T ) · ul(T ) dx − 1

2

∫

Ωi

Mu0 · u0 dx

=
1

2

∫ T

0

∫

Ωi

d∑

j=1

∂Aj

∂xj
ui · ui dx dt.

4 Discretization for the coupled problem

The discretization of the coupled problem is based
on the following ideas: i) the left hand side of (5)
is approximated through a space-time Galerkin pro-
cedure (see [1] for the details in the acoustic case),

ii) all the terms in (6) not involved in the coupling
are discretized with a DG standard approximation
in space combined with explicit finite differences in
time (an extension of the leap frog scheme allowing
to include dissipative terms), iii) following the ideas
introduced in [1], the coupling terms are specially de-
sign to satisfy a discrete energy estimate. This leads
to the following matrix formulation of the discrete
problem
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

M
U

n+ 3
2

i −Un− 1
2

i

2∆t
+ A U

n+ 1
2

i + Sα U
n− 1

2
i −

D
U

n+ 3
2

i + U
n− 1

2
i

2
+ C U

n+ 1
2

e = F
n+ 1

2
i ,

n∑

m=0

Bn−m U
m+ 1

2
e + Pγ U

n+ 1
2

e ∆t −

Ct U
n+ 3

2
i + U

n− 1
2

i

2
∆t = 0.

(7)

Assuming F
n+ 1

2
i = 0, the discrete solution can be

shown to satisfy the following discrete energy decay
(the matrix Sα − D is symmetric and positive)

En
i,α +

>0︷ ︸︸ ︷
n∑

l=0

n∑

m=0

Bn−m U
m+ 1

2
e ·U l+ 1

2
e = E0

i,α −

∆t

n∑

m=0

Pγ U
m+ 1

2
e ·Um+ 1

2
e +

∆t
n−1∑

l=1

(D − Sα)
U

l+ 3
2

i + U
l− 1

2
i

2
· U

l+ 3
2

i + U
l− 1

2
i

2
,

where (Mα = M − ∆t Sα)

En
i,α =

1

4

[
MαU

n+ 1
2

i ·Un+ 1
2

i + MαU
n− 1

2
i ·Un− 1

2
i

− 2∆t AUn+ 1
2

i ·Un− 1
2

i

]
,

is a positive discrete energy when the usual CFL con-
dition on the interior domain is satisfied. This pro-
vides a robust BEM-FEM transient coupling.
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Abstract

Starting from a recently developed energetic space-
time weak formulation of boundary integral equa-
tions related to wave propagation problems defined
on single and multi domains, a coupling algorithm is
presented, which allows a flexible use of finite and
boundary element methods as local discretization
techniques, in order to efficiently treat unbounded
media. Partial differential equations associated to
boundary integral equations will be weakly reformu-
lated by the energetic approach too, and a particular
emphasis will be given to the stability analysis of the
proposed method. Several numerical results on wave
propagation model problems will be presented and
discussed.

Introduction

Even if the Finite Element Method (FEM) has ob-
viously a dominant status in the field of computa-
tional techniques in physics and engineering, mostly
because of its great flexibility and wide range of appli-
cability, discretization approaches based on integral
equations are superior for certain classes of prob-
lems. For instance, the numerical study of wave
propagation in unbounded media in two or three di-
mension still represents a challenging issue for do-
main methods. In this context, time-dependent prob-
lems modeled by hyperbolic partial differential equa-
tions (PDEs) can be dealt with the boundary inte-
gral equations (BIEs) method. For the discretization
phase, Boundary Element Methods (BEMs) are suc-
cessfully applied in seismology, in particular for the
study of the soil-structure interaction, in acoustics
and in the analysis of the electromagnetic scattering,
taking advantage of dimensionality reduction and of
the implicit enforcement of radiation conditions at
infinity.
When one deals with regions having different ma-
terial properties (e.g. layered soils) or even differ-
ent physics (e.g. in solid-fluid coupling or wave-
soil-structure interaction) domain decomposition is
needed. In this framework, there are advantages in
combining finite and boundary element techniques.

BEM, also when formulated directly in the space-
time domain, has attracted particular interest for its
high accuracy, the simplicity of imposing the inter-
face conditions in problems defined on multi domains,
the implicit fulfillment of radiation conditions at in-
finity, the low cost of discretization when problems
are defined over unbounded domains. The use of
BIEs and BEMs, however, is complex and not partic-
ularly efficient in presence of non-linearities localized
in small parts of the domain. In this case, the clas-
sical differential models and related numerical tech-
niques, such as the finite difference method (FDM)
and FEM, help to efficiently deal with the nonlinear
part of the problem, but require, in general, a fine
discretization of the entire domain with a significant
increase in computational cost.
To summarize, BEM and FEM methods for the ap-
proximation of systems of BIEs and PDEs are nowa-
days understood to be complementary rather than
concurrent and a suitable coupling of these two tech-
niques can take advantage of what both offer.
In the last decades, contributions to BEM-FEM cou-
pling, in the context of hyperbolic problems, started
to appear, especially analyzing stability issues (see
e.g. [1]). In this work, we propose an energetic
BEM-FEM coupling procedure, based on recently ob-
tained results [2]-[5]. In particular, taking advantage
of the theoretical stability analysis of the coupling
technique proposed in [6], where simple one dimen-
sional benchmarks were discussed, here the focus is
the extension of the energetic BEM-FEM procedure
for the approximate resolution of wave propagation
model problems in higher dimension.

1 Model problem

Let Ω be an open bounded set in IRn, n = 2, 3 with
sufficiently smooth boundary ΓN . Let us consider the
decomposition IRn \Ω = Ω1 ∪ Ω2, with Ω1 ∩ Ω2 = ∅
and Ω̄1 ∩ Ω̄2 = Γ. The two non-overlapping subdo-
mains can be constituted by different materials with
typical constants µ1, µ2, and Ω1, differently from Ω2,
is unbounded, as depicted in Figure 1.
Having set ci the propagation velocity of a perturba-
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Figure 1: Space domain of the model problem.

tion in the i-th subdomain, the model problem which
will be taken into account is the following: for i = 1, 2




∆ui(x, t)− 1
c2i
üi(x, t) = fi(x, t), x ∈ Ωi, t ∈ [0, T ]

ui(x, 0) = u̇i(x, 0) = 0, x ∈ Ωi

with Neumann boundary condition p2(x, t) :=
µ2

∂u2
∂nx

(x, t) = p̄(x, t) on ΣN := ΓN × [0, T ] and with
standard continuity and equilibrium conditions be-
tween the two materials, i.e. u1(x, t) = u2(x, t),
p1(x, t) = −p2(x, t) on Σ := Γ × [0, T ]. The forc-
ing term f1 is trivial and suitably connected to f2.
After a boundary integral reformulation of the dif-
ferential problem in the subdomain Ω1 which in-
volves the classical boundary integral operator quar-
tet V,K,K∗, D depending on the fundamental solu-
tion of the wave operator, the energetic weak formu-
lation of the coupled problem reads:





1
µ1
< ˙(V p1), q1 > − < ˙(Ku2|Γ), q1 > − 1

2 < u̇2|Γ , q1 >= 0

− 1
2 < p1, v̇2|Γ > − < K∗p1, v̇2|Γ > +µ1 < Du2|Γ , v̇2|Γ >

−µ2A(v2, u2) = µ2F(v2)− << v̇2|ΓN
, p̄ >> ,

with< ·, · >=< ·, · >L2(Σ), << ·, · >=< ·, · >>L2(ΣN ),

A(v2, u2) :=
∫ T
0

∫
Ω2

[
∇v̇2 · ∇u2 + 1

c22
v̇2 ü2

]
dx dt and

F(v2) :=
∫ T
0

∫
Ω2
v̇2 f2 dx dt .

2 Space-time Galerkin discretization

For time discretization we consider a uniform de-
composition of the time interval [0, T ] with time
step ∆ t = T/N∆t , N∆t ∈ N+, generated by the
N∆t + 1 time-knots tk = k∆ t, k = 0, · · · , N∆t ,
and we choose temporally piecewise constant shape
functions for the approximation of p1 and piecewise
linear shape functions for the approximation of u2,
although higher degree shape functions can be used.
Double integrals in time have been performed ana-
lytically.

For the space discretization, we consider the bounded
subdomain Ω2 (suitably approximated by a do-
main) of polygonal/polyhedral type and a mesh
Th = {e1, · · · , eMh

}, constituted by Mh trian-
gles/tetrahedra with diam(ei) ≤ h, ei ∩ ej = ∅ if

i 6= j and such that
⋃Mh
i=1 ei = Ω2. The mesh TΓ,h on

the interface will be the restriction of Th to Γ. We
choose piece-wise constant basis functions related to
TΓ,h for the approximation of p1 over the interface
and piece-wise linear continuous functions related to
Th for the approximation of u2 in Ω2. Double in-
tegrals over the interface Γ have been performed as
described in [4].
Several results coming from the related energetic
time-marching procedure will be presented and dis-
cussed.
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Abstract

The numerical study of electromagnetic wave prop-
agation in nanophotonic devices requires among oth-
ers the integration of various types of dispersion mod-
els, such as the Drude one, in numerical methodolo-
gies. Appropriate approaches have been extensively
developed in the context of the Finite Differences
Time-Domain (FDTD) method, such as in [1] for ex-
ample. For the discontinuous Galerkin time-domain
(DGTD), stability and convergence studies have been
recently realized for some dispersion models, such as
the Debye model [2]. The present study focuses on
a DGTD formulation for the solution of Maxwell’s
equations coupled to (i) a Drude model and (ii) a
generalized dispersive model. Stability and conver-
gence have been proved in case (i), and are under
study in case (ii). Numerical experiments have been
made on classical situations, such as (i) plane wave
diffraction by a gold sphere and (ii) plane wave re-
flection by a silver slab.

1 Drude model

The Drude model describes the response of certain
dispersive media to an electromagnetic wave propa-
gating in a certain range of frequencies. The con-
sidered model permits to establish a dependency be-
tween the permittivity of the material and the an-
gular frequency of the electromagnetic wave in the
following form:

εr,d(ω) = ε∞ −
ω2
d

ω2 + iωγd
,

where ωd, γd and ω are respectively the plasma fre-
quency and the damping constant of the medium,
and the angular frequency. Adding a Drude disper-
sion model therefore implies a coupling, in the time
domain, between the electric field E and an addi-
tional field, the dipolar current (Jp), through an ODE
whose solution we choose is here approximated in a
DG framework. A centered fluxes DG method has
been chosen to develop a numerical approximation
of the problem, given the geometry and the inho-
mogeneous media to be considered. It is associated

with a second-order Leap-Frog scheme in time, there-
fore inducing a non-dissipative scheme. A theoretical
study of the latter has been made, demonstrating an
error convergence in O

(
hmin(s,p) + ∆t2

)
, where p is

the spatial order of approximation, and s is related
to the regularity assumptions made on the electro-
magnetic field.

2 Generalized dispersive model

Recently, several arbitrary dispersive models have
been proposed, such as the Critical Points (CP)
[3] and the Complex-Conjugate Pole-Residue Pairs
(CCPRP) [1]. Here, another formulation is consid-
ered: in accordance with the fundamental theorem
of algebra, the permittivity function is written as
a decomposition of a constant, one zero-order pole
(ZOP), a set of first-order generalized poles (FOGP),
and a set of second-order generalized poles (SOGP).
This leads to the following expression in the fre-
quency domain:

εr,g(ω) = ε∞−
σ

jω
−
∑

l∈L1

al
jω − bl

−
∑

l∈L2

cl − jωdl
ω2 − el + jωfl

.

This general writing allows an important flexibility
for two reasons: (i) it unifies most of the common
dispersion models in a single formulation (such as
Drude, Drude-Lorentz and Debye media for exam-
ple), and (ii) it permits to fit any experimental data
set in a reasonable number of poles (and thus a rea-
sonable number of coefficients). The stability and
convergence properties of the resulting DG formula-
tion seem at first glance to be a feasible extension
of the Drude case, and are currently under investiga-
tion.

3 Numerical validations

First, a simple validation case has been set up in
order to verify that the orders of convergence theo-
retically obtained for the Drude model based DGTD
method were achieved. A unitary PEC cavity with
dispersive properties defined by a Drude model is de-
fined. A forced source current has been added to the
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set of equations in order to obtain an analytical so-
lution to compare with. The calculated convergence
orders match the theoretical prediction, as presented
in table 1.

Then, a more physical case is considered: a gold
nanosphere of radius 20 nm, whose properties are de-
scribed by a Drude model, is illuminated by a plane
wave, the latter being modulated in time by a gaus-
sian function. The discrete Fourier transform of the
field is processed along the computation, and is in the
end compared with the Mie solution1 of the problem,
which is taken as a reference solution. A good ade-
quation has been found between the reference and
the numerical solution, which is displayed on figure
1. Further accuracy and performance assessment will
be performed on this fondamental case, then paving
the way to situations of high interest in the nanopho-
tonic domain.
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Table 1: Convergence orders with P1 and P2

approximations for the PEC cavity case.

(a) Convergence rate, P1

Refinement Convergence rate

1
50

–

1
75

1.2575

1
100

1.1197

1
125

1.1000

1
150

1.0614

(b) Convergence rate, P2

Refinement Convergence rate

1
25

–

1
50

2.2004

1
75

2.0826

1
100

2.0366

1
125

2.0432

Figure 1: E field magnitude in the frequency
domain calculated by the DGTD method in
the vicinity of the gold nanosphere. The view

is a z = 0 slice.
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Abstract

We propose explicit local time-stepping (LTS)
schemes of high order based either on classical or
low-storage Runge-Kutta schemes for the simulation
of wave phenomena. By using smaller time steps pre-
cisely where smaller elements in the mesh are located,
these methods overcome the bottleneck caused by lo-
cal mesh refinement in explicit time integrators.

FE Discretization of damped wave equations

As a model problem we consider the (damped)
wave equation

utt + σut −∇ · (c2∇u) = f in Ω× (0, T ) ,

u(·, t) = 0 on ∂Ω× (0, T ) ,

u(·, 0) = u0 , ut(·, 0) = v0 in Ω ,

(1)

where Ω is a bounded domain in Rd. Here, f ∈
L2(0, T ;L2(Ω)) is a (known) source term, while u0 ∈
H1

0 (Ω) and v0 ∈ L2(Ω) are prescribed initial con-
ditions. At the boundary, ∂Ω, we impose a homo-
geneous Dirichlet boundary condition, for simplicity.
The damping coefficient, σ = σ(x), is assumed non-
negative (σ ≥ 0) whereas the speed of propagation,
c = c(x), is piecewise smooth and strictly positive
(c(x) ≥ c0 > 0). Spatial discretization of (1) with
continuous finite elements (with mass lumping [1])
or a nodal discontinuous Galerkin (DG) method [2]
leads to a system of ordinary differential equations

M
d2U

dt2
(t) + Mσ

dU

dt
(t) + KU(t) = R(t) , (2)

or

M
dQ

dt
(t) + MσQ(t) + CQ(t) = R(t) , (3)

respectively, with an essentially diagonal mass matrix
M. Thus, when combined with explicit time integra-
tion, the resulting fully discrete scheme of (1) will be
truly explicit.

Runge-Kutta based LTS

Locally refined meshes impose severe stability con-
straints on explicit time-stepping methods for the

numerical solution of (1). LTS methods overcome
that bottleneck by using smaller time-steps precisely
where the smallest elements in the mesh are located.
In [3], [4], explicit second-order LTS integrators for
transient wave motion were developed, which are
based on the standard leap-frog scheme. In the ab-
sence of damping, i.e. σ = 0, these time-stepping
schemes, when combined with the modified equation
approach, yield methods of arbitrarily high (even) or-
der. To achieve arbitrarily high accuracy in the pres-
ence of damping, while remaining fully explicit, ex-
plicit LTS methods for the scalar damped wave equa-
tion based on Adams-Bashforth multi-step schemes
were derived in [5].

Here we propose explicit LTS methods of high
accuracy based either on explicit classical or low-
storage Runge-Kutta (RK) schemes. In contrast to
Adams-Bashforth methods, RK methods are one-
step methods; hence, they do not require a starting
procedure and easily accommodate adaptive time-
step selection. Although RK methods do require sev-
eral further evaluations per time-step, that additional
work is compensated by a less stringent CFL stability
condition.

In order to derive RK based LTS methods, we
rewrite both (2) and (3) as a first-order system

y′(t) = By(t) + F(t) (4)

and split the vectors

y(t) = (I−P)y(t) + Py(t) = y[c](t) + y[f](t),

F(t) = (I−P)F(t) + PF(t) = F[c](t) + F[f](t),
(5)

where the entries of the diagonal matrix P, equal to
zero or one, identify the unknowns associated with
the locally refined regions, y[f]. Hence the exact so-
lution of (4) is

y(tn + ξ∆t) = y(tn)+

∫ tn+ξ∆t

tn

By[c](t) + F[c](t) dt

+

∫ tn+ξ∆t

tn

By[f](t) + F[f](t) dt .

(6)
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To derive LTS methods that overcome the stringent
stability conditions dictated by the smallest elements
in the mesh, y[f], we shall treat those elements dif-
ferently from the remaining coarser elements, y[c].
In doing so, we approximate the first integral in (6)
by a sufficiently accurate quadrature formula, where
the (unknown) values of y[c] at the quadrature points
are approximated by Taylor expansion. Differentia-
tion of the resulting expression then leads to a mod-
ified differential equation, which is solved numeri-
cally from tn to tn + ∆t by using a RK method with
∆τ = ∆t/p in the locally refined region; here p de-
notes the coarse to fine aspect ratio. The resulting
LTS-RK schemes have the same high rate of con-
vergence as the original classical or low-storage RK
methods.

Numerical Experiments

To illustrate the versatility of our approach, we
consider the scalar damped wave equation

utt + σut −∇ · (c2∇u) = f in Ω× (0, T ) , (7)

in a rectangular domain of size [0, 2] × [0, 1] with
two rectangular barriers inside forming a narrow gap.
Here f(x, t) is a (known) source term, whereas the
damping coefficient σ(x) ≥ 0 and the speed of prop-
agation c(x) > 0 are piecewise smooth. We use con-
tinuous P 2 elements on a triangular mesh, which is
highly refined in the vicinity of the gap, as shown
in Fig. 1. For the time discretization, we choose
an LTS method based on an explicit third-order low-
storage Runge-Kutta scheme. Since the typical mesh
size inside the refined region is about p = 7 times
smaller than that in the surrounding coarser region,
we take p local time steps of size ∆τ = ∆t/p for every
time step ∆t. Thus, the numerical method is third-
order accurate both in space and time with respect
to the L2-norm. In Fig. 2, a vertical Gaussian pulse
initiates two plane waves (with Gaussian amplitude)
propagating in opposite directions. The right-moving
wave proceeds until it impinges on the obstacle.
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Abstract
This study proposes a fast time-domain boundary inte-

gral equation method (TDBIEM) for wave equation. The
present method resorts to interpolate the fundamental so-
lution to construct a fast algorithm in the fashion of the
fast multipole method (FMM) [1].

1 Introduction
The application of the FMM to the TDBIEM has

not been investigated well in contrast to the frequency-
domain BIEM [2]. As of now, the plane wave time do-
main (PWTD) algorithm, which is a time-domain version
of the FMM, is promising for wave problems in acoustics,
electromagnetics [3], and elastodynamics [4].

Meanwhile, Tausch developed an FMM-like al-
gorithm for the heat equation [5]. He exploited
Lagrange/Chebyshev interpolation to represent the
time-dependent fundamental solution in the form of
separation-of-variables, which enables to formulate
an FMM. It is to be noted that such interpolation-
based FMMs were studied in other problems, e.g., the
black-box FMM [6] and the references therein.

Being motivated by Tausch’s paper [5], the present
study aims at establishing an interpolation-based fast
multipole TDBIEM for the scalar wave equation in three
dimensions, as an alternative of the PWTD algorithm.

2 Formulation
2.1 TDBIEM for wave equation

We solve u(x, t) (x ∈ D ⊂ IR3, t > 0) from the wave
equation c2∆u(x, t) = ü(x, t) subject to given initial and
boundary conditions, where c denotes the wave velocity.
This problem is reduced to solve the following BIE:

1

2
u(x, t) =

∫ t

0

∫

∂D

(
Γ(x − y, t − s)

∂u

∂ny
(y, s)

− ∂Γ

∂ny
(x, y, t − s)u(y, s)

)
dsdSy x ∈ ∂D, t > 0, (1)

where Γ(r, t) := δ(t−|r|/c)
4π|r| is the fundamental solution.

We apply the collocation method to solve the BIE
(1). The boundary ∂D is discretised with Ns piecewise-
constant elements Ei (i = 1, . . . , Ns) and their centres
are chosen as the spacial collocation points, denoted by

xi. Meanwhile, we use the piecewise-linear basis for time
and let tα := α∆t (α = 0, ..., Nt) be the temporal collo-
cation points, with ∆t being a time step length.

Owing to the expensive computation of the layer po-
tential in (1), the computational complexity of the naı̈ve
TDBIEM results in O(N2

s Nt).
Hence, it is necessary to construct a fast method to

evaluate the layer potential in (1). To show the main idea
of the method, we now focus on the interaction between
two ’well-separated’ clusters in space-time, say a source
cluster S × J and observation cluster O × I (Fig. 1). For
these clusters, the layer potential is represented as

1

4πc∆t

∑

tβ∈J

∑

Ej∈S

(
σβ

j

∫

Ej

W (xi, y, tα, tβ−1) · n(y) dSy

− τβ
j

∫

Ej

U(xi, y, tα, tβ−1) dSy

)
xi ∈ O, tα ∈ I, (2)

where the time integral was already performed analyti-
cally. Also, σβ

j and τβ
j represent the boundary values

that are already known at the passed time tβ on Ej . The
single- and double-layer kernels U and W are defined as

U(x, y, t, s) :=
(c(t − s) − |x − y|)+

|x − y| ,

W (x,y, t, s) :=
c(t − s)(x − y)

|x − y|3 H(c(t − s) − |x − y|).

2.2 Approximation of U and W with interpolation
Following the papers [5][6], we approximate the ker-

nels U and W with certain interpolation functions. We
denote the approximated function of a given function
f(x) on [−1, 1] by

∑
i<p f(ωp

i )`i(x), where `i(x) are in-
terpolants and ωp

i are nodes where f is sampled. To ap-
ply this interpolation scheme to U and W in (2), we let
O and S be cubes with the edge length 2hs and centres
of Ō and S̄, respectively. Similarly, we let I and J be
time-intervals of length 2ht and centres of Ī and J̄ , re-
spectively. Then, with the given numbers ps and pt, we
can expand U as

U(x, y, t, s) ≈
∑

a<ps

∑

b<ps

∑

m<pt

∑

n<pt

Ua,b,m,n(O, S, I, J)

×`a

(
x − Ō

hs

)
`b

(
y − S̄

hs

)
`m

(
t − Ī

ht

)
`n

(
s − J̄

ht

)
,
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where ωps
v := (ωps

v1 , ω
ps
v2 , ω

ps
v3), Ua,b,m,n(O,S, I, J) :=

U(Ō + hsω
ps
a , S̄ + hsω

ps

b , Ī + htω
pt
m , J̄ + htω

pt
n ), and

∑

v<ps

`v(z) :=
∑

v1<ps

∑

v2<ps

∑

v3<ps

`v1(z1)`v2(z2)`v3(z3)

for v = a, b and z := (z1, z2, z3) ∈ [−1, 1]3. Mean-
while, we can approximate W by differentiating `b be-
cause W = ∇yU holds. Note that the discontinuity of
W on the sphere |x − y| = c(t − s) in IR3 (or wave-
front) causes a certain approximation error.

Observation
cluster (   ,   )x t

(E , t )

Space

Time

I 

J 

S O 

t

2h t
(S, J)

Source
cluster

2h
(O, I)

1. Creation of
multipole exp.

2. Translation of multipole exp.
to local exp.

3. Evaluation with
local exp.

2hs 2hs

j β

i α

Figure 1: Schematic illustration to evaluate Eq.(2)
through the three FMM-steps formulated in Section 2.3.

2.3 FMM-expression of layer potential in Eq.(2)
With the help of the interpolated kernels, we can ex-

press (2) in the following FMM-like fashion:

≈
∑

a<ps

∑

m<pt

`a

(
xi − Ō

hs

)
`m

(
tα − Ī

ht

)
La,m(O, I).

(3)

Here, La,m is the local expansion computed from the so-
called M2L formula:

La,m(O, I) :=
∑

b<ps

∑

n<pt

Ua,b,m,n(O, S, I, J)Mb,n(S, J),

where Mb,n denotes the multipole expansion:

Mb,n(S, J) :=
1

4πc∆t

∑

Ej∈S

∑

tβ∈J

`n

(
tβ−1 − J̄

ht

)

×
∫

Ej

(
σβ

j ∇`b

(
y − S̄

hs

)
· n(y) − τβ

j `b

(
y − S̄

hs

))
dSy.

As in ordinary FMM, the so-called M2M and L2L for-
mulae can be obtained with the help of interpolation [5].

2.4 Algorithm and computational complexity
Using the previous formulae, we can construct a fast

algorithm to solve the BIE (1) in the similar fashion
to the multi-level PWTD algorithm [3]. We can show
that computational complexity of the present FMM is
O(N

4/3
s Nt). Here, pt and ps are to be constants, meaning

we basically consider low frequency regime.

3 Numerical validation (in progress)
The present FMM code was tested through an exter-

nal scattering analysis, where a hard sphere is irradiated
with a plane pulse. The sphere is discretised with 5120
elements and 400 time steps were calculated. The cubic
Hermite interpolation was used with ps = pt = 8.

Fig. 2 compares the fast TDBIEM with the conven-
tional one for u at the front (irradiated) and back sides of
the sphere. The fast TDBIEM exhibits over/under shoots
as well as a larger diffraction (around t = 2.7 for the front
side) but the discrepancy from the conventional method is
not enormous. In this tentative result, the fast and conven-
tional TDBIEMs took 1269 and 2134 sec., respectively.

-0.5

0.0
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(x1=6.27e-4)
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(x1=9.99e-1)

x1
0

0.5
c=1

Plane
pulse

Conventional TDBIEM (front)
Present TDBIEM (front)

Conventional TDBIEM (back)
Present TDBIEM (back)

Figure 2: Comparison of the numerical solutions.

4 Conclusion
An FMM-accelerated TDBIEM for wave equation was

presented together with the tentative numerical result.
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Abstract

The one-dimensional Klein-Gordon equation de-
fined on a bi-domain will be numerically solved by
a BEM-FEM coupling procedure. Stability and con-
vergence of the proposed technique, based on energy
arguments, will be presented, together with several
numerical results, including the extension to the dis-
sipative case.

Introduction

We present a BEM-FEM numerical scheme for the
approximation of solutions u = u(x, t) to the one-
dimensional linear Klein-Gordon equation in a half-
line x > 0:

∂2u

∂t2
− ∂

∂x

(
c(x)2

∂u

∂x

)
+m(x)2u = f(x, t), (1)

with Neumann boundary condition at the endpoint
x = 0 and vanishing initial conditions u(x, 0) =
ut(x, 0) = 0, x > 0. The functions c(x) > 0 and
m(x) ≥ 0 take the constant values ci, i = 1, 2 and mi,
i = 1, 2, in the two sub-intervals (0, L) and (L,+∞)
respectively. The source term f(x, t) is assumed to
vanish for x > L.

Equivalently, the problem can be set as a cou-
pled bi-doman initial-boundary value problem with
transmission conditions at the interface point x = L:
u(L−, t) = u(L+, t), c21ux(L−, t) = c22ux(L+, t).

Equation (1) arises in mathematical physics in
several different contexts: in relativistic quantum
mechanics as a model for a free particle, in which
case it is actually known as Klein-Gordon equation;
in continuum mechanics as a linear model for ei-
ther transversal or longitudinal vibrations of a one-
dimensional string/bar subject to a restoring force
m(x) per unit length; in propagation of electric
waves in wire lines where it is known as the Tele-
graph equation (actually in this case, an additional
dissipative term ut appears in the equation).

In addition to the interest that the equation (1)
has in applications, it is also important from the
mathematical point of view, being the simplest hy-
perbolic equation with a non trivial dispersion re-

lation. This fact makes the problem stimulating to
be studied and, at the same time, simple enough to
make possible a complete mathematical justification
of the BEM-FEM numerical approximation.

1 Analysis and discretization

The continuous problem is set in a space-time weak
formulation which couples the initial-boundary value
problem for the PDE in the bounded interval (0, L)
with two retarded integro-differential equations at
the interface point x = L, whose unknowns are
uL(t) = u(L, t) and pL(t) = −c22ux(L, t):

uL(t) = (V pL)(t), pL(t) = (−DuL)(t). (2)

The integro-differential operators V and D are de-
fined as follows (in the following J0 and J1 are the
Bessel functions of order 0 and 1 respectively):

(V pL)(t) :=
1

c2

∫ t

0
J0(m2(t− τ))pL(τ) dτ,

−(DuL)(t) :=c2u̇
L(t)+m2c2

∫ t

0

J1(m2(t− τ))

t− τ uL(τ)dτ.

The basic idea underlying the proposed numerical
scheme is to preserve the symmetry properties and
the energy estimates valid for the continuous weak
formulation. The essential elements of our numerical
scheme are: 1) finite elements for space discretization
and an implicit Newmark finite differences scheme
for time discretization in the FEM interval (0, L); 2)
collocation technique for the first equation in (2) and
time-Galerkin method for the second one (which in
this case plays the role of the hyper-singular equa-
tion).

We will show stability and convergence of the
method essentially by discrete energy estimates (see
[1], [4], [7], [8] for related results), the crucial remark
being the well-known relation:

EBEM (t, u)=

∫ t

0
pL(τ)u̇L(τ) dτ =

∫ t

0
(V ṗL)(τ)pL(τ) dτ

= −
∫ t

0
(DuL)(τ)u̇L(τ) dτ ≥ 0. (3)
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Figure 1: m1 = m2 = 0
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Figure 2: m1 = m2 = 1

Here EBEM (t, u) represents the energy in the BEM
sub-interval. In the present work we actually
strengthen the simple inequality (3), and as a conse-
quence, we prove optimal stability estimates for the
BEM unknowns pL and u̇L and convergence of the
BEM-FEM approximations in energy norm (see [2],
[3] and the seminal papers [5], [6] for related results).

2 Numerical results

Let us consider the spatial domain Ω = (0,+∞)
decomposed in Ω1 = (0, L) and Ω2 = (L,+∞), with
c1 = c2 = 1 and trivial forcing term f(x, t) = 0.
The Neumann condition in x = 0 is the rectangular
impulse H(t−0.5)−H(t−1). In Figures 1-3 we show
the obtained numerical results in x = 0 and x =
L compared with the analytical solution, which is
known for this simple benchmark, for different values
of m1, m2. The agreement is very good.
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Abstract

A linear wave equation on a moving surface is dis-
cretized in space by evolving surface finite elements
and in time by the implicit midpoint rule. We study
stability and convergence of the fully discrete scheme
in the natural time-dependent norms. Under suitable
assumptions we prove optimal-order error estimates.

Keywords. Wave equation, evolving surface finite
elements, implicit midpoint rule, error analysis.

1 Introduction

The numerical study of partial differential equa-
tions on moving surfaces has attracted considerable
attention over the last years.

In [1], the authors considered a wave equation
on a moving surface, which is derived from Hamil-
ton’s principle, and presented a fully discrete vari-
ational integrator that is stable under a CFL con-
dition. To overcome the time step restriction due
to the CFL condition, we investigate in this paper
the implicit midpoint rule for the time discretization.
We prove the unconditional stability of the fully dis-
crete scheme. Furthermore, under suitable regularity
conditions, we show second order of the error mea-
sured in the L2 norm over the time-dependent surface
for displacements and their material derivatives, and
first order for the L2 norm of the error in the surface
gradient of the displacements, uniformly on bounded
time intervals.

2 The wave equation on evolving surfaces

Let Γ(t), t ∈ [0, T ], be a smoothly evolving family
of smooth m-dimensional compact closed hypersur-
faces in Rm+1 without boundary, with unit outward
pointing normal ν. We let v(x(t), t) denote the given
velocity of the surface Γ(t), i.e., ẋ(t) = v(x(t), t).

We consider the linear wave equation on evolving
surfaces (c.f [1])

∂•∂•u+ ∂•u ∇Γ · v −∆Γu = 0 (1)

with given initial data u(0) ∈ H2(Γ0) and ∂•u(0) ∈
H1(Γ0).

We let ∂•u denote the material derivative ∂•u =
∂u
∂t + v · ∇u. The tangential gradient is given by

∇Γu = ∇u−∇u ·ν ν. The Laplace-Beltrami operator
is the tangential divergence of the tangential gradient
∆Γu = ∇Γ · ∇Γu =

∑d+1
j=1(∇Γ)j(∇Γ)ju.

2.1 Weak formulation

A weak form of (1) reads:

d

dt

∫

Γ
∂•uϕ+

∫

Γ
∇Γu · ∇Γϕ =

∫

Γ
∂•u∂•ϕ (2)

for all smooth ϕ :
⋃
t∈[0,T ] Γ(t)× {t} → R.

2.2 The evolving surface finite element method

Following [2], the smooth surface Γ(t) is interpo-
lated at nodes ai(t) ∈ Γ(t) (i = 1, . . . ,m) by a
discrete polygonal surface Γh(t), where h denotes
the grid size. These nodes move with velocity
dai(t)/dt = v(ai(t), t). The discrete surface Γh(t) =⋃
E(t)∈Th(t)E(t) is the union of d-dimensional sim-

plices E(t) that is assumed to form an admissible
triangulation Th(t); see [2] for details. We define for
each t ∈ [0, T ] the finite element space Sh(t) = {φh ∈
C0(Γh(t)) : φh|E linear affine for eachE ∈ Th(t)}.
The moving nodal basis {χi}mi=1 of Sh(t) are deter-
mined by χi(aj(t), t) = δij for all j, so we have

Sh(t) = span{χ1(·, t), . . . , χm(·, t)}.
The discrete velocity Vh of the discrete surface Γh(t)
is the piecewise linear interpolant of v: Vh(x, t) =∑N

j=1 v(aj(t), t)χj(x, t), x ∈ Γh(t). Then the dis-
crete material derivative on Γh(t) is given by ∂•hφh =
∂φh
∂t + Vh · ∇φh. The construction is such that

∂•hχj = 0. (3)

The discrete surface gradient is defined piecewise as
∇Γh

g = ∇g−∇g ·νhνh, where νh denotes the normal
to the discrete surface.

2.3 The spatial semi-discretization

The spatial semi-discretization of the wave equa-
tion reads as follows: Find uh(·, t) ∈ Sh(t) such that
for all temporally smooth φh with φh(·, t) ∈ Sh(t)
and for all t ∈ [0, T ],

d

dt

∫

Γh

∂•hUh φh+

∫

Γh

∇Γh
Uh ·∇Γh

φh =

∫

Γh

∂•hUh∂
•
hφh.

(4)
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2.4 The Hamiltonian ODE system

We denote the discrete solution Uh(·, t) =∑m
j=1 qj(t)χj(·, t) ∈ Sh(t) and define q(t) ∈ Rm as

the nodal vector with entries qj(t) = Uh(aj(t), t).
Then by the transport property (3), we have
∂•hUh(·, t) =

∑m
j=1 q̇j(t)χj(·, t) ∈ Sh(t). The evolv-

ing mass matrix M(t) and the stiffness matrix A(t)
are defined by M(t)ij =

∫
Γh(t) χi(t)χj(t), A(t)ij =∫

Γh(t)∇Γh(t)χi(t) · ∇Γh(t)χj(t). The mass matrix is
symmetric and positive definite. The stiffness matrix
is symmetric and only positive semidefinite. Then (4)
can be written as

d

dt
(M(t)q̇(t)) +A(t)q(t) = 0. (5)

By introducing the conjugate momenta p(t) =
M(t)q̇(t), we reformulate (5) in the variable y(t) =
(p(t), q(t))T as Hamilton’s equations (˙ = d

dt)

ẏ(t) = J−1H(t)y(t), (6)

with

J =

(
0 I
−I 0

)
, H(t) =

(
M(t)−1 0

0 A(t)

)
.

3 The implicit midpoint rule

For the numerical integration of the above Hamil-
ton’s equations (6) we consider the implicit midpoint
rule with time step size τ > 0 given by

Yn+ 1
2

= yn +
τ

2
J−1Hn+ 1

2
Yn+ 1

2
(7a)

yn+1 = yn + τJ−1Hn+ 1
2
Yn+ 1

2
(7b)

3.1 Defects and errors

Let ỹn and Ỹn+ 1
2

be reference values that we want

to compare with yn and Yn+ 1
2

respectively. Inserted

into (7) they yield defects in

Ỹn+ 1
2

= ỹn +
τ

2
J−1Hn+ 1

2
Ỹn+ 1

2
+ ∆n+ 1

2
(8a)

ỹn+1 = ỹn + τJ−1Hn+ 1
2
Ỹn+ 1

2
+ δn+1 (8b)

3.2 Stability

We define the symmetric positive definite matrix
Ĥ(t) as

Ĥ(t) =

(
M(t)−1 0

0 A(t) +M(t)

)
,

and therewith the time-dependent energy norm:

‖y‖2t =
〈
y
∣∣∣Ĥ(t)

∣∣∣ y
〉

= yTĤ(t)y. (9)

Lemma 3.1 The error is bounded for 0 ≤ tn ≤ T by

‖yn − ỹn‖tn ≤ C
∥∥∥∆ 1

2

∥∥∥
t0

+ C
∥∥∥δn −∆n− 1

2

∥∥∥
tn

+ C

n−1∑

j=1

∥∥∥δj + ∆j+ 1
2
−∆j− 1

2

∥∥∥
tj
.

The constant C is independent of h, τ and n.

4 Error bound for the full discretization

For Uh : Γh → R we define the extension or the
lift onto Γ by U lh(a(x)) = Uh(x), where a(x) ∈ Γ
is the orthogonal projection of x ∈ Γh. We con-
sider the lifts of the fully discrete numerical solu-
tion and its numerical material derivative given by
unh := (Unh )l =

∑m
j=1 q

n
j χ

l
j(tn), ∂•hu

n
h := (∂•hU

n
h )l =∑m

j=1

(
M(tn)−1pn

)
j
χlj(tn), which are lifted finite el-

ement functions defined on the surface Γ(tn). This
will be compared with the solution u(tn) of the wave
equation (1) and its material derivative ∂•u(tn).

We rewrite the error by subtracting and adding the
Ritz map applied to the exact solution,

unh − u(tn) = unh − Ph(tn)u(tn) + Ph(tn)u(tn)− u(tn),

where Ph(t) is the Ritz map defined in [1]. Then we
are able to prove our main result:

Theorem 4.1 Let u be a sufficiently smooth solution
of the wave equation (1) and assume that the discrete
initial data satisfy
∥∥u0

h − (Phu)(0)
∥∥
L2(Γ0)

+
∥∥∇Γ0u

0
h −∇Γ0(Phu)(0)

∥∥
L2(Γ0)

+
∥∥∂•hu0

h − ∂•h(Phu)(0)
∥∥
L2(Γ0)

≤ C0h
2.

Then, there exist h0 > 0 and τ0 > 0 such that for
h ≤ h0 and τ ≤ τ0, the following error bound holds
for 0 ≤ tn = nτ ≤ T :

‖unh − u(tn)‖L2(Γn) + h ‖∇Γnu
n
h −∇Γnu(tn)‖L2(Γn)

+ ‖∂•hunh − ∂•u(tn)‖L2(Γn) ≤ C
(
h2 + τ2

)
.

The constant C is independent of h, τ , and n subject
to the stated conditions.
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Abstract

A stable and systematic procedure for numerical
treatment of elastic waves in layered media is pre-
sented. We discretize in space using high order fi-
nite difference schemes that satisfy the summation by
parts (SBP) rule. Conditions at layer interfaces are
imposed weakly using penalties. By deriving lower
bounds of the penalty strength and constructing dis-
crete energy estimates we prove strict stability. Nu-
merical experiments in discontinuous media are pre-
sented confirming high order accuracy and strict sta-
bility.

1 Introduction

Elastic media are in general heterogeneous or dis-
continuous. For example applications arising in geo-
physics, ultrasonics and geological prospecting can
be composed of layers of rock, air, water and pos-
sibly oil. To enable efficient treatments, numerical
schemes must be designed to couple discontinuous
material interfaces in a stable and accurate manner.

Consider elastic waves propagating in two isotropic
half-planes [1]. The half-planes are in welded contact
at y = 0. The displacement field u = (u1, u2)T in the
half-plane y > 0 and v = (v1, v2)T in the half-plane
y < 0 are governed by:

ρ
∂2u

∂t2
=

∂

∂x

(
A
∂u

∂x
+ C

∂u

∂y

)
+

∂

∂y

(
B
∂u

∂y
+ CT

∂u

∂x

)

ρ′
∂2v

∂t2
=

∂

∂x

(
A′
∂v

∂x
+ C ′

∂v

∂y

)
+

∂

∂y

(
B′
∂v

∂y
+ C ′T

∂v

∂x

)

(1)

where

A =

(
2µ+ λ 0

0 µ

)
, B =

(
µ 0
0 2µ+ λ

)
, C =

(
0 λ
µ 0

)
.

Here ρ, µ, λ > 0, ρ′, µ′, λ′ > 0 are densities and Lame
parameters of the upper (y > 0) and lower (y < 0)
half-planes respectively. Note that by replacing µ, λ
with µ′, λ′ in the matrices above we obtain expres-
sions for A′, B′, C ′. At the interface y = 0, we enforce

the continuity of normal stresses and displacements,

B
∂u

∂y
+ CT

∂u

∂x
= B′

∂v

∂y
+ C ′T

∂v

∂x
, u = v. (2)

We will discretize each half-plane problem in (1) inde-
pendently using high order accurate SBP operators,
see [2]. The two discrete half-planes problems are
then patched together by (2) to the global domain
using penalties. The crucial step in the scheme is
choosing penalties and ensuring numerical stability.
It is important to mention that a similar approach
has been suggested for the scalar wave equation [3].
However, the penalties derived in [3] can not be used
for general systems such as the elastic wave equation.

2 Numerical approximation

We discretize in space using a uniform spatial step
h in both x and y axes. Introduce the 2-D difference
operators

Dxx = Iy⊗D2x, Dyy = D2y⊗Ix, Dyx = D1y⊗D1x,

P = A⊗Dxx +B ⊗Dyy + C ⊗Dyx + CT ⊗Dyx,

where ⊗ denotes the Kronecker product and D2x,D2y

D1x,D1y are one dimensional SBP operators with
the corresponding norms Hx,Hy, see [2] for more de-
tails. In advance we define the following: ERy =
diag(0, 0, . . . , 1), ELy = diag(1, 0, . . . , 0), Sy a one-
sided difference operator approximating the first
derivative, identity matrices I2, Ix, Iy and

Ty = (B ⊗ (ERy − ELy) Sy ⊗ Ix)+
(
CT ⊗ Iy ⊗D1x

)
,

Hxy = I2 ⊗Hy ⊗Hx, H̃ =

(
Hxy 0
0 Hxy

)
,

Sb = (B ⊗ Sy ⊗ Ix) , Dc =
(
CT ⊗ Iy ⊗D1x

)
,

B̃ = I2 ⊗




0 0

P̃
0 0


⊗ Ix, P̃ =

(
1 −1
−1 1

)
,

P̃ =

(
P 0
0 P ′

)
, B̂ = I2⊗




0 0

P̂
0 0


⊗Ix,w =

(
u
v

)
,
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P̂ =

(
1 1
−1 −1

)
, SBy =

(
Sb 0
0 Sb′

)
, DCy =

(
Dc 0
0 Dc′

)
.

A semi-discrete approximation of the system (1) with
a weak enforcement of the interface condition (2) is

d2w

dt2 = P̃w − τNH̃−1B̃T̃xw − γNH̃−1STByB̂
Tw

− γNH̃−1DT
CyB̂

Tw − τ (p)
0 H̃−1B̃w.

(3)

Here τN , τ
(p)
0 , γN are penalties, and the superscript

(p) denotes the order of accuracy of the SBP opera-
tor. The second term in the RHS of (3) enforces the
continuity of the stress field while the last three terms
enforce the continuity of the displacement field. We
can rewrite the semi-discrete problem (3) as

d2w

dt2 = −H̃−1D̃w, (4)

where D̃ is symmetric. In addition we can choose

penalties τN , τ
(p)
0 , γN such that D̃ is positive semi-

definite. Consider λ̄ = max(λ, λ′), µ̄ = max(µ, µ′).
We can prove that if τN = 1

2 , γN = −1
2 and τ

(p)
0 ≥

(α
(p)
02

√
µ̄λ̄ + α

(p)
01

(
2µ̄+ λ̄

)
)/h (with α

(2)
01 = 2, α

(4)
01 =

4.5, α
(6)
01 = 5.6 and α

(2)
02 = 1, α

(4)
02 = 1.4, α

(6)
02 = 1.6)

then D̃ = D̃T ≥ 0 and we have Ew(t) = Ew(0) where

Ew(t) =

∥∥∥∥
dw

dt

∥∥∥∥
2

H̃

+ wT D̃w. (5)

3 Numerical experiment: Reflection and re-
fraction of a plane wave

Consider a compressional plane wave of unit am-
plitude propagating with angle θ1 and temporal fre-
quency ω

2π in the negative y-direction, with displace-
ment

u
(in)
P =

(
ξ1

−η1

)
ei(γ1ξ1x−γ1η1y−ωt),

x ∈ (−∞,∞), y ∈ [0,∞),
θ1 ∈ (0, π2 ), ξ1 = sin(θ1), η1 = cos(θ1), γ1 = ω√

λ+2µ
.

If this wave encounters an interface between two dif-
ferent materials in welded contact it will be split into
reflected, compressional and shear waves,

u = u(in) + u
(refl)
P + u

(refl)
S , x ∈ (−∞,∞), y ∈ (∞, 0],

u
(refl)
P = Arefl

(
ξ1

η1

)
ei(γ1ξ1x+γη1y−ωt),

u
(refl)
S = Brefl

(
γ2η2

γ1ξ1

)
ei(γ1ξ1x+γ2η2y−ωt),

η2 = cos(θ2), sin(θ2) = γ1
γ2
ξ1, γ2 = ω√

µ .

and refracted compressional and shear waves,

v = u
(refr)
P + u

(refr)
S , x ∈ (−∞,∞), y ∈ (−∞, 0],

u
(refr)
P = Arefr

(
γ1ξ1

γ3η3

)
ei(γ1ξ1x−γ3η3y−ωt),

u
(refr)
S = Brefr

(
−γ4η4

γ1ξ1

)
ei(γ1ξ1x−γ4η4y−ωt),

η3 = cos(θ3), sin(θ3) = γ1
γ3
ξ1, γ3 = ω√

λ′+2µ′ ,

η4 = cos(θ4), sin(θ4) = γ1
γ4
ξ1, γ4 = ω√

µ′ .

The constants Arefl, Brefl, Arefr, Brefr are obtained by
inserting u and v into the conditions (2) and solv-
ing the resulting linear system. For a more detailed
discussion see [4]. We choose θ1 = π

4 , ω = 2π,
λ = µ = 1, λ′ = 0.3, µ′ = 0.1 and computational
domain (x, y) ∈ [−2 2π

γ1ξ1
, 2 2π

γ1ξ1
]× [−2 2π

γ3η3
, 2 2π

γ4η4
]. Ini-

tial data for the numerical scheme is taken as the real
part of the analytic solution at time t = 0 and exact
data is imposed at the outer boundaries. The solu-
tion is computed for 10 periods until T = 10 and the
discrete l2 error is measured. We use 2N × N grid
points. In Table 1 we display accuracy and conver-
gence results obtained with using 4th and 6th order
SBP operators.

N log10(e4) p4 log10(e6) p6

21 -0.99 - -1.73 -

41 -2.18 3.96 -3.64 6.33

81 -3.38 3.99 -5.53 6.29

161 -5.59 4.00 -7.33 5.98
Table 1: l2 error and the rate of convergence.

References

[1] L. Cagniard, E. A. Flinn, C. H. Dix, Reflec-
tion and refraction of progressive seismic waves,
McGraw–Hill Book Company Inc., (1962).

[2] K. Duru, G. Kreiss, K. Mattsson, Accurate and
Stable Boundary Treatments for Elastic Wave
Equations in Second Order Formulation, sub-
mitted manuscript, (2012).

[3] K. Mattsson, F. Ham, G. Iaccarin, Stable and
accurate wave propagation in discontinuous me-
dia, J. Comp. Phys, 218 (2006) pp. 8753–8767

[4] K.F.Graff, Wave Motion In Elastic Solids,
Dover Publications.

KENNETH DURU AND KRISTOFFER VIRTTA 198
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Abstract

In this paper we consider 3D exterior wave prop-
agation Neumann problems reformulated in terms of
a space-time hypersingular boundary integral equa-
tion with retarded potential. This latter is set in
the so-called energetic weak form and then approxi-
mated by Galerkin Boundary Element Method. We
illustrate a technique for exploiting (partial) symme-
try in the time-marching procedure used to solve the
final discretization linear system, if the problem is in-
variant under a finite group G of congruences of IR3.
The proposed procedure is based on the construction
of suitable restriction matrices recently introduced in
the context of symmetric wave propagation problems.

Introduction

Time-dependent problems that are frequently
modeled by hyperbolic partial differential equations
can be dealt with the boundary integral equations
(BIEs) method. The transformation of the problem
to a BIE follows the same well-known method for
elliptic boundary value problems. For the discretiza-
tion phase Boundary Element Methods (BEMs) are
successfully applied for instance in seismology, in par-
ticular for the study of the soil-structure interaction,
in acoustics and in the analysis of the electromag-
netic scattering, taking advantage of dimensionality
reduction and of the implicit enforcement of radia-
tion conditions at infinity.
Recently, a direct space-time Galerkin BEM for the
discretization of retarded potential boundary integral
equations related to 3D wave propagation problems
has been introduced [2] and compared with the clas-
sical space-time discretization approach due to Bam-
berger and Ha-Duong ([3], [4]).
The main drawback is that in the adopted time-
marching scheme we have to solve at every time step
a discretization linear system with symmetric, non-
singular and fully populated matrix. The aim of
this paper is to illustrate a technique to reduce the
computational cost and memory storage of this time-
marching procedure, in terms of both generation and
numerical solution of the linear system. This tech-

nique can be applied if the problem and its discretiza-
tion present complete or partial invariance with re-
spect to a finite group G of congruences of IR3. At
every time step the global solution is obtained from
superposition of the partial results.
Here we consider three dimensional geometries which
are invariant under finite groups of distance preserv-
ing transformations, i.e. rotations and reflections.
For instance, the so called Platonic solids provide
nice examples of this kind of symmetry. In order to
exploit the symmetry in a structured way, we can use
information of the underlying transformations group
acting on the physical as well as on the discretized
geometry.
There is, of course, a strong connection between sym-
metry and group theory, and a main purpose of this
paper is to present a technique for exploiting sym-
metry in the numerical treatment of boundary value
problems, based upon suitable restriction matrices
strictly related to a system of irreducible matrix rep-
resentations of a finite group of congruences of IR3

and to the mesh defined in the problem domain. Re-
striction matrices have a block structure and any
block can be obtained from an elementary restriction
matrix. Using these restriction matrices we can de-
compose an invariant discrete problem into indepen-
dent problems with reduced dimension with respect
to the original one. In fact, for the discretization
with Galerkin BEM, one has to construct suitable
basis functions for each problem. This can be done
with restriction matrices which, applied to the vector
of basis functions for the discrete complete problem,
generate a basis for each finite-dimensional subprob-
lem. This decomposition can also be obtained using
Generalized Fourier Transform generated by an ar-
bitrary finite group of permutations [6] . In litera-
ture, restriction matrices have been widely used in
the context of parallel multigrid algorithms and do-
main decomposition reduction methods for the nu-
merical solution of elliptic boundary value problems
[5].
Also in the discrete case the geometry of the mesh,
in addition to its shape, may further limit the group
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of symmetries. In fact, we note that an important
prerequisite to be satisfied in the mesh generation is
that the mesh should be symmetry respecting. This
property can also be used to reduce the storage of the
mesh. Note, however, that meshes of this kind can
always be constructed and this requirement does not
limit the application of this technique to any contin-
uous symmetries.
Further, restriction matrices can also be applied un-
der the weaker assumption of partial geometrical
symmetry, where the domain boundary has discon-
nected components, one of which at least is invariant.
In fact, in many applications the operator equation
presents approximate symmetries in the geometrical
shape. In this case equivariant preconditioners for it-
erative solvers can be constructed to drastically im-
prove convergence, in particular for equations with
bad conditioning.
Various numerical simulations using restriction ma-
trices in 3D Energetic Galerkin BEM will be pre-
sented and discussed.

1 Main result

The time-marching procedure of the Energetic
Galerkin BEM is equivalent to the solution, at ev-
ery discretization time step tℓ = (ℓ + 1)∆t, ℓ =
0, · · · , N∆t − 1, of a linear system of order N (N
is related to the discretization of the spatial domain)
of the type:

A(0)α(ℓ) = β̃(ℓ) (1)

where β̃(ℓ) = β(ℓ) − (A(1)α(ℓ−1) + · · · + A(ℓ)α(0)) and

α(ℓ) =
(
α

(ℓ)
k

)
, β(ℓ) =

(
β

(ℓ)
k

)
, k = 1, · · · , N are,

respectively, the vector collecting the unknowns at
the ℓ-time step and the known vector coming from
the problem data. The symmetric, non singular ma-
trix A(0) is the coefficient block which remains fixed,
while all the other square blocks A(ℓ) of order N are
used to update at every time step the right-hand side.
All matrices A(ℓ) are dense and they can be of con-
siderable dimension. Hence, if the boundary Γ of
the spatial domain of the wave propagation problem
satisfies some (even partial) symmetry properties, it
would be useful to exploit them to increase the com-
putational gain in the construction of blocks A(ℓ) and
in the numerical solution of (1) at every time step.
Now, we indicate with R1, · · · , RM , M suitable re-
striction matrices constructed in relation to the sym-
metry properties of the problem at hand, where Rj

has Nj rows, and N =
∑M

j=1 Nj . The following result

holds [1]:
Theorem. Matrix A(0) verifies conditions

RiA(0)RH
j = 0 i ̸= j, i, j = 1, · · · , M, (2)

and system (1) can be decomposed in M independent
subsystems:

A(0)
j α

(ℓ)
j = β̃

(ℓ)
j j = 1, · · · , M, (3)

with A(0)
j = RjA(0)RH

j non-singular matrix of order

Nj and β̃
(ℓ)
j = Rj β̃

(ℓ). The solution α(ℓ) of (1) is ob-

tained by α(ℓ) =
∑M

j=1 RH
j α

(ℓ)
j , where α

(ℓ)
j = Rjα

(ℓ)

is the solution of (3).

Of course, this results can be equivalently interpreted
as a block diagonalization of system (1).
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Abstract

A stable and high order accurate Cartesian grid-
discretization is derived for hyperbolic equations,
with focus on the compressible Euler equations and
the second order wave equation. Physical boundaries
and interfaces are treated by interpolating from the
neighboring Cartesian grid-points. The Summation-
By-Parts property (SBP) [1] is extended to cases
where the physical boundary and interfaces do not
coincide with the Cartesian grid-points. Combined
with a penalty (SAT) method [2] for imposing bound-
ary and interface conditions we obtain a stable and
fully explicit time integration scheme. We present
higher order (higher than third order) accurate finite
difference approximations. The analysis is verified by
numerical simulations in two space dimensions.

Introduction

The focus in the present study is to derive a Carte-
sian grid method to solve the compressible Euler
equations and the second order wave equation in
complex geometries and discontinuous media. Tradi-
tionally, there have been essentially two approaches
of handling the discontinuity, sometimes referred to
as the heterogeneous and the homogeneous formula-
tions. In the heterogeneous approach (see for exam-
ple [3]), the discontinuity is treated by taking an aver-
age “smoothing” of the spatially varying coefficients
to recover stability. The benefit with this technique
is that irregular shaped discontinuous interfaces are
handled with no special treatment. However, the for-
mal order of accuracy reduces to first-order (see for
example [2]). In [4] a globally second-order accurate
finite difference method for the acoustic wave equa-
tion on second-order form is constructed, where the
discontinuity and complex geometry are handled by
embedding the domain into a Cartesian grid, mak-
ing use of ghost-points and Lagrange interpolation
to impose the boundary and interface conditions. It
is unclear if that embedded boundary method can
be extended to system of equations and more gen-
eral boundary conditions.

In the present study we will treat the bound-
aries and interfaces using a heterogeneous approach

that leads to high-order accurate and stable ap-
proximations also for hyperbolic systems. The
present method, referred to as the immersed SBP-
SAT method, does not introduce stiffness and we use
the explicit fourth order Runge-Kutta method for
time integration. The physical boundaries and the
media discontinuity are treated with SBP operators,
where the boundary and interface conditions are im-
posed weakly using the SAT method in combination
with interpolation.

1 The immersed SBP-SAT method

The SBP operators are 1-D operators and each
spatial dimension is treated separately. The com-
putational domain is split into a sum of 1-D lines,
where the numerical boundaries at each line (left and
right) are located at x̃l and x̃r respectively. The phys-
ical boundaries are located at xl = x̃l − hαl and
xr = x̃r + hαr where −1/2 ≤ αl, r < 1/2. αl, r = 0
corresponds to the case where the physical and nu-
merical boundaries intersect. Here h denotes the
Cartesian grid-spacing. We introduce qth order accu-
rate interpolations at the left and right boundaries,

vl =
∑

k=0,...q

βlkvk , vr =
∑

k=0,...q

βrkvN−k ,

where vT = [v0, v1, . . . , vN ] is the discrete solution
vector. This means that vl ' u(xl, t), vr ' u(xr, t).
To simplify notation we introduce the following vec-
tors

el = [βl0, . . . , β
l
q, 0, . . . , 0]T

er = [0, . . . , 0, βrq , . . . , β
r
q ]
T ,

(1)

i.e, vl = eTl v, vr = eTr v.
We are now ready to introduce the immersed SBP

property (here presented only for the first derivative),

Definition 1.1 A difference operator D
(α)
1 =

H−1
α (Q̃ − eTl el + eTr er) approximating ∂/∂ x, using

a pth-order accurate stencil, is said to be a pth-order
accurate immersed first-derivative SBP operator if
Hα = HT

α > 0 and Q̃ = −Q̃T .

To motivate the strength and usefulness of the new
immersed SBP operators we consider the advection
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N log l2
triangle q log l2

circle q

412 -5.19 0.00 -5.23 0.00
812 -6.51 4.38 -6.57 4.44
1612 -7.82 4.35 -7.78 4.03
3212 -9.01 3.97 -9.03 4.15

Table 1: log(l2 − errors) and convergence rates for
an immersed triangle and an immersed circle.

equation,

ut + ux = 0, xl ≤ x ≤ xr, t ≥ 0 , u(x, 0) = f(x)

u(xl, t) = gl(t) .

(2)
The energy method applied to (2) leads to

d

dt
‖u‖2 = + g2l − u(xr, t)

2 . (3)

The computational grid is between x̃l = xl + αlh ≤
x ≤ xr − αrh = x̃r. The discrete approximation of
(2) using the SAT method for the boundary condition
leads to

vt+D
α
1 v = −τlH−1

α el {vl − gl(t)} , v(0) = f , (4)

where el and er are defined in (1).
The energy method applied to (4) leads to

d

dt
‖v‖2H =

τ2

2 τ − 1
g2l −v2r−(2τl−1)

(
vl −

τl
2 τ − 1

gl

)2

.

An energy estimate exist for τ > 1/2. The choice
τl = 1, yields

d

dt
‖v‖2H = g2l − v2r − (vl − gl)2 . (5)

2 Computations

A convergence study is presented for the 2-D com-
pressible Euler equations with the present immersed
SBP-SAT technique. A triangle is embedded into
the Cartesian grid (see Figure 1). To verify accu-
racy and stability we perform simulations where an
analytic Euler vortex is imposed at the surface of a
triangle and a circle. A convergence study is found
in Table 1.

References

[1] K. Mattsson and J. Nordstrom. “Summation by
parts operators for finite difference approxima-
tions of second derivatives”. J. Comp. Phys.,
Vol. 199(2), 503–540, 2004.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x

y

Figure 1: A triangle embedded in the underlying
Cartesian grid. Here simulating an Euler vortex.

[2] K. Mattsson. “Summation by parts operators
for finite difference approximations of second-
derivatives with variable coefficients”. J. Sci.
Comp., Vol. 51(3), 650–682 2012.

[3] G. Cohen and P. Joly. ”Construction and anal-
ysis of fourth-order finite difference schemes for
the acoustic wave equation in nonhomogeneous
media”. SIAM J. Num. Anal., Vol. 33(4), 1266–
1302, 1996.

[4] H.-O. Kreiss and N.A. Petersson. “An embedded
boundary method for the wave equation with
discontinuous coefficients”. SIAM J. Sci. Com-
put., Vol. 28, 2054–2074, 2006.

KEN MATTSSON, MARTIN ALMQUIST AND STEFAN ENGBLOM 202



Dispersion analysis of improved time discretization for simply supported prestressed
Timoshenko systems. Application to the stiff piano string.

J. Chabassier1,∗, S. Imperiale2

1 Magique3d, Inria Sud Ouest, Talence, France.
2 Department of Applied Physics and Applied Mathematics, Columbia University, New York, USA.

∗Email: juliette.chabassier@inria.fr

Abstract

We study the implicit time discretization of Tim-
oshenko prestressed beams. This model features two
types of waves: flexural and shear waves, that propa-
gate with very different velocities. We present a novel
implicit time discretization adapted to the physical
phenomena occuring at the continuous level. Af-
ter analyzing the continuous system and the two
branches of eigenfrequencies associated with the
standing modes, the classical θ-scheme is studied.
A dispersion analysis recalls that θ = 1/12 re-
duces the numerical dispersion, but yields a severely
constrained stability condition for our application.
Therefore we propose a new θ-like scheme based on
two parameters adapted to each wave velocity, which
reduces the numerical dispersion while relaxing this
stability condition. Numerical experiments success-
fully illustrate the theoretical results on the specific
cas of a realistic piano string. This motivates the
extension of the proposed approach for more chal-
lenging physics.

Introduction

Piano strings can be modeled as simply supported
Timoshenko prestressed beams. This model in-
troduced in [2] accounts for inharmonicity of the
transversal displacement, via a coupling with a shear
angle resulting in the propagation of flexural and
shear waves with very different speeds. Our concern
in this work is to develop a new implicit time dis-
cretization, which will be associated with finite ele-
ment methods in space, in order to reduce the nu-
merical dispersion of flexural waves while allowing
the use of a large time step in spite of the high shear
velocity (compared to the maximal time step allowed
with the explicit leap-frog scheme).

1 Continuous system

The prestressed Timoshenko model considers two
unknowns (u, ϕ) which stand respectively for the
transversal displacement and the shear angle of the
cross section of the the string. We assume that

the physical parameters (see [1] for definition) are
positive and that ES > T0 (which is true in prac-
tice for piano strings). We consider “simply sup-
ported” boundary conditions (zero displacement and
zero torque). It reads:
Find (u, ϕ) such that ∀x ∈]0, L[, ∀ t > 0,




ρS
∂2u

∂t2
− T0

∂2u

∂x2
+ SGκ

∂

∂x

(
ϕ− ∂u

∂x

)
= σ,

ρI
∂2ϕ

∂t2
− EI ∂

2ϕ

∂x2
+ SGκ

(
ϕ− ∂u

∂x

)
= 0,

(1)

with boundary conditions

∂xu(x = 0, t) = 0, ∂xu(x = L, t) = 0,

∂xϕ(x = 0, t) = 0, ∂xϕ(x = L, t) = 0, (2)

where σ stands for a source term. Standard energy
techniques for systems of wave equations can be used
to show a priori estimates on this system thanks to
the following energy identity:

dE
dt

=

∫ L

0
ρS σ · ∂tu, with (3)

E(t) =
1

2

∫ L

0
ρS |∂tu|2 +

1

2

∫ L

0
ρ I |∂tϕ|2 +

1

2

∫ L

0
T0 |∂xu|2

+
1

2

∫ L

0
EI |∂xϕ|2 +

1

2

∫ L

0
SGκ |ϕ− ∂xu|2 . (4)

If we seek a solution of the form t(u, ϕ)(x, t) =
V (x)e−2iπf t, then there exists (see [3]) ` such that
f = f±` , where




f−` = `f−0
(
1 + ε `2

)
+O(`5), (5a)

where f−0 =
1

2L

√
T0

ρS
, ε =

π2

2L2

EI

T0

[
1− T0

ES

]
.

f+
` = f+

0

(
1 + η `2

)
+O(`4), (5b)

where f+
0 =

1

2π

√
SGκ

ρI
, η =

π2

2L2

EI + IGκ

SGκ
.

2 Discretisation

Space discretisation is done with high order finite
elements on a mesh of size h. After this process, we
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get the following equation:

d2

dt2
MhUh +KhUh = MhΣh (6)

where Mh is symmetric positive definite and Kh is
positive semi-definite.

2.1 Time discretisation with a classical θ-scheme

Using a classical θ-scheme leads to :

Mh
Un+1
h − 2Unh + Un−1

h

∆t2

+Kh

(
θUn+1

h + (1− 2θ)Unh + θUn−1
h

)
= MhΣh (7)

Stability of this numerical scheme and a priori esti-
mates can be shown with energy techniques. First,
any numerical solution is shown to satisfy an energy
identity. If θ ≥ 1/4, this discrete energy is always
positive, while if θ < 1/4, the time step ∆t must be
lower than a maximal value ∆tθ. Then, the scheme is
shown to be stable if the energy is positive. Orignial
proofs of stability are proposed in [1].

We also remind that if we seek a solution of the
form Unh = V 0

h e
2iπ fh n∆t, then there exists ` such that

fh = fh,`, where

fh,` = f` +
f3
`

2

(
1

12
− θ
)

∆t2 +O(∆t4 + h4) (8)

where f` = f±` is one of the eigenfrequencies of the
continuous problem given in (5). Choosing θ = 1/12
reaches fourth order of accuracy. This value being
lower than 1/4, it leads to a conditionally stable
scheme. This condition will be very severe, because
of the large velocity of the shear waves of the system
of a realistic piano string.

Our goal is to construct a numerical scheme with
a small numerical dispersion on the flexural wave,
without undergoing the time step restriction coming
from the shear waves.

2.2 Time discretisation with a new θ-scheme.

The idea is to separate the matrix Kh into the
sum of two matrices Kh and Kh, respectively in-
ducing the energy terms T0 |∂xu|2 and EI |∂xϕ|2 +
SGκ |ϕ− ∂xu|2. We consider the following scheme,
with (θ, θ) ∈ [0, 1/2]2:

Mh
Un+1
h − 2Un

h + Un−1
h

∆t2

+Kh {Uh}nθ +Kh {Uh}nθ = Mh Σn
h (9)

where the θ-approximation of Uh(tn) is the weighted
average on three time steps:

{Uh}nθ = θUn+1
h + (1− 2θ) Un

h + θUn−1
h , (10)

Stability of this scheme and a priori estimates can be
shown via energy techniques. Sufficient conditions of
stability can be given according to the values of (θ, θ)
(see [1]).

We show that if we seek a solution of the form
Unh = V 0

h e
2iπ fh n∆t, then there exists ` such that fh =

fh,`, where
{
f−h,` = ` f−0

(
1 + ε∆t `

2
)

+O(`5 + ∆t4 + h4), (11a)

f+
h,` = f+

0,∆t

(
1 + η∆t `

2
)

+O(`3 + ∆t4 + h4), (11b)

with (f−0 , f+
0 , ε and η were defined in (5))





ε∆t = ε+ 2π2 ∆t2
(

1

12
− θ
)(

f−0
)2
, (12a)

f+
0,∆t = f+

0

[
1 + (2πf+

0 )2

(
1

12
− θ
)

∆t2
]
, (12b)

η∆t = η +
π2 (E +Gκ)

2ρL2

(
θ − 1

12

)
∆t2. (12c)

We note that the value θ = 1/12 provides fourth
order accuracy for the approximation f−h,` of the flex-
ural eigenfrequencies given by (5a), for small `.

The main interest of this scheme is to choose, for
the slow wave, a value of θ that diminishes numerical
dispersion, and for the fast wave, a value of θ that en-
sures stability under acceptable conditions, typically
(θ, θ) = (1/12, 1/4).

Numerical illustrations that show the interest of
this scheme for piano strings will be displayed.
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Abstract

This paper presents an algorithm oriented on the
simulation of seismic wave propagation in models
containing geological formations with complex prop-
erties such as anisotropy, attenuation and small-scale
inhomogeneities. These formations are typically rel-
atively small (about 25 % of the model), however all
counted features require special treatment and use of
problem-oriented numerical methods which are com-
putationally more intense than that for ideally elastic
isotropic models. We suggest use of these methods
locally and couple them with standard staggered grid
scheme used in the major part of the model. In this
paper we discuss both mathematical aspects of algo-
rithm and peculiarities of its parallel implementation.

Introduction

Nowadays numerical simulation of wave propaga-
tion in realistic 3D isotropic elastic media have be-
came common part of seismic data processing and
interpretation. Typically these simulations are per-
formed by finite-difference (FD) schemes and in par-
ticular by standard staggered grid scheme (SSGS)
[1]. However, if anisotropy, attenuation or small-
scale inhomogeneities present in the model one needs
to apply more computationally intense techniques,
such as generalized standard linear solid (GSLS)
model [2] for attenuation, Lebedev scheme (LS) [3]
for anisotropy, or fine grids for small-scale objects.
Meanwhile, these complex structures take relatively
small part of the model - up to 25%. To improve
the efficiency of such simulation we suggest using
named approaches locally. As the result the problem
of coupling of several different numerical techniques
is arisen.

1 The algorithm

1.1 Local time-space mesh refinement

In order to take into account fine structure of the
model fine grids are used in the vicinity of clus-
ters of small-scale objects which are coupled with

a coarse grid applied for discretization of the main
part of computational domain. Coupling of the dif-
ferent grids is based on original procedure of mesh
refinement which has the following peculiarities:

• refinement of spatial and temporal steps are per-
formed separately; i.e. at different interfaces, to
ensure stability;

• refinement of temporal grid steps is based on ap-
proximation of elastic wave equation (both first
and second order formulations) and free from in-
terpolation, to ensure second order of conver-
gence and low artificial reflections;

• 2D FFT based interpolation is used for spatial
steps refinement, to minimize amount of data to
exchange between processor groups;

• independent domain decomposition is applied for
fine and coarse grid regions with allocation of
different groups of processors, to ensure high
level of processor balancing.

As the result the algorithm is stable, low-reflecting,
well-balanced and allows the fine-gridded region to
be placed in arbitrary position within computational
domain.

1.2 Anisotropy

The principal difference between isotropic and
anisotropic models is the structure of the stiffness
tensor, which has block-diagonal form for isotropic
media and no special structure in case of anisotropy.
As the result the SSGS [1] used for isotropic models
can not be applied for general anisotropy, where we
suggest using the Lebedev scheme (LS) [3]. However,
the LS requires four times mode RAM and floating
point operations per grid cell than the SSGS. As the
result a coupling of these two schemes was imple-
mented, so that the LS is used only in subdomains
containing anisotropic formations. The LS has a set
of 9 spurious modes which propagate along their own
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characteristics. So, the coupling of the SSGS and the
LS is based on the requirement that the true wave
should pass the artificial interface with as low reflec-
tions and artificial transmissions as possible, while
the spurious modes of the LS should not penetrate
to the SSGS region.

1.3 Viscoelasticity

Seismic attenuation is introduced into a model
by a convolution-like operator mapping strains into
stresses. In order to localize the operator in time a
rational approximation in frequency space is applied
after that the additional memory variables are used
in time space. As the result the size of the model
(number of variables and equations) doubles in com-
parison with ideally elastic model. At the same time
stating the memory variables being equal to zero one
gets the ideally elastic material. Moreover, the con-
jugation conditions at the interfaces for elastic and
viscoelastic wave equation are the same; i.e. there
is no conditions for the memory variables. Thus the
simplest way to improve the performance of the nu-
merical algorithm for simulation of wave propagation
in models containing viscoelastic formations is to al-
locate RAM for the memory variables and solve cor-
responding equations only locally.

On the other hand if domain decomposition tech-
nique is applied for parallel implementation one have
to solve a PU balancing problem. Moreover, algo-
rithm based on finite-difference approximation of the
first order equations has two types of synchronization
points. The first one is after velocity being updated
which assumes equal amount of computational work
per grid cell for both models. The second one is af-
ter stresses being updated where the computational
work is different. Thus some of PU will be waiting
regardless to the particular sizes of the elementary
subdomains. So, we suggest to construct domain de-
composition to minimize total computational time
(core-hours) of the algorithm. It was proved theoret-
ically and confirmed numerically that the optimal ra-
tio of the elementary subdomains volumes for elastic
and viscoelastic parts of the model should be equal
to 3.1.

2 Numerical experiment

Designed algorithm was implemented to study
wave propagation in fractured reservoir embedded
in complex model of buried channel which was vis-
coelastic, see fig. 1. Zero off-set seismic data is

provided in fig. 2, illustrating presence of scattered
waves associated with fractured reservoir.

Figure 1: The buried channel model.

Figure 2: Zero off-set seismogram.
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Abstract

Wave propagation in a 1-D guide with an array of
Helmholtz resonators is considered, with large ampli-
tude waves and viscous boundary layers. A numerical
strategy is proposed to get efficient simulations: con-
servative schemes for hyperbolic conservation laws,
diffusive representation for the fractional derivatives
and integrals, and splitting to couple both aspects.

Introduction

Wave propagation in lattices is the object of many
theoretical and experimental works. Floquet-Bloch
band gaps are exhibited in ordered lattices, whereas
localization occurs in disordered cases. Usually, lin-
ear conservation laws are assumed, and nonlinearities
(if present) are incorporated punctually [1].

Figure 1: Guide with an array of Helmholtz
resonators (courtesy given by O. Richoux).

The case of large amplitude waves in a 1-D array
of Helmholtz resonators is addressed theoretically in
[2], where the evolution equations are put in the form



















∂u

∂t
+

∂

∂x

(

au+ b
u2

2

)

= c
∂−1/2

∂t−1/2

∂u

∂x
+ d

∂2u

∂x2
− e

∂p

∂t
,

∂2p

∂t2
+ f

∂3/2p

∂t3/2
+ gp = hu.

(1)
The variables are the horizontal acoustic velocity u

and the acoustic pressure p in the throat of Helmholtz

resonators. The physical parameters are positive and
constant: a for advection; b for Burgers; c and f for
the dissipation in the viscous boundary layer of the
guide and resonators; d for the diffusivity of sound;
g for the oscillation in the resonators. Lastly, e and
h couple the evolution of u and p.

Depending on the initial conditions and the pa-
rameters in (1), an equilibrium between steepening
effects of nonlinearity and smoothing effects of dissi-
pation may be reached, leading to acoustic solitary
waves [2]. Our aim is to investigate numerically their
properties and as a first approach we propose here
simulations in the uncoupled case e = 0 = h.

1 Numerical methods

A uniform grid with spatial mesh size ∆x and time
step ∆t is used. The nonlinear acoustic equations
with diffusion (parameters a, b and d) are integrated
by standard explicit TVD scheme with MC-limiter:

un+1

i = uni −
∆t

∆x

(

fi+1/2 − fi−1/2

)

+
d∆t

∆x2

(

uni+1 − 2uni + uni−1

)

,

(2)

where fi±1/2 is the numerical flux [3]. The condition
of stability is

∆t ≤ min

(

(

2 d

∆x2
+

cmax

∆x

)−1

,
∆x

cmax

+
2 d

c2max

)

, (3)

where cmax = a + b max(u). The fractional deriva-
tives in (1) are non-local in time. To avoid storing
past values of the solution, we use a diffusive repre-
sentation [4]. For instance, the fractional integral of
order 1/2 is replaced by a sum of memory variables

∂−1/2

∂t−1/2

∂u

∂x
=

∫

+∞

0

φ(θ, t) dθ ≈

N
∑

`=1

κl φ(θ`, t),

where local-in-time φ`(t) ≡ φ(θ`, t) are defined by

{

dφ`

dt
= −θ2` φ` +

2

π

∂u

∂x
,

φ`(0) = 0.
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The weights κ` and the nodes θ` are based on Gauss-
Laguerre orthogonal polynomials [5]. Strang split-
ting is used to couple nonlinear acoustic equations
(a, b and d) with the boundary layer effects in the
tube (c): doing so is easy and does not modify the
condition of stability (3). Lastly, a diffusive approach
is also applied for the fractional oscillatons of p in (1);
time integration is performed by a unconditionnally
stable Newmark scheme.

2 Numerical experiments

The first test is a validation of the algorithms for
nonlinear advection. The physical parameters are
a = 300 m/s, b = 1, whereas all the other pa-
rameters are null. Consequently, no coupling be-
tween u and p is considered, and no fractional deriva-
tives are introduced. A 5-m long domain is dis-
cretized on 1000 grid nodes. The CFL number is
0.9. The initial solution is a door function: u0(x) =
200 (H(x− 0.5)−H(x− 1)), where H is the Heav-
iside function. Figure 2 shows the solution at t = 0
and a comparison between numerical and exact solu-
tions at various times. After 400 time steps, the right
part of the rarefaction fan has not still reached the
right-going shock; at 800 time steps, the rarefaction
fan interacts with the shock. One observes a very
good agreement between the two solutions: good de-
scription of the corners on the rarefaction wave, ac-
curate location of the shock, and almost no smearing
or oscillations at the discontinuity.
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Figure 2: nonlinear acoustics. Initial solution
(green line); comparison between TVD solution

(blue circles) and exact solution (red line).

The second test focuses on the homogeneous frac-
tional oscillator of order 3/2 in (1), with nonnull co-
efficients f = 0.5 and g = 1. The initial conditions
are p(0) = 1 and ∂p

∂t (0) = 0. The numerical solution
is computed on 50 Laguerre nodes. The exact solu-
tion is computed by a power series [4]. Comparison
between the solutions is given in Figure 3.
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Figure 3: fractional oscillator of order 3/2.
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Abstract

Nonlinear shallow water equations are used to
model the dynamics of water waves over non-flat
beds. To approximate numerical solutions to this
class of hyperbolic systems of conservation laws we
propose a simple and accurate finite volume solver.
The method consists of a predictor stage to recon-
struct the numerical fluxes using the method of char-
acteristics, while a corrector stage is used to dis-
cretize the conservative system in a finite volume
framework. Numerical results are presented for ani-
mating water waves in a closed domain with gradu-
ally varying bed.

1 Introduction

In the conservative form, the nonlinear shallow wa-
ter equations can be reformulated in a compact form
as

∂tW + ∂xF(W) + ∂yG(W) = S(W), (1)

where

W =




h
hu
hv


 , S =




0
−gh∂xZ
−gh∂yZ


 ,

F =




hu

hu2 +
1

2
gh2

huv


 , G =




hv
huv

hv2 +
1

2
gh2


 .

The equations (1) can also be reformulated in an ad-
vective compact form as

DtU + Q(U) = 0, (2)

where Dt = ∂t+u∂x+v∂y is the total derivative and

U =




h
u
v


 , Q =




h (∂xh+ ∂yv)
g∂x (h+ Z)
g∂y (h+ Z)


 .

2 Characteristic Finite Volume Method

we cover the spatial domain with rectangular cells
Ci,j = [xi− 1

2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
] of uniform sizes ∆x

and ∆y for simplicity. The finite volume discretiza-
tion of (1) is

Wn+1
i,j = Wn

i,j −
∆t

∆x

(
Fni+1/2,j − Fni−1/2,j

)

−∆t

∆y

(
Gni,j+1/2 −Gni,j−1/2

)
+ ∆tSni,j ,

where Fni±1/2,j and Gni,j±1/2 are the numerical fluxes.

2.1 Predictor stage

Step 1. Compute the departure points
Xi+1/2,j(tn) and Yi,j+1/2(tn) using an iter-
ative procedure

Xi+1/2,j(tn) = xi+1/2,j−
∫ tn+α∆t

tn

V
(
τ,Xi+1/2,j(τ)

)
dτ,

where V is the advective vector and α is a pa-
rameter between 0 and 1.

Step 2. Calculate the interpolated solutions
Ũi+1/2,j and Ũi,j+1/2 e.g.,

Ũi+1/2,j = P
(
U
(
tn, Xi+1/2, Yj

))
,

where P is an interpolating polynomial.

Step 3. Construct the intermediate solution
Ui+1/2,j and Ui,j+1/2 using a first-order scheme
for the SWE in the advective form e.g.,

Un+1
i+1/2,j = Ũn

i+1/2,j −∆tQ
(
Ũn
i+1/2,j

)
.

2.2 Predictor stage

Step 4. Cover the conservative variables Wi+1/2,j

and Wi,j+1/2 from the advective variables
Ui+1/2,j and Ui,j+1/2.

Step 5. Update the solution using the simple first-
order scheme with respect to the C-property

Wn+1
i,j = Wn

i,j −
∆t

∆x

(
F(Wn

i+1/2,j)− F(Wn
i−1/2,j)

)

− ∆t

∆y

(
G(Wn

i,j+1/2)−G(Wn
i,j−1/2)

)
+ ∆tS(Ŵn

i,j).
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3 Numerical Results

3.1 Geostrophic adjustment simulation on a flat
bottom

We consider a test proposed in [4] corresponding
to the following initial condition:

h(x, y, 0) = 1+
1

4

[
1− tanh

[
10
[√

2.5x2 + 0.4y2 − 1
]]]

,

(hu)(x, y, 0) = 0, (hv)(x, y, 0) = 0.

We consider a quadrilateral 200 × 200 mesh for the
domain [−10, 10]× [−10, 10] and the CFL number is
fixed to 0.5. Figure 1 shows the numerical results
obtained with the first order proposed scheme. The
initial elliptical mass imbalance evolves in an axisym-
metric way. Shock waves propagate leaving behind
an elevation which is slowly spinning clockwise.

Figure 1: Evolution of the free surface (left) and
the velocity field (right) on a flat bottom at

different simulation times. From top to bottom
t = 0, 0.5, 1 and 2 s

3.2 Geostrophic adjustment simulation on a non
flat bottom

We consider the same initial conditions for the wa-
ter height and the discharge as the example treated

in the section above. We add a topography having
the following form

z(x, y) =

{
0, if x < 0,

0.3 (1.0 + tanh(1.5x)) , otherwise.

Unlike the previous test, Figure 2 shows a flow evolv-
ing in a nonaxisymmetric way.

Figure 2: Evolution of the free surface (left) and
the velocity field (right) on a non-flat bottom at
different simulation times. From top to bottom

t = 0.5, 1 and 2 s
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Abstract

We consider the time dependent motion of a float-
ing body, either rigid or elastic, which is subject
to some initial displacement and which subsequently
evolves freely. We show how the solution can be cal-
culated using a Laplace/Fourier transform. We also
show that this is solution method is equivalent to the
Cummins, or memory effect, method. We also show
how the Laplace/Fourier transform solution can be
coupled with an expansion over resonances to give
the singularity expansion method.

Introduction

We are concerned here with the time-dependent
motion of a floating body which is given an ini-
tial displacement and then allowed to evolve freely.
A strong connection between the frequency domain
and time domain solution exists and this is the ba-
sis of the generalized eigenfunction solution method
[1], [2], [3], the Cummins method [4] and also the
Laplace/Fourier transform solution [5].

The singularity expansion method is a method to
approximate the time-dependent response of a wave
scattering problem using resonances, resonance poles
or scattering frequencies. They have been investi-
gated for the rigid-body case [6], for floating bodies
[7] and for hydroelastic bodies [8]. The presentation
here generality is new as are the formula and identi-
ties.

1 General Equations for a Floating Body in
the Time Domain

The fluid motion is assumed to be irrotational
so that it may be described by a velocity potential
Φ(x, z, t), where x = (x, y) are the horizontal coordi-
nates and z is the vertical coordinate pointing verti-
cally up-wards with the free-surface is at z = 0. The
velocity potential satisfies the following equations

∆Φ = 0, (x, z) ∈ Ω, (1a)

∂zΦ = 0, z = −h, (1b)

∂zΦ +
1

g
∂2
t Φ, x ∈ ∂ΩF , (1c)

where Ω is the fluid volume, g is the acceleration due
to gravity, and ∂ΩF is the free-surface.

We expand the body motion modes and we define
the motion coefficient ζp(t) as the motion of the pth
mode. Therefore, on the structure, the normal fluid
velocity must match that of the structure so that

∂nΦ =
∑

p

∂tζp(t)np, x ∈ ∂ΩB, (2)

where np is the normal associated with the pth mode
and ∂ΩB is the wetted surface of the body. The de-
composition is entirely identical to that for a rigid
body. The motion is subject to the initial conditions
that the fluid is at rest and that initial body motion
is prescribed.

The equations of motion for the elastic body are
found by coupling the elastic body equations with
the forcing due to the fluid and we obtain

∑

q

Mpq∂
2
t ζq +

∑

q

Kpqζq

= −ρ
∫∫

∂ΩB

∂tΦnp dS −
∑

q

Cpqζq = 0. (3)

Here Mpq are the elements of the mass matrix, Kpq

are the elements of the stiffness matrix and Cpq are
the elements of the restoring force matrix. The in-
tegral term of (3) is the hydrodynamic force aris-
ing from the fluid motion. The only difference for
the elastic and rigid body is the inclusion of the Kpq

terms.

2 Expression for the Solution via the
Fourier/Laplace Transform

We will calculate the solution to equation (3)
by the Fourier/Laplace transform. We define the
Fourier/Laplace transform as

ζ̂p(s) =

∫ ∞

0
ζp(t)e

ist dt,

and

Φ̂(s) =

∫ ∞

0
Φ(t)eist dt.
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Note that there is a strong connection between the
frequency domain variable ω and the s variable but
we distinguish these here.

We assume that at t = 0 the fluid is at rest and
the body is given only an initial displacement. The
Fourier/Laplace transform of (2) and (3) gives

M
(
−s2ξ̂ + isξ(0)

)
+ Kξ̂ + Cξ̂+

(
A(s) +

i

s
B(s)

)(
−s2ξ̂ + isξ(0)

)
= 0 (4)

where A and B are the added mass and damping [4].
The exact solution in the time domain is given by

ξ(t) =
1

2π

∫ ∞

−∞

(
−s2M + K + C− s2A(s)− isB(s)

)−1

×
(
−M−A(s)− i

s
B(s)

)
isξ(0)e−ist ds. (5)

The following expression is easier to calculate numer-
ically,

ξ(t) =
1

π

∫ ∞

0
Re {

(
−s2M + K + C− s2A(s)− isB(s)

)−1

×
(
−M−A(s)− i

s
B(s)

)
isξ(0)} cos(st) ds, (6)

since the real part decays rapidly at s→∞.
Note that this implies that

I =
1

π

∫ ∞

0
Re {

(
−s2M + K + C− s2A(s)− isB(s)

)−1

×
(
−M−A(s)− i

s
B(s)

)
is} ds, (7)

3 Complex Resonances

We can approximate the solution to equation (5)
using the singularity expansion method. In this
method the solution is approximated as a sum over
the complex resonances. We define

Φ(s) = −s2A(s)− isB(s).

The equation for a complex resonance at ωm is
(
K− ω2

mM + C + Φ(ωm)
)
um = 0. (8)

and um is the resonance vector.
Near the complex resonance at position ωm with

associated resonance vector um with the solution can
be approximated by

ξ̂(s) = um
um ·

(
−M−A(s)− i

sB(s)
)

(s− ωm)ūm · (M−Φ′) um
, (9)

We substitute our approximation for ξ̂ (9) into (5)
and obtain

ξ(t) ≈

Re




∑

m

um
um ·

(
−M−A(ωn)− i

ωn
B(ωn)

)
iωnξ(0)

um · (M−Φ′) um
e−iωnt



 .

4 Conclusions

We have presented the general solution for a time-
dependent motion of a floating body which is sub-
ject to some initial displacement and then allowed
to evolve freely. The solution is derived using
the Fourier/Laplace transform and we show that
this solution can be approximated using complex
resonances by applying the singularity expansion
method.
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Abstract

We present studies of phenomena in relativistic
quantum mechanics, with focus on Klein tunneling
(also known as the Klein paradox) which occurs in
single- and bi-layer graphene [3]. The underlying
model is the time-dependent Dirac equation, which
we solve in two and three spatial dimensions. By us-
ing Summation-By-Parts (SBP) operators [2] and a
penalty (SAT) approach [1] to impose boundary and
interface conditions, we obtain stable and fully ex-
plicit high-order finite difference schemes. The anal-
ysis is verified by convergence studies against analyt-
ical solutions.

Introduction

The aim in the present study is to study time-
dependent phenomena in relativistic quantum me-
chanics. We focus on electrons tunneling through po-
tential barriers. According to non-relativistic quan-
tum mechanics, the tunneling probability decays ex-
ponentially with the barrier height. In the relativis-
tic case however, the tunneling probability tends to
a non-zero limit as the barrier height goes to infin-
ity. This phenomenon is known as Klein tunnel-
ing. In this setting, the fundamental model is the
time-dependent Dirac equation, which incorporates
both relativity and particle spin. The more studied
Schrödinger equation can be shown to be the non-
relativistic approximation of the Dirac equation with-
out spin. In a coming study, we hope to compare the
two models and investigate the importance of spin
and relativity in relevant applications.

1 The Dirac equation

The Dirac equation for a spin 1
2 particle is of the

form
ih̄ψt = Hψ, (1)

where H is the Hamiltonian operator. In three spa-
tial dimensions, the equation can be written as

ψt = Aψx +Bψy +Cψz +Dψ, (2)

where the matrices A, B and C are Hermitian, while
D is skew-Hermitian. A, B and C can be diagonal-

ized,

A = TAΛAT
∗
A, B = TBΛBT

∗
B, C = TCΛCT

∗
C ,

where the diagonal matrices ΛA,B,C hold the eigen-
values of A, B and C, respectively. In the simple
case of a free particle, we have analytical solutions of
the form

ψ(~r, t) = u~p e
i
h̄
(~r·~p−Ept), (3)

where Ep = ±
√
p2c2 +m2c4.

1.1 The continuous problem

Consider the 1-D Dirac equation with Dirichlet
boundary conditions,




ψt = Aψx +Dψ, 0 < x < 1, t ≤ 0,
ψ = gl, x = 0, t > 0,
ψ = gr, x = 1, t > 0,
ψ = f , 0 ≤ x ≤ 1, t = 0.

(4)

We split A into a positive and negative part,
A = A+ +A−, using Steger-Warming flux-splitting,

A± = TA

(
ΛA ± |ΛA|

2

)
T ∗
A. (5)

We impose the boundary conditions on the ingoing
characteristic variables. That is, we apply the Steger-
Warming flux-splitting at the boundaries and specify
A−ψ and A+ψ at the left and right boundaries, re-
spectively. Applying the energy method to (4) yields

d

dt
||ψ||2 = g∗rA+gr +ψ∗A−ψ|x=1

− g∗lA−gl −ψ∗A+ψ|x=0.
(6)

1.2 The semi-discrete problem

To simplify the notation we define E0 and EN as
matrices that pick out the values at the left and
right boundaries, respectively. Applying the SBP-
SAT method to (4) with a first derivative SBP oper-
ator Dx and a corresponding norm Hx leads to the
semi-discrete problem

ψt = ADxψ +Dψ + τlH
−1
x E0A−(ψ0 − gl)

+ τrH
−1
x ENA+(ψN − gr).

(7)
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N log l2
(4th) q(4th) log l2

(6th) q(6th)

313 -1.39 0.00 -1.26 0.00
613 -2.07 2.24 -2.11 2.80
1213 -2.83 2.55 -3.07 3.20
2413 -3.76 3.09 -4.28 4.01

Table 1: log(l2−errors) and convergence rates using
diagonal-norm operators.

N log l2
(8th) q(8th) log l2

(10th) q(10th)

313 -1.06 0.00 -0.70 0.00
613 -2.12 3.54 -1.90 4.00
1213 -3.32 3.98 -3.42 5.06
2413 -4.72 4.64 -5.17 5.80

Table 2: log(l2−errors) and convergence rates using
diagonal-norm operators.

Multiplying by ψ∗Hx, adding the transpose and
choosing τl = 1, τr = −1, we obtain (for diagonal-
norm operators)

d

dt
(ψ∗Hxψ) = g∗rA+gr + ψ∗

NA−ψN

− g∗l A−gl − ψ∗
0A+ψ0

+ (ψ0 − gl)∗A−(ψ0 − gl)
− (ψN − gr)∗A+(ψN − gr).

(8)

We note that the semi-discrete energy estimate (8)
exactly mimics the continuous estimate (6) with the
addition of the two last terms, which are small damp-
ing terms.

Extending the technique to two and three dimen-
sions is straightforward.

2 Computations

A convergence study for a free particle in 3-D is
presented. The analytical solution (3) is imposed at
the boundaries. Tables 1 and 2 show the results ob-
tained with diagonal-norm SBP operators. Tables 3
and 4 show the results for block-norm operators. The
operators are here denoted by the order of accuracy
of the interior stencil.

To simulate Klein tunneling, we introduce a po-
tential barrier and let a wave packet collide with the
barrier. Figure 1 shows the probability density in
the x-y plane, as the wave packet interacts with the
barrier at x = 0.5 pm. The discontinuity at the po-
tential step is handled with a multi-block technique.
The continuity of the solution across the interface is
imposed weakly using the SAT technique.

N log l2
(4th) q(4th) log l2

(6th) q(6th)

313 -1.60 0.00 -1.93 0.00
613 -2.60 3.33 -3.61 5.59
1213 -3.77 3.88 -5.38 5.86
2413 -4.98 4.03 -7.20 6.07

Table 3: log(l2−errors) and convergence rates using
block-norm operators.

N log l2
(8th) q(8th) log l2

(10th) q(10th)

313 -2.14 0.00 -2.18 0.00
613 -4.55 7.99 -4.91 9.06
1213 -6.86 7.69 -7.59 8.90
2413 -9.27 8.00 -10.08 8.27

Table 4: log(l2−errors) and convergence rates using
block-norm operators.
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Abstract

We investigate a boundary element method with
Müller’s formulation for dielectric scattering prob-
lems in periodic domains. In this method, the iter-
ation number of iterative methods is expected to be
small since the operators in Müller’s formulation are
essentially identical with the unit operator to within
a compact operator. We use the Nyström method for
the discretisation so that we do not need to use any
basis functions. We make several numerical experi-
ments to see the accuracy and the efficiency of this
method.

1 Introduction

For analysing periodic optical structures nu-
merically, the combination of boundary element
methods(BEM) and periodic fast multipole meth-
ods(FMM) is considered to provide an effective
solver. In periodic problems, the computational time
can be larger since the iteration number increases
sharply around Wood’s anomaly[1], which is a pecu-
liar phenomenon of periodic problems. It is, there-
fore, important to decrease the iteration number in
the periodic FMM.

To develop a fast solution method for periodic
problems, we consider BEM for the Müller formu-
lation with Nyström’s method in this paper in or-
der to avoid difficulties related to basis functions[2].
Müller’s formulation is one of resonance-free formula-
tions of boundary integral equations for transmission
problems. The iteration number of iterative methods
for this formulation is expected to be small even with
no preconditioning[3] since the integral operators in
this formulation are essentially identical with the unit
operator to within a compact operator.

2 Müller’s formulation for periodic bound-
ary value problems

For simplicity, we solve problems which have one
scatterer in the unit domain(unit of periodicity). We
define Ω = (−∞, ∞) × (−L/2, L/2) × (−L/2, L/2)
as the unit domain. We denote a simply connected
domain in Ω by Ω−, and also define Ω+ to be Ω\Ω−.
The electric field E and the magnetic field H satisfy

Maxwell’s equations: ∇ × E = iωµ±H, ∇ × H =
−iωε±E in Ω±. They also satisfy the boundary con-
ditions: m := E+ × n = E− × n, j := n × H+ =
n × H− on the boundary Γ = Ω+ ∩ Ω−, and satisfy
the periodic boundary condition:

E(x1, L/2, x3) = eiβ2E(x1,−L/2, x3),

E(x1, x2, L/2) = eiβ3E(x1, x2, −L/2),

H(x1, L/2, x3) = eiβ2H(x1, −L/2, x3),

H(x1, x2, L/2) = eiβ3H(x1, x2, −L/2),

where n is the unit normal vector which is outward
from Ω−, E± and H± are the limit values of E and
H from the domain Ω±, ε± and µ± are the permit-
tivity and the permeability in the domain Ω± and
β2 and β3 ∈ R are phase differences along x2 and
x3 directions, respectively. We solve the Maxwell’s
equations under these conditions and the radiation
condition for the scattered waves Esca and Hsca at
infinity, where Esca := E − Einc, Hsca := H − H inc

and Einc and H inc are the electric and magnetic fields
of the incident wave, respectively.

To solve this problem, we use boundary element
methods with Müller’s formulation. The boundary
integral equations corresponding to this problem are
given as follows:

iωε+Einc × n = iω
ε+ + ε−

2
m+

n ×
∫

Γ

{
−iω(ε+∇Gp+ − ε−∇G−) × m−

(k+2
Gp+ − k−2

G−)j − (∇∇Gp+ − ∇∇G−)j
}

dSy,

(1)

iωµ+n × H inc = iω
µ+ + µ−

2
j+

n ×
∫

Γ

{
−iω(µ+∇Gp+ − µ−∇G−) × j+

(k+2
Gp+ − k−2

G−)m + (∇∇Gp+ − ∇∇G−)m
}

dSy,

(2)

where Gp+ is the periodic Green function for
Helmholtz’ equation in Ω+ defined by Gp+(x) =
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∑
ω∈L G+(x − ω)eiβ·ω, G±(x) = eik±|x|/(4π|x|),

β = (0, β2, β3) and L = {(0, ω2, ω3)|ω2 = pL, ω3 =
qL, p, q ∈ Z}.

We can rewrite the equations (1) and (2) into the
following form:
{(

iω ε++ε−
2 I 0

0 iω µ++µ−
2 I

)
+

(
K11 K12

K21 K22

)}(
m
j

)

=

(
iωε+Einc × n

iωµ+n × H inc

)
, (3)

where Kij (i, j = 1, 2) are the integral operators
which appear in the right-hand sides of equations (1)
and (2) and I is the unit operator. Taking into ac-
count the fact that an integral operator is compact
if the integral kernel of the operator is integrable,
we see that the operators Kij (i, j = 1, 2) are com-
pact operators. Hence, the accumulation points of
the eigenvalues of the operator on the LHS of equa-
tion (3) are iω(ε+ + ε−)/2 and iω(µ+ + µ−)/2. It is,
therefore, probable that almost all the eigenvalues of
the coefficient matrix obtained by discretising equa-
tions (1) and (2) are also close to these points. From
this fact, we expect that iterative solvers for this
equation converge fast without any preconditioning.

We use Nyström’s method for discretisation with
Gauss’s integral formulae as a quadrature method.
The collocation points of Nyström’s method are thus
the integral points of the Gaussian quadrature.

3 Numerical example

We solve a periodic problem by using both the
proposed method and our previous method, i.e., the
PMCHWT formulation with the matrix of the di-
rectly computed part in periodic FMM as a right
preconditioner[4]. The scatterer consists of spheres
which are arranged periodically along both x2 and
x3 axes. The radii of the spheres are 0.35. We
set L2 = L3 = 1, ε+ = 1, ε− = 2.56 and µ± = 1.
The incident wave is a planar wave given as Einc =
Ece

ik1x3 , H inc = Hce
ik1x3 where Ec = (0, 1, 0) and

Hc = (0, 0, 1), hence β2 = β3 = 0. The spheri-
cal scatterer is discretised with 5780 triangles. We
use the Galerkin method with RWG basis[5] for dis-
cretising the PMCHWT integral equation. For solv-
ing linear equations, we use GMRES with the error
tolerance of ε = 10−3 for Müller’s formulation and
FGMRES with ε = 10−3 for the PMCHWT formu-
lation. For inverting the preconditioner in the PM-
CHWT formulation, we use GMRES with ε = 10−1.

We did not use restart in GMRES or FGMRES.
The iteration numbers of the iterative methods

in the Müller and the PMCHWT formulations are
shown in Figure 1. The iteration number of Müller’s
formulation is smaller than that of the PMCHWT
formulation for any of the frequencies considered.
We also confirm that Müller’s formulation with the
Nyström method is faster than the PMCHWT for-
mulation with the Galerkin method in terms of com-
putational time.
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Figure 1: Iteration numbers.

4 Conclusion

We developed a solution method for periodic
boundary value problems with Müller’s formulation.
We found that the iterative method with Müller’s for-
mulation converges faster than that with PMCHWT
formulation with the matrix of directly computed
part in FMM algorithm as the right preconditioner.
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Abstract

Nanoplasmonics forms a major part of the field of
nanophotonics, which explores how electromagnetic
fields can be confined over dimensions on the order
of or smaller than the wavelength. Here, we present
an integral-equation formulation of the mathemati-
cal model that delivers accurate solutions in small
computational times for surface plasmons coupled by
periodic corrugations of flat surfaces.

1 Introduction

Nanoplasmonics forms a major part of the field
of nanophotonics, which explores how electromag-
netic fields can be confined over dimensions on the
order of or smaller than the wavelength. Initiated in
1902 by R.W. Wood [1] with the discovery of grat-
ing anomalies, this phenomenon has attracted sig-
nificant attention over the last hundred years [2],
[3], [4]. Mie in 1908 gave a mathematical descrip-
tion of light scattering from spherical particles of
sizes comparable to the wavelength [3], describing
an effect that would come to be known as local-
ized surface plasmons in the context of nanoplas-
monics. It is based on interaction processes between
electromagnetic radiation and conduction electrons
at metallic interfaces or in small metallic nanostruc-
tures, leading to an enhanced optical near-field at
sub-wavelength dimension. In 1899, Sommerfeld had
described surface waves (waves propagating at the
surface of metals) mathematically, and in 1902 Wood
observed anomalous drops in the intensity of light re-
flected by a metallic grating [3]. But theory and ob-
servation would not be linked until 1941, by Fano [5].
Further experimental validation came in 1968, when
Kretschmann and Raether used prism coupling to ex-
cite surface waves with visible light [5]. Other forms
of coupling to surface plasmons have been thoroughly
investigated since then. All of the phenomena men-
tioned above are based entirely on classical electro-
magnetics, and thus can be mathematically described
by Maxwells equations. In this paper, an integral-
equations formulation is given for an infinitely peri-

odic metal surface whose period d is on the nanome-
ter scale. The metal is assumed to extend infinitely
below this surface, while a dielectric material extends
infinitely above the surface. Some details of the nu-
merical implementation and the results of a few nu-
merical experiments are also given in Sec. 2 and 3.

2 Formulation and Algorithm

In this section, a system of integral equations for
the total exterior field u (u = Ez in Transverse Elec-
tric –TE– and u = Hz in Transverse Magnetic –TM–
polarizations) and its normal derivative ∂u

∂n on the
surface ∂D are given. The metal surface ∂D is in-
finitely thick and periodic and satisfies

f(x+ d, y) = f(x, y).

These fields [u, ∂u∂n ] satisfy [7];

ui(r) =

∫

P
Gi(r, r

′)
∂ui(r′)
∂n(r′)

− ∂Gi
∂n(r′)

(r, r′)ui(r′)ds(r′),

ue(r) =

∫

P
ue(r′)

∂Ge
∂n(r′)

(r, r′)−Ge(r, r′)
∂ue(r′)
∂n(r′)

ds(r′),

for x ∈ D, and for x ∈ Dc, respectively where n is the
unit normal to ∂D directed into the exterior of D and
P is a single period of the surface ∂D. Here, G(r, r′)
is the quasi-periodic Green’s function [8] given by

GQ(r, r′) =
∞∑

n=−∞
G0(r, r

′)

=
i

4

∞∑

n=−∞
eiαndH

(1)
0 (krn)

where G0(r, r
′) =

i

4
H

(1)
0 (kr) is the free-space Green’s

function for the Helmholtz equation and α = k sin(θ)
where θ is incidence angle.

As x → ∂D and using the boundary conditions,
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the surface integral equations become

uinc(r) = ψ(r) +

∫

P

∂(Gi −Ge)
∂n(r′)

(r, r′)ψ(r′)dr′

−
∫

P
(νGi −Ge)(r, r′)

∂ψ(r′)
∂n(r′)

dr′,

∂uinc(r)

∂n(r)
=
ν + 1

2

∂ψ(r)

∂n(r)
+

∫

P

∂2(Gi −Ge)
∂n(r)∂n(r′)

(r, r′)ψ(r′)dr′

−
∫

P

∂(νGi −Ge)
∂n(r)

(r, r′)
∂ψ(r′)
∂n(r′)

dr′,

for r ∈ ∂D with the unknowns ψ(r) = ue(r)+uinc(r)
and ∂ψ(r)/∂n(r). Here uinc(r) denotes the incoming
incident wave and ν = 1 for TE polarization and
ν = ki/ke for TM polarization.

Our numerical algorithm depends on seeking the
unknowns on the surface of the grating, and the ma-
trix elements are evaluated through the derivation of
a careful decomposition that allows for explicit eval-
uation of the singular and non-singular parts of the
kernels [9].

3 Numerical Results

In this section, we provide numerical experiments
for the algorithm described above implemented in
MATLAB. The test cases in the simulations that fol-
low correspond to (“two-dimensional”) infinitely pe-
riodic metal gratings that invariant in the z direction.
To investigate the existence of plasmonic resonances,
we concentrate on the analysis at length scales where
these do appear, namely

h << λ ∼ d.

where d is the period, h is the height of the rough
surface and λ is the wavelength.

The first grating profile is given by

f(x) =
h

2
sin(x)

where h = 48nm, d = 300nm λ = 226nm, θ = 29o

and the metal is silver. Note that h/λ ≈ 0.2 and
λ/d ≈ 0.75 (See Figures 1-3).

Our second example, on the other hand, corre-
spond to a more complex profile consisting of a
(Fejér-smoothed) approximation to a semi-elliptical
profile represented with 51 Fourier modes (See Fig-
ure 4). The “linewidth” (size of the major axis of the
ellipse) is 400 nm, and the period is d = 630nm. Here
we present results of the integral solver for heights

Figure 1: Reflectivity vs incidence angle map for the

sinusoidal grating.

Figure 2: The error in the total field and its normal

derivative as a function of the number of collocation points

for the sinusoidal grating. The error is shown on a

logarithmic scale for where a plasmon is generated.

h = 20nm and h = 30nm, and display a specific veri-
fication against the high-order perturbation method
introduced in [10], [11] (See Figures 5 and 6).
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Figure 3: The real part (top) and intensity (bottom) of

the field above and below the surface of the sinusoidal grating

for an angle of incidence of θ = 29o.
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1 Setting of the problem

We consider wave propagation in a domain Ω ⊂
Rd, with smooth boundary Γ, whose complement can
be written as (δ > 0 denoting a small length)

R3 \ Ω = Oδ ∪ Cδ

where Oδ = {x ∈ R3 / d(x,Ω) > δ} is a perfectly re-
flecting object and Cδ = {x ∈ R3 / 0 < d(x,Ω) < δ} is
a thin penetrable coating (see figure 1). We assume
that this coating is ”periodic” and strongly varying
(see section 2), which means, roughly speaking, that
its physical characteristics are highly oscillating, at
scale δ, in the directions tangential to Γ. The goal of
this work is to find, for numerical purpose, “equiv-
alent” boundary conditions on Γ for replacing the
presence of Cδ. This is achieved by means of a mul-
tiscale asymptotic analysis when δ tends to 0.

Oδ

Cδ

Ω

Figure 1: The geometry of the problem

2 Definition of periodic function in Cδ

Except in the case of a flat or cylindrical surface Γ,
giving a precise mathematical meaning to the notion,
however intuitive, of periodic coating is not a trivial
modelization issue. We have chosen to see a periodic
coating as resulting from a deformation of a plane
coating. This refers to a parametric representation
of the surface Γ that should correspond to the man-
ufacturing of the coating. We assume the existence
of a smooth and injective transformation:

ΦΓ : Γr ≡ R2 7→ R3

xr ∈ Γr 7→ xΓ = ΦΓ(xr)

where Γr denotes the reference plane, such that the
deformed surface Γ is the image of Γr by ΦΓ:

Γ =
{
x = ΦΓ(xr), xr ∈ Γr

}
.

Most important geometrical objects can be defined
from the differential of ΦΓ, DΦΓ(xr) ∈ L(R2,R3) and
its adjoint in L(R3,R2). At the point xΓ = ΦΓ(xr),

• Π(xΓ) = Im DΦΓ(xr) is the tangent plane to Γ,

• n(xΓ) ⊥ Π(xΓ) is the normal vector to Γ,

• g(xΓ) ≡ g(xr) = DΦΓ(xr)
∗DΦΓ(xr) ∈ L(R2)

is the metric matrix of Γ.

The vector n(xΓ) is oriented in such a way that

Cδ =
{
x = xΓ + ν n(xΓ), ν ∈ ]− δ, 0 ], xΓ ∈ Γ

}

Moreover, for δ small enough, (xΓ, ν) define local co-
ordinates in Cδ. Let Cr be the flat normalized layer:

Cr = Γr × ]− 1, 0 [ with current point x̂ = (x̂r, ν̂).

A periodic function f δ in Cδ with period δ will be
define from a xr-periodic reference function, with pe-
riod 1, f̂ defined in the reference layer Cr, namely:

f δ(x) = f δ(xΓ, ν) = f̂
(xr
δ
,
ν

δ

)
, if xΓ = ΦΓ(xr) (1)

where f̂(x̂r + (m,n), ν̂) = f̂(x̂r, ν̂), ∀ (m,n) ∈ Z2.

3 The model problem

We consider a (family) of scalar propagation prob-
lems with variable coefficients: the solution uδ is de-
fined in the ”exterior” to the unpenetrable object

Ωδ = R3 \ Oδ ( =⇒ Ωδ = Ω ∩ Cδ )

and is subject, in addition to a radiation condition we
shall ignore here, to a Neumann boundary condition:





div
(
ρδ ∇uδ

)
+ ω2µδ uδ = f, in Ωδ

∂νuδ = 0 on ∂Ωδ

(2)
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where f denotes a compactly supported source term
and where the positive and bounded functions ρδ and
µδ are such that the medium is homogeneous in Ω :

ρδ(x) = ρ∞, µδ(x) = µ∞ in Ω,

and δ-periodic inside Cδ, i. e. ρδ and µδ are peri-
odic (see (1)) with reference functions ρ̂(x̂r, ν̂) and
µ̂(x̂r, ν̂), extended to ν̂ > 0 by ρ∞ and µ∞ (for (7)).

4 A third order effective boundary condition

The purpose of this work is to build a ”simple”
problem for computing an approximation uδapp solu-
tion in the exterior domain Ω, with the help of a
generalized impedance boundary of the form:

∂νu
δ
app + Tδ u

δ
app = 0, on Γ. (3)

The impedance operator Tδ should be a local and
represent the thin coating Cδ. To construct Tδ, we
search a formal power series asymptotic expansion in
δ of the exact solution uδ on the exterior domain Ω:

uδ = u0 + δ u1 + δ2 u2 + · · · in Ω

which is valid, in fact, outside a small neighborhood
of Γ. In a first step, to construt inductively on k,
the terms uk of the expansion. This uses the method
of matched asymptotic expansions that relies on an-
other asymptotic expansion of uδ, of multi-scale na-
ture (involving homogenization and boundary layer
ansatz), in a neighborhood of the coating Cδ (see [2]
for more details). Then, in a second step, we look for
a boundary condition ”approximately satisfied” by
the same expansion truncated at a given order. Do-
ing so, our third order condition (constructed with
u0, u1 and u2) is obtained with the operator:

Tδ = δ T1 + δ2 T2 (4)

For simplicity, we shall give the expression of T1 is
T2 when the coating has some symmetry properties:

ρ̂(−x̂r, ν̂) = ρ̂(x̂r, ν̂), µ̂(−x̂r, ν̂) = µ̂(x̂r,−ν̂).

In the general case, their expressions are similar but
more involved. Let Y a

r = [0, 1]2 × [−1, a]. First, we
introduce particular mean values ρ0 and ρ1 (resp. µ0

and µ1) of ρ̂ (resp. µ):

ρ0 =

∫

Yr

ρ̂(x̂) dx̂, ρ1 =

∫

Yr

2 ν̂ ρ̂(x̂) dx̂, (5)

Next, let us set, Ls(R3) being the space of symmetric
3× 3 matrices,

T (xΓ) :=
{
A ∈ Ls(R3) / An(xΓ) = 0

}
≡ Ls

(
Π(xΓ)

)

the space of symmetric linear maps in Π(xΓ). Let
R(xΓ) ∈ T (xΓ), be the curvature tensor of Γ at
xΓ (see [1]), with trace 2H(xΓ), where by definition
H(xΓ) is the mean curvature of Γ at xΓ. Now, we
define, for each xΓ ∈ Γ, the two profile functions:

w1(·, xΓ), w2(·, xΓ) : Y∞r → R, (6)

as the (unique) solutions of the elliptic problems




div
(
ρ̂−1 g(xr)

−1 ∇wj(·, xΓ)
)

= ∂x̂j ρ̂ in Y∞r

wj(·, xΓ) is 1-periodic in x̂r, bounded at ∞

∂ν̂w
j(x̂r, 0) = 0,

∫
Y 0
r
wj(·, xΓ) dx̂ = 0

(7)

from which we define the 2× 2 symmetric matrices

a(x̂, xΓ) such that aij(x̂, xΓ) = ρ(x̂)
∂wj

∂x̂i
(x̂, xΓ).

Next, for each (x̂, xΓ = ΦΓ(xr)), we define the posi-
tive symmetric positive operators m(x̂, xΓ) ∈ T (xΓ)
through their bilinear form on Π(xΓ) = Im DΦΓ(xr):(

m(x̂, xΓ)DΦΓ(xr)u,DΦΓ(xr)v)R3 =

= ρ(x̂)
(
a(x̂, xΓ)u, v

)
R3

Finally, we set M(xΓ) =

∫

Y 0
r

m(x̂, xΓ) dx̂ ∈ T (xΓ).

Then, the operators T1 and T2 appearing in (4) are

T1 := ρ0 ∆Γ + divΓ

(
M(xΓ)∇Γ

)
+ µ0 ω

2,

T2 := ρ1 divΓ

[(
H(xΓ)−R(xΓ)

)
∇Γ

]
+ µ1H(xΓ)ω2

When ρ̂ and µ̂ are constant, one recovers well-known
thin layer conditions for homogeneous coatings [1].

In the talk, we shall give insights on the analysis of
the condition (3, 4) and its numerical validation.
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Reflection of Pulses by Heterogeneous Media
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Abstract

This talk will discuss the reflection of pulses from
heterogeneous media. In particular, I will be focus-
ing on a solution technique for a semi-infinite set of
beads. The reflection coefficient can be found ex-
actly and used to reconstruct a pulse using Fourier
transforms. Related work includes the analogous 2-D
problems of membranes and plates. We also make
comments on the reflection coefficient calculated as-
suming the heterogeneous media can be treated as an
effective medium. It becomes clear that this is not a
reasonable assumption as the reflection and transmis-
sion within the beaded region has significant effect on
the waves which are reflected.

Introduction

The problem of waves travelling in heterogeneous
media has been studied extensively. It is of great
interest in engineering, covers a broad range of top-
ics and holds many rich and interesting problems.
There are numerous different methods to be used to
describe heterogeneous media, including asymptotic
homogenisation [1], Bloch-Floquet theory [2] and di-
rect numerical evaluation of the heterogenities. The
majority of these techniques rely on finding some ef-
fective properties such that we average out the mi-
crostructure and find a homogeneous medium which
holds the same properties.

Each method has its own merits and is useful
for certain problems. Asymptotic homogenisation
for example, gives a good description of the av-
eraged properties when the microstructure is very
small compared to the wavelengths of the propagat-
ing wave. This method however does not give any
insight into the stop and pass band structure of the
material. Bloch-Floquet theory on the other hand
gives us good insight into the stop and pass band
structure of the material but does not offer an obvi-
ous way to model pulses.

In this talk we will be interested in the prob-
lem of an incoming pulse impinging a heterogeneous
medium. To keep the analysis simple we consider the
case of periodically spaced point masses attached to
one half of an infinite string. We can find the ef-

fective wave number of the string and the reflection
coefficient at a specific frequency. We then recon-
struct the solution using Fourier integrals over the
entire frequency range.

1 The problem set up

For the time being we shall consider the simple
case of waves on an infinite string. On one half of
the infinite string we will place an infinite number of
masses at periodic spacings as pictured in figure 1.

Figure 1: A pulse on a string encountering a series
of periodic point masses.

We choose to introduce the parameter

ε =
ωl

c0
(1)

where ω is the frequency, l is the bead spacing and
c0 is the wave speed in the homogeneous string. This
parameter acts as the nondimensional frequency.

2 Solution approach

The solution technique is to picture the pulse as be-
ing made up of an infinite number of harmonic waves,
each with a different frequency as in [4]. We are then
able to treat each frequency separately to find what
the reflected portion of that harmonic wave is, subse-
quently allowing us to reconstruct the reflected pulse.
This method relies on the Fourier transform, which
is defined as

F(f(t)) = F (ε) =

∫ ∞

−∞
f(t)e−iεtdt. (2)

If our input to the problem is given by

u(x, t = 0) =

{
h(x) if x < 0
0 if x > 0.

(3)

then we first take the Fourier transform of this, which
we shall call H(ε) to get the frequency spectrum of
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the input. Assuming we know the reflection coeffi-
cient, denoted by R(ε), we can reconstruct the prob-
lem in the homogeneous string by using the Inverse
Fourier transform

uR(x+ ct) =
1

2π

∫ ∞

−∞
R(ε)H(ε)eiε(x/c0+t)dε (4)

The reflection coefficient for the semi-infinite set of
beads on a string can be found exactly as derived in
[3]. It is found to be

R(ε) =
e−iε sin(ε(1− γ)/2)

sin(ε(1 + γ)/2)
(5)

where γ is the nondimensional effective wavenumber
in the beaded string, and is given by

cos γε = cos ε− Mε

2
sin ε (6)

We may compare this reflection coefficient with the
one found if the beaded string can be thought of as an
effective medium with wavenumber γ. The reflection
coefficient in this case is found to be

Reff(ε) =
1− γ
1 + γ

. (7)

We can see by expanding (5) for small ε that these
two reflection coefficients match up in the homogeni-
sation limit (ε � 1). For larger ε the two reflec-
tion coefficients differ. It can be seen in figure 2 by
how much these two differ, even for relatively small
ε. This is worrying as it means we are unable to use
the concept of an effective medium in reflection and
transmission problems when we don’t know the ex-
act coefficients. A typical example of when the exact
reflection coefficient is unavailable is the commonly
studied layered composite.

In order to investigate the solution given by (4)
we look at the singularity structure in the complex
plane. Provided that our input is entire, then the
fourier transform of this, H(ε) is entire. Thus, the
only singularities in the problem come from the re-
flection coefficient. It may not be immediately clear
what singularities this function has. We may find
them by rearranging R(ε) into the form

R(ε) =
2

Mε


sin(ε)

√
1−

(
Mε

2

)2

+
Mε

tan(ε)

− sin(ε)− Mε

2
cos(ε)

)
(8)
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Figure 2: The exact reflection coefficient (solid
line) compared to the effective medium reflection

coefficient (dashed line).

We can now see that the only singularities are given
by the branch cuts which occur from the square root.
These all lie on the real line and due to the tan(ε)
there are an infinite number of them. We may now
convert the integral given by (4) into a sum of inte-
grals around each cut, being much easier to handle
numerically.

3 Further work

We will then discuss areas where these types of
problems are heading. The possibility of obtaining
some effective reflection coefficient for the periodic
layered medium will be discussed. The extension of
these problems into two dimensions is also of interest.
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On Born approximation for scattering by rough surfacesT. Arnold1,∗, A. Rathsfeld1

1 Weierstrass Institut, Berlin, Germany
∗Email: thomas.arnold@wias-berlin.deAbstractIn many modern industrial processes, di�ractiveoptical elements employ light with small wavelengths.The current technological progress is based on thesteady decrease in wavelengths (e.g. EUV light). Forsuch wavelengths, the e�ect of random surface rough-ness of gratings has an increasingly high impact onthe behaviour of the scattered wave. Consequently,the roughness should be included into the modellingof the scattering and, maybe, into the numerical so-lution process of inverse problems. Since the solu-tion for the full Maxwell system for rough surfaces isextremely di�cult, many authors employ simpli�edmodels. One way to do so is proposed by Stearns andis based on the Born approximation of the Maxwellequations. We will discuss mathematically strict as-sumptions which allow the use of the manipulationsin Stearns' approach. Under these assumptions, wegive a rigorous de�nition of an approximate solutionand derive the corresponding formulas for the scat-tered far �eld.IntroductionIt is the goal of this paper to obtain an approximatesolution in the sense of the limiting absorption princi-ple for the far-�eld, when a homogeneous X-ray planewave is being scattered by a non-ideal interface be-tween two dielectric media. The interface, describedby the graph of a function f , separates two materi-als with the dielectric constants ε0 and ε′

0 and theglobally constant magnetic permeability µ0. We as-sume that the interface is illuminated by a plane wave
~E0(~x) e−iωt, with ~E0(~x) := ~e 0ei~k·~x, ~x := (x, y, z)>and a real valued wave vector ~k := (kx, ky, kz)

>, fromabove. Furthermore, we assume that the materialabove the interface has a real valued refractive indexand thus is non-absorbing. Stearns [1] provides thefar-�eld formula
~Er(R~m) ∼ −i

[ε0−ε′
0]k

2

4πε0

ĝ(k~m−~k)

kmz−kz
~e 0 eikR

R
,for R → ∞. Here, ĝ is the Fourier transform of thefunction g(~x) := δ(z − f(x, y)). We will present aclass of functions f and a su�cient condition for f

such that a generalised Stearns' formula (cf. the sub-sequent (1)) can be justi�ed.1 The vector Helmholtz equationIn both, the sense of the limiting absorption prin-ciple and the �rst order Born approximation, theproblem is described by an inhomogeneous vectorHelmholtz equation
(
∇2 + k2

τ

)
~Dsc(~x) = −∇ ×

[
∇ ×

(
α(~x)~E0(~x)

)]
,where kτ :=

√
µ0ετω, ετ results from ε0 by intro-ducing a small imaginary part and α(~x) := 0 for

z > f(x, y) and α(~x) := −∆ := ε′
0−ετ for z < f(x, y).The same equation also holds when considering thedi�erence ~Dd between the desired scattered �eld ~Dscand the approximated solution ~Dsc
Q for an ideal inter-face fQ ≡ 0 with αd(~x) := α(~x) − αQ(~x)

(
∇2 + k2

τ

)
~Dd(~x) = −∇ ×

[
∇ ×

(
αd(~x) ~E0(~x)

)]
.Note, that for ~Dsc

Q the exact solution can be used byemploying Fresnel's formula.To solve this equation we apply the generalisedFourier transform in the dual of the Schwartz space
S(R3) to both sides of the equation. We then resolvethe resulting equation w.r.t. the Fourier transform of
~Dd and use the generalised inverse Fourier transformto get an integral representation of ~Dd

〈
~Dd(~x), ϕ(~x)

〉

=

∫

R3

αd(~η) ei~kτ ·~η
∫

R3

[(
~s×~e 0

)
×~s

]

‖~s‖2 − k2
τ

(ϕ̄)ˇ(~s) e−i~η·~s d~s d~η,for all ϕ ∈ S(R3). We can easily show that thesetransformations are well de�ned for all f ∈ L∞(R2)and τ 6= 0.2 The near-�eld formulaTo prove the existence of the limit Im ετ →0, result-ing from the limiting absorption principle, we haverestrict the class of interface functions to the set of
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all real valued functions in L∞(R2) of the form
f(η′) =

3∑

`=0

[
1

√
1 + |η′|2 `

∑

j∈Z
λ`,j eiω′

`,j ·η′
]
+g(η′),where λ`,j ∈ C, λ`,j ∈ C, ‖f‖A1 < ∞. Thisnorm is de�ned as ∑3

`=0

∑
j∈Z |λ`,j| + ‖g‖1,1, with

‖g(η′)‖1,1 := ‖ (1 + |η′|) g(η′)‖L1(R2). We have re-stricted the set of interface functions to these, sinceit necessary that the set is a Banach algebra and thatthe corresponding functions have an explicit Fouriertransform. Furthermore, the set should contain al-most periodic functions, which have already beenused by Stover [2]. Moreover, combinations of Fouriermodes play an important role for stochastic processes(cf. e.g. Yaglom [3, Equ. (2.61) in Sect. 8]), as well.

Figure 1: Example of an interface f from A1Using the properties of this set of interface func-tions and considering the integrals in 〈
~Dd(~x), ϕ(~x)

〉as Cauchy principle value integrals at in�nity, we canshow that the limit Im ετ →0 exists and evaluates asa classical function of the form
~Dd(~x) =

∞∑

n=0

∑

j∈Z
Cj,n

[(
~ωj

z × ~e 0
)

× ~ωj
z

] sgn z
(
ωj

z

)1−n ei~ωj
z ·~x

+

4∑

`=1

∞∑

n=0

∑

j∈Z

∫

R2

hn
`,j(s

′)
[(

~sξz ×~e 0
)
×~sξz

]
ei~sξz·~x ds′,for |z| > 2‖f‖L∞ , where the vector ~ωj

z is de�nedas (k′ + ω̃′
0,j, ω

j
z)>, ωj

z := sgn z
√

k2 − |k′ + ω̃′
0,j|2,

ω̃′
0,j :=

∑
j∈Z mjω

′
0,j for all (mj) ∈ `1(N0), hn

`,j(s
′) isan at most weakly singular function, ~sξz := (s′, ξz)

>and ξz :=
√

k2 − |s′|2. Note that the condition ωj
z 6=0

is necessary for all j ∈ Z. This holds if
k /∈ cl

{∣∣∣k′ +
∑

j∈Z
mjω

′
0,j

∣∣∣ : (mj)j∈Z ∈ `1(N0)
}

.3 The far-�eld formulaIn a very lengthy process we have obtained the far-�eld asymptotics R := ‖~x‖ → ∞ of the formula for
~Dd(~x) above. The proof mostly consists of splittingo� terms of the integrals w.r.t. s′ for which we canshow their asymptotic behaviour. This is largely com-promised of integrations by parts using specially cho-sen coordinate systems. Finally, e.g. for the re�ected�eld (Rmz = z > 2max{‖f‖A1 , ‖f‖L∞}), we havereached a formula of the form

~Er(R~m) =

∞∑

n=0

∑

j∈Z
Cj,n

[(
~ωj

z × ~e 0
)

× ~ωj
z

]
(
ωj

z

)1−n eiR~ωj
z ·~m

+ r1(f, ~m,~e 0)
eikR

ikR
+r2(f, ~m,~e 0)

1

ikR

+ r3(f, ~m,~e 0)
eikR

i
√

kR
+

1

ε0

~Dsc
Q (R~m), (1)where ~Er = ~Dr/ε0 and ~Dr = ~Dd + ~Dsc

Q for mz > 0.References[1] D.G. Stearns, The scattering of x rays from non-ideal multilayer structures, J. Appl. Phys., 65(1989), pp. 491�506[2] J.C. Stover, Roughness characterization ofsmooth machined surfaces by light scattering,Appl. Optics, Vol 14 (8) 1975, pp. 1796�1802[3] A.M. Yaglom Correlation theory of stationaryand related random functions, Springer Series inStatistics, Springer Verlag Inc., New York, 1987
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Acoustic Wave Propagation in Quasiperiodic Media
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Abstract

Understanding and predicting wave propagation
and scattering by non-periodic media is much more
difficult than that of periodic, but still very impor-
tant. Very few existing structures are actually ex-
actly periodic, thus it is crucial to gain a better, more
accurate understanding of nearly periodic, quasiperi-
odic and random structures.
In this talk I will present methods to determine
the acoustic wave scattering properties of quasiperi-
odic structures, where by quasiperiodic we mean
non-periodic in the sense that the structure is non-
repeating, but also non-random in the sense that the
distribution is deterministic. Quasiperiodic struc-
tures are simpler to work with than fully random
structures due to this deterministic nature, but are
still of great importance as such structures do exist
and can be used in engineering applications.
We consider two dimensional quasiperiodic struc-
tures with sound-soft, circular, cylindrical scatterers.
We will then find periodic structures which give sim-
ilar scattering properties to the quasiperiodic struc-
tures, in order to find effective homogeneous materi-
als that give good approximations.

1 Motivation

With such influential papers as those by Ander-
son [1] and Foldy [2], people are under the impres-
sion that random microstructure within a material
can cause acoustic wave localisation/decay. Ander-
son showed how the interference of coherent, mul-
tiple scattered waves from the randomly positioned
inclusions can cause wave transmission to completely
stop. Whilst Foldy’s use of ensemble averaging and
the closure condition results in a complex effective
wave number, i.e. exponential decay in the wave
field.
In an attempt to understand this phenomenon, whilst
fully appreciating the work of Anderson and Foldy,
we want to try to find an alternative way to fully un-
derstand wave propagation in random media, from
the basics.
In this talk we will introduce work with quasiperi-
odic distributions. These have an ‘air’ of random-

ness as they are aperiodic, although they do have a
deterministic distribution. Working with such distri-
butions will allow us to see how the transition from a
periodic structure to a quasiperiodic structure alters
the amount of transmitted wave field allowed, and
will thus could provide insight into how introducing
‘randomness’ to a structure effects the wave propa-
gation.
On a side note, quasicrystalline coatings are being
widely used on a multitude of objects due to their
hardness, low thermal and electrical conductivity,
low friction and high corrosion resistivity. Therefore,
a material with inclusions distributed the same as
the atomic structure of a quasicrystal may also have
similar characteristics and thus applications, making
it an extremely interesting and exciting structure to
look at.
Due to this link with quasicrystals [3] and because of
a high interest in the ‘phononics’ of quasicrystals, the
main inclusion distribution we will look at is the 2D
Penrose tiling. We will also mention a 1D quasiperi-
odic structure similar to this called the Fibonacci
chain, and propose ideas to extend to the 3D ana-
logue of the Penrose tiling.

2 The Problem

The governing equation for acoustic wave propaga-
tion in 2D with one sound-soft cylindrical inclusion
of radius a at the origin is

(∇2 + k2)u(r, θ) = 0, u = 0 on r = a, (1)

where we have assumed the wave is time harmonic,
U = Re(ue−iωt), and we have factored out the time
dependence. Here r and θ are the distance and angle
of the observation point from the origin and k = ω/c
is the wavenumber.
We have an incident plane wave of the form

uinc = eikr cos(θ−α), (2)

at angle α from the horizontal. We will position cir-
cular, cylindrical inclusions at the lattice nodes of our
quasiperiodic distributions.
Our main focus is on the distribution of the scatter-
ers, therefore, to make our scattering modelling more
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simple we will assume we have cylinders with small
radii, i.e. 0 < ka� 1.

3 Methods

Numerous techniques and approaches are useful
in looking at the multiple scattering and at the
quasiperiodic structures which we want to discuss.
In this talk we will present the multipole method [4]
as one technique for modelling the wave behaviour
through a finite lattice, and the projection method
to construct our quasiperiodic lattice at which we
will position our inclusions.

3.1 The Multipole Method

We know that the solution to the governing equa-
tion (1) gives us a scattered field of the form

usc =

∞∑

n=−∞
inBnH

(1)
n (kr)ein(θ−α), (3)

where the coefficients Bn = −Jn(ka)/H
(1)
n (ka) are

dependent on the boundary conditions. The total
field is defined by u(r, θ) = uinc(r, θ) + usc(r, θ).
By considering limiting forms of the Bessel and Han-
kel functions for small arguments we find that, for
small cylinder radius (i.e. as ka → 0), our scattered
field will look like

usc = − 1

1 + 2i
π (γ − ln 2 + ln(ka))

H
(1)
0 (kr), (4)

thus showing that the cylinder acts as a monopole
source.
To extend to a finite number of scatterers we simply
express the scattered field as a sum of the monopole
sources at the centre of each circle (monopole and
dipole for sound-hard, and multipoles for large scat-
terers),

usc =

N∑

i=1

CiH
(1)
0 (kri), (5)

where ri = |ri| is the distance from the ith cylinder
to the observation point.

If we evaluate the boundary conditions at each
cylinder boundary we will get a matrix equation of
the form HC = −I, where

Hij =

{
1 + 2i

π (γ − ln 2 + ln(ka)) , i = j

H
(1)
0 (kbij) = H

(1)
0 (kbji), i 6= j,

(6)

C =



C1
...
CN


 , I =




1
...
1


 . (7)

Our total field is again just the sum of the incident
and scattered fields.
Once we know the coordinates of the distribution we
can very easily use this matrix equation to see the
behaviour of the wave field through this finite distri-
bution.

3.2 The Projection Method

The Penrose tiling is a 2D aperiodic tiling of the
plane that uses only two tiles, ‘fat’ and ‘thin’ rhombi
[5]. We want to place a scatterer on every corner of
each rhomb, giving us a Penrose lattice. One method
for constructing such a lattice is via projection from
higher dimension. In this method one takes some
slice/window W of a five dimensional hypercubic lat-
tice and projects on to a plane at a certain irrational
slope, giving us lattice points

PT =

{
2

5

(∑4
j=1mj(cos(2πj/5)− 1)− p∑4

j=1mj sin(2πj/5)

)}
, (8)

where 1 ≤ p ≤ 4 and the ~m = (m1, ...,m4) are to
be found using an algorithm. If time allows I will
discuss the algorithm we have constructed in more
detail.
We will also discuss how the projection method can
be adapted to give a periodic lattice which scatters
the waves in a similar manner. We can do this via the
projection of the window W at some oblique angle,
or an alternative is to consider rational slopes, giving
us a rational approximant with the same two tiles.
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Abstract

This work deals with the computation of the group
velocity of photonic crystal (PhC) modes and higher
derivatives of their dispersion curves. We employ
these derivatives in a Taylor expansion of the band
structure, which reduces the computational costs sig-
nificantly. The presented results can be transferred
to the computation of guided modes in PhC wave-
guides using the supercell approach or Dirichlet-to-
Neumann (DtN) maps.

1 Introduction

We consider the problem of finding Bloch modes
U(x; k) with transverse magnetic (TM) polarization
and their associated eigenvalues ω2(k) ∈ R+ that sat-
isfy

−∆U(x)− ω2ε(x)U(x) = 0

in the unit cell C ⊂ R2 of the PhC, see Fig. 1, with
quasi-periodic boundary conditions

U(· ; k) |ΓR
= eik|a1|U(· ; k) |ΓL

,

∂nU(· ; k) |ΓR
= −eik|a1|∂nU(· ; k) |ΓL

,

in dependence on the quasi-momentum k ∈ B in the
one-dimensional Brillouin zone B = [−π/|a1|, π/|a1|].
Here, ε denotes the relative permittivity and the op-
erator ∂n is given by ∂n = ∇·n with the unit normal
vector n outward to the unit cell C.

C

ΓL ΓR

ΓB

ΓT

a1

a2

Figure 1: The computational domain C.

At the top and bottom boundaries ΓT and ΓB we
impose (a) quasi-periodic boundary conditions with
quasi-momentum k2 ∈ [−π/|a2|, π/|a2|] in the direction
of a2, (b) periodic boundary conditions (as used in
the supercell method for the approximation of guided
modes in PhC wave-guides, or (c) transparent bound-
ary conditions (e. g. DtN maps as used in [1] for the
exact computation of guided modes in PhC wave-
guides). For simplicity, we shall focus on periodic

boundary conditions in this work, but the results can
also be applied to problems with DtN transparent
boundary conditions.

Moreover, we restrict our considerations to the
TM-mode, but the results can directly be transferred
to the TE-mode.

By substituting u(x) = U(x)e−ika1·x, we arrive at a
periodic problem that we express in variational sense
using the space of periodicH1-functions in C denoted
by H1

p(C). For any k ∈ B we seek modes u(· ; k) ∈
H1

p(C) and eigenvalues ω2(k) ∈ R+ such that

∫

C
(∇+ ika1)u · (∇− ika1)v− ω2ε(x)uv dx = 0 (1)

for all v ∈ H1
p(C).

Proposition 1. (see [2]) For any k ∈ B, there
exists an ordering of the eigenvalues ω2

m(k) ∈ R+,
1 ≤ m ≤ M(k), of the eigenvalue problem (1) such
that the functions ωm : k 7→ ωm(k) — the so-called
dispersion curves — are continuously differentiable
to any order.

2 Group velocity and higher derivatives of
the dispersion curves

Thanks to this ordering of the eigenvalues ω2
m(k)

of (1), the group velocity ∂ωm
∂k (k) and any higher

derivative of ωm(k) with respect to k are well de-
fined.

This implies that we can take the derivative of
Eq. (1) with respect to k and obtain

∫

C
(∇+ ika1)

∂u

∂k
· (∇− ika1)v

− ω2ε
∂u

∂k
v dx = f1(v) (2)

for all v ∈ H1
p(C), where the linear form f1 reads

f1(v) = ω
∂ω

∂k

∫

C
εuv dx− 2k|a1|2

∫

C
uv dx

− i|a1|
∫

C
u(∂1v)− (∂1u)v dx.

The solution ∂u
∂k (· ; k) ∈ H1

p(C) of (2) is not unique
since by assumption there exists at least one mode
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u ∈ H1
p(C) that solves (1) with zero right hand side

and hence, any of these modes u can be added to
the solution ∂u

∂k of (2) and the equation will still be
satisfied. However, taking v = u as test function
in Eq. (2), the left hand side — including all terms
containing ∂u

∂k — vanishes since (−k) is an eigenvalue
with associated eigenmode u [1]. Thus, the group
velocity reads

∂ω

∂k
=
k|a1|2

∫
C |u|2 dx− |a1| Im

(∫
C u∂1u dx

)

ω
∫
C ε|u|2 dx

and is real-valued.
Since the group velocity ∂ω

∂k is now known, we can
— applying the Fredholm-Schauder theory — com-
pute a particular solution ∂u

∂k of (2) by additionally

requiring H1(C)-orthogonality of ∂u
∂k and any eigen-

mode u(· ; k) of the eigenvalue problem (1) with as-
sociated eigenvalue ω2(k).

Consecutively repeating the above considerations,
we can write the n-th derivative of Eq. (1) with re-
spect to k in the form

∫

C
(∇+ ika1)

∂nu

∂kn
· (∇− ika1)v

− ω2ε
∂nu

∂kn
v dx = fn(v) (3)

for all v ∈ H1
p(C), where the linear form fn depends

on ∂1u
∂k1

, . . . , ∂
n−1u
∂kn−1 . Testing with v = u we again ar-

rive at fn(u) = 0 from which we deduce the n-th
derivative of ω(k).

Analogously to above we can then compute the
particular solution ∂nu

∂kn ∈ H1
p(C) of (3) that isH1(C)-

orthogonal to any eigenmode u(· ; k) of the eigenvalue
problem (1) with associated eigenvalue ω2(k).

3 Taylor expansion of the dispersion curves

Since the dispersion curves ωm(k) are continuously
differentiable to any order we can apply the Taylor’s
theorem, and hence, for any k0 ∈ B and n ∈ N

ω(k) =
n∑

n′=1

(k − k0)n
′

n′!
∂n
′
ω

∂kn′
(k0) +Rn(k),

with the remainder

Rn(k) =
1

n!

∫ k

k0

(k − κ)n
∂n+1ω

∂kn+1
(κ) dκ.

In Fig. 2 we present numerical results of the Tay-
lor expansion. As computational domain we choose

the unit square [0, 1]2 with a hole of radius 0.4 and
permittivity ε = 1 surrounded by dispersive material
of permittivity ε = 3. We study the TM-mode in
the whole reduced Brillouin zone [0, π] and compare
the eigenvalues ω(k) of (1) at 40 values of k with
the results of the Taylor expansion of order n = 5
around the centre k0 = π

2 of the reduced Brillouin
zone. For the computation we choose finite elements
on curved cells with polynomial degree p = 5 using
the C++ library Concepts.

quasi momentum k

fr
eq

u
en

cy
 ω

0π 0.25π 0.5π 0.75π 1π

3.8

4.0

4.2

4.4

4.6

4.8

5.0

Figure 2: Comparison of dispersion curves (dots)
with their Taylor expansion (solid lines) around

k0 = π
2 (crosses).

The time saving of the Taylor expansion is enor-
mous: We only need to solve the eigenvalue prob-
lem (1) once, compute the group velocity ∂ω

∂k (k0) for
all eigenmodes, which is a simple matrix vector mul-
tiplication, and subsequently compute ∂nu

∂kn (· ; k0) and
∂n+1ω
∂kn+1 (k0), where the computation of ∂nu

∂kn (· ; k0) can
be done very efficiently since (1) – (3) are of the same
form with varying right hand side.

The error of the Taylor expansion increases with
the distance to k0. However, increasing the order n
might not always be appropriate to improve accuracy
since the derivatives |∂nω∂kn (k0)| might grow faster with
n then the factorial. In this case, a decomposition of
the Taylor expansion in subintervals is necessary.
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Abstract

For limited time the propagation of waves in a
highly oscillatory medium is well-described by the
non-dispersive homogenized wave equation. With in-
creasing time, however, the true solution deviates
from the classical homogenization limit, as a large
secondary wave train develops unexpectedly. Here,
we propose a new finite element heterogeneous mul-
tiscale method (FE-HMM), which captures not only
the short-time macroscale behavior of the wave field
but also those secondary long-time dispersive effects.

1 Long-Time Wave Propagation

Let Ω ⊂ Rd be a domain and T > 0. We consider
the wave equation





∂ttu
ε −∇ · (aε∇uε) = F in Ω× (0, T ),

uε(x, 0) = f(x) in Ω,

∂tu
ε(x, 0) = g(x) in Ω,

(1)

where aε(x) ∈ (L∞(Ω))d×d is symmetric, uniformly
elliptic, and bounded. Here ε > 0 represents a small
scale in the problem, which characterizes the multi-
scale nature of the tensor aε(x). We set either homo-
geneous Dirichlet or periodic boundary conditions to
uniquely determine the solution for every ε > 0.

1.1 Classical homogenization

According to classical homogenization theory, uε

converges to the solution u0 of the “homogenized”
wave equation as ε→ 0,

∂ttu
0 −∇ · (a0∇u0) = F,

where the homogenized tensor (or squared veloc-
ity field) a0 can only rarely be computed explicitly.
Thus, u0 approximates uε but only for short times.
For longer times T ∼ ε−2, the homogenized solu-
tion becomes increasingly inadequate, since it ne-
glects microscopic dispersive effects that accumulate
over time, as shown in Figure 1. Here we consider (1)
in Ω = (−1, 1) with periodic boundary conditions, let
u(x, 0) be a Gaussian pulse with zero initial velocity

−1 −0.5 0 0.5 1

0

0.5

1

T=2

−1 −0.5 0 0.5 1

T=100

ref.

hom.

eff.

Figure 1: Reference (ref.), homogenized (hom.)
and effective (eff.) solution: short-time (left) and

long-time (right).

and set

aε =
√

2 + sin
(

2π
x

ε

)
with ε =

1

50
. (2)

The reference solution of (1)–(2) corresponds to a
direct numerical simulation (DNS), where the micro-
scale is fully resolved. After one revolution (T = 2),
the homogenized and the DNS solution coincide. Af-
ter fifty revolutions (T = 100), however, the DNS
displays dispersive effects, which the homogenized so-
lution fails to capture.

1.2 Effective dispersive equation

Various formal asymptotic arguments were de-
rived to elucidate that peculiar inherently dispersive
long-time behavior of waves propagating through a
strongly heterogeneous periodic medium [1]. An ef-
fective equation that captures those dispersive effects
was recently derived in [2] for the one-dimensional
case when aε is ε-periodic:

∂tt(u
eff − ε2b∂xxu

eff)− a0∂xxu
eff = F. (3)

Again, a0 denotes the homogenized effective coeffi-
cient from classical homogenization theory and b > 0.
As shown in Figure 1, uε and ueff essentially coincide
both at early and later times.

2 FE Heterogeneous Multiscale Method

In [3], the FE-HMM for elliptic [4] was extended to
the time dependent wave equation. It was shown to
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converge to u0 at finite times, yet it failed to capture
long-time dispersive effects in the true solution. To
incorporate those dispersive effects, we not only need
an effective bilinear form but we add a correction to
the L2 inner product, akin to the weak formulation
of (3). Similarly to the computation of the bilinear
form, the correction relies on numerical solutions of
micro problems on sampling domainsKδ of size δ pro-
portional to ε. An alternative HMM scheme, based
on the finite difference approximation of an effective
flux, was proposed in [5].

We now give a description of the algorithm: First,
we generate a macro triangulation TH and choose an
appropriate macro FE space S(Ω, TH). By macro we
mean that H � ε is allowed. Within each macro
element K ∈ TH we choose a quadrature formula
{xK,j , ωK,j}. The FE-HMM solution uH is given by
the following variational problem:





Find uH : [0, T ]→ S(Ω, TH) such that

(∂ttuH , vH)Q +BH(uH , vH) = (F, vH)

for all vH ∈ S(Ω, TH) and,

uH(0) = fH , ∂tuH(0) = gH in Ω,

(4)

where the initial data fH and gh are suitable approxi-
mations of f and g in S(Ω, TH). The effective bilinear
form BH and (·, ·)Q are defined as follows:

BH(vH , wH) =
∑

K,j

ωK,j
|Kδ|

∫

Kδ

aε(x)∇vh(x) · ∇wh(x)dx,

and

(vH , wH)Q = (vH , wH)+
∑

K,j

ωK,j
|Kδ|

∫

Kδ

(vh(x)−vH,lin(x))(wh(x)−wH,lin(x))dx.

In the above, the micro solution vh (resp. wh) is
given by




Find vh such that (vh − vH,lin) ∈ S(Kδ, Th) and∫

Kδ

aε(x)∇vh(x) · ∇zh(x)dx = 0,

for all zh ∈ S(Kδ, Th).

Here S(Kδ, Th) is a micro FE space on the sampling
domain Kδ with micro triangulation Th, and vH,lin
denotes the linearization of vH at the quadrature
point xK,j , Since BH is elliptic and bounded and
(·, ·)Q is a true inner product, the FE-HMM is well-
defined for all H,h > 0. It can be shown that the
correction of the L2 inner product is of order ε2 in
agreement with (3).

−1 −0.5 0 0.5 1

0

0.5

1

T=100

ref.

HMM (see [3])

HMM (new)

Figure 2: Reference solution (ref.), FE-HMM from
[3] and new FE-HMM.

3 Numerical Experiments

We again apply our FE-HMM, defined in (4), to
(1)–(2) as in Figure 1. We use cubic FE at the macro-
and the micro-scale, with mesh sizes H = 1/75 and
h = ε/20 = 1/1000. Note that linear or quadratic finite
elements could also be used. For time-stepping we
use a standard Leap-Frog scheme, with ∆t = H/10.
As shown in Figure 2, the new FE-HMM succeeds in
capturing, the long-time effects in the true solution.
In contrast, the solution of the FE-HMM of [3] with-
out correction is unable to capture those dispersive
effects, since this solution was proven to converge to
the homogenized solution, u0, as ε→ 0.
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Abstract

We present a numeric solver for scattering by
biperiodic layered media. The solver has super-
algebraic convergence rate provided the interfaces be-
tween the layers are smooth enough. The method is
derived as a variant of the method of Bruno and Kun-
yanski [3–5]. From a theoretical point of view, we
present the basic ideas – ending up with the formu-
lation of the main convergence theorem. The perfor-
mance of the solver can be verified from the presented
numerical examples.

1 Problem Setting

We consider scattering of a plane acoustic wave ui

with wave number k > 0 and direction of incidence
d = (d1, d2, d3)

> ∈ S2 with d3 < 0 by a layered
medium periodic in the x1 and x2-directions. More
precisely, given the periods Lj > 0, j = 1, 2, a num-
ber A > 0, and setting

Q = (0, L1)× (0, L2) , D = Q× (0, A) ,

we consider interfaces Γj given as graphs of Q-
periodic functions fj ,

Γj = {x = (x1, x2, x3)
> ∈ D : x3 = fj(x1, x2)} ,

j = 0, . . . , N,

as well as the domains Dj located between Γj and
Γj+1, j = 0, . . . , N − 1. Additionally define Γ+ =
{x ∈ ∂D : x3 = A} and DN the domain between ΓN
and Γ+.

The problem under consideration is the scattering
problem

∆u+ qj k
2 u = 0 in Dj , j = 0, . . . , N ,

[u] = 0 ,

[
∂u

∂n

]
= 0 on Γj , j = 1, . . . , N ,

u = 0 on Γ0 ,

u− ui is propagating upward in Q× (A,∞) .

Here qj denote indices of refraction for the medium
layers, satisfying Im qj ≥ 0, j = 0, . . . , N . In addi-
tion, we require quasi-periodicity of the total field u,

i.e. that

u(L1, x2, x3) = ei kd1 L1 u(0, x2, x3) ,

u(x1, L2, x3) = ei kd2 L2 u(x1, 0, x3) .

The condition that the scattered field u − ui be up-
ward propagating in Q× (A,∞) can be recast in the
form that the Fourier expansion of u−ui on Γ+ con-
tains only upward propagating or evanescent terms.

Unique solvability of the above scattering problem
is studied in [1]. There, a variational formulation in
Sobolev spaces of periodic functions is given. Unique-
ness of solution is a special feature due to the Dirich-
let boundary condition of Γ0 and also requires that
the interfaces Γj are sufficiently smooth.

2 Integral Equations

The problem described in 1 can be reformulated
as a system of Q-periodic integral equations. This
requires the quasi-biperiodic Green’s function G(·, ·)
for the Helmholtz equation [1, 2]. Within each sub-
domain Dj , the total field can then be expressed as
suitable combinations of single and double layer po-
tentials defined on Γj and Γj+1, respectively. Of
course, in DN the incident field needs to be taken
into account as well.

Once expressions for the field in each subdomain
have been obtained, passing to the interfaces Γj re-
duces the problem to a system of periodic integral
equations on Q,

ϕj −
2N+1∑

m=1

Kj,mϕm = ψj on Q, (1)

for j = 1, . . . , 2N + 1 with unknown densities ϕj
sought for in some Sobolev space Hs

Q of Q-periodic
functions. All integral operators Kj,m turn out to
be weakly singular so that Fredholm theory is appli-
cable. Under suitable conditions on regularity of the
interfaces, a unique solution to the system of integral
equations can be shown to exist.

3 Numerical Solution

To solve the system of integral equations numeri-
cally, a variant of the method of Bruno and Kunyan-
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ski [3–5] is employed. A convergence analysis of this
variant of the method was first given in [1].

Our method is best described as a quasi-collocation
method. First of all, the weak singularities are taken
care of by local isolation using a smooth cut-off func-
tion. The weakly singular integrals are then trans-
formed to polar coordinates around the singularity
thus removing it. In order to carry out a conver-
gence analysis, a first approximation comes into play
consisting of a manipulation of the integrand by an
orthogonal projection and an interpolation with re-
spect to polar coordinates. Thus, the term quasi
refers to this additional approximation – done, before
the usual collocation method is applied: Looking for
approximate solutions in a space Vp of trigonometric
polynomials on Q of degree at most p by considering
the equations only in the collocation points

tµ =

(
µ1 L1

2p
,
µ2 L2

2p

)>
, µj = 0, . . . , 2p−1, j = 1, 2.

To obtain a discrete system from the derived semi-
discrete system, a last approximation of certain inte-
grals has to be introduced.

Considering the product space (endowed with the
sum-norm)

HsQ := Hs
Q ×Hs

Q × . . . Hs
Q︸ ︷︷ ︸

M times

,

where M := 2N + 1, denoting by K the continuous
matrix integral operator

K =




I −K1,1 −K1,2 . . . −K1,M

−K2,1 I −K2,2 . . . −K2,M
...

...
. . .

...
−KM,1 −KM,2 . . . I −KM,M


 ,

setting

ϕ := (ϕ1, . . . , ϕM )> and ψ := (ψ1, . . . , ψM )>,

and writing Kp, ϕp and ψp for its discrete counter-
parts, we can state the following theorem.

Theorem 1 Suppose that fj ∈ C∞(R2) for j =
0, . . . , N . Then for the solutions to Kϕ = ψ and
Kp ϕp = ψp, there holds for all s ≥ 0

‖ϕ− ϕp‖H0
Q
≤ C p−s ‖ϕ‖Hs

Q
.
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Abstract

The problem of reflection and transmission of an
incoming plane acoustic wave by an array of period-
ically distributed non-spherical axi-symmetric scat-
terers in a compressible fluid is considered. The gov-
erning equation is expressed as a singular integral
equation for each Fourier decomposed mode. Taking
advantage of the geometrical periodicity, the integral
over an infinite number of scatterers can be reduced
to a single integral over the cross section of a refer-
ence scatterer. The integral equation for each mode
has been solved by the boundary element method.
The reflection and transmission coefficients are plot-
ted for values of ka ∼ O(1) and the resulting plots
show rapid variations at the cut on frequencies for
higher order modes.

1 Problem Statement

A plane wave φin = eik sin φ0x1+ik cos φ0x3e−iωt is in-
cident on a doubly periodic array of axi-symmetric
scatterers in an acoustic medium. The cavities are
of characteristic length scale a and their centres are
located in the x1, x2 plane at positions x1 = nd1,
x2 = md2 where m,n = 0,±1,±2 . . . . The geometry
is as shown in figure 1.

The velocity potential is of the form φ(x) and sat-
isfies

∇2φ(x) + k2φ(x) = 0 (1)

in the acoustic medium. The scatterers are sound
hard and so we apply

∂φ(x)

∂n
= 0 on Smn (2)

where Smn defines the surface of scatterer mn.

2 The Boundary Integral Equation

For a point x ∈ Smn, we apply Green’s Theorem
to the region exterior to the scatterers and obtain an
integral representation for the problem:

1

2
φ(x) = φin(x)+

∞∑

m=−∞

∞∑

n=−∞
−
∫

Smn

φ(x)
∂G(ξ,x)

∂n(ξ)
dA,

(3)

x1

x2

x3

d1

d2

Smn

Figure 1: Array of bodies of revolution with
centres located in the (x1, x2) plane.

where the dash on the integral sign indicates that the
integral is a Cauchy Principle value. If we define a
cell Apq by −d1/2 + pd1 ≤ x1 ≤ d1/2 + pd1, −d2/2 +
qd1 ≤ x2 ≤ d2/2 + qd2, −∞ < x3 < ∞, then for a
point x0 ∈ A00 we have the relations

x1 = x0
1 + pd1, x0

2 = qd2, x3 = x0
3. (4)

These expressions combined with the form of the in-
cident plane wave suggest the following form for the
total velocity potential

φ(x) = φ(x0)eikpd1 sinφ0 . (5)

Using expressions (4)-(5), the integral term in the
boundary integral equation can be written as a single
integral over the surface S00 in the reference cell A00:

1

2
φ(x0) = φin(x0) + −

∫

Smn

φ(x0)
∂GP (ξ0,x0)

∂n(ξ0)
dA,

(6)
where ξ0 ∈ A00 and GP (ξ0,x0) is the periodic
Green’s function

GP (ξ0,x0) =

∞∑

m=−∞

∞∑

n=−∞
eikmd1 sinφ0G(ξ0,x0;m,n).

(7)
Since the scatterers are bodies of revolution, the

surface integral in equation (6) can be written as a
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x1

x2

x3

θ
r

C

Figure 2: Generating shape C of axisymmetric
scatterers.

double integral over the generating shape, C, of the
scatterer, and the polar angle θ, as shown in figure 2

−
∫

C
−
∫ π/2

−π/2
φ(x0)

∂GP (ξ0,x0)

∂n(ξ0)
r dθdl. (8)

We now assume that the total field φ can be written
as a Fourier series expansion

φ(x) =

∞∑

n=−∞
φn(r1, x3)e

inθ1 , (9)

and both the incident wave and the normal derivative
of the Green’s function can be expressed as a Fourier
series expansions

φin(x) =

∞∑

n=−∞
In(r1, φ0, x3)e

in(θ1−θ0), (10)

∂G

∂n
=

∞∑

n=−∞
An(r, r1, x3, ξ3)e

in(θ−θ1). (11)

Substituting equations (9), (10) and (11) into the
governing integral equation, multiplying each term
by e−imθ and integrating from θ = 0 to 2π, we obtain
a system of integral equations for each Fourier mode:

1

2
φm(r1, x3) = Im(r1, x3, φ0)e

−imθ0+

−
∫

C
φm(r, ξ3)A−m(r, ξ3, r1, x3)rdl, (12)

where A−m is the known Fourier coefficient.

3 The Boundary Element Method

The contour C is divided into N segments C =∑N
j=1 Γj, with each having a node at either end

and in the centre. We are assuming isoparametric
quadratic elements, and so both the shape of the
element and the variation in the unknown φ can
be expressed in terms of the quadratic shape func-
tions Ψ1(ν) = 1

2ν(ν − 1), Ψ2(ν) = (ν + 1)(1 − ν),
Ψ3(ν) = 1

2ν(ν + 1), where ν is a local homogeneous
coordinate. The field point x is placed at each node
in turn to generate a system of equations

1

2
φi = φin

i + (13)

2N∑

j=1
j odd

φj

(
h1

i
(j+1)

2

+ h3

i
(j−1)

2

)
+

2N∑

j=1
j even

φjh
2
i( j

2
)

where

hk
ij =

∫ 1

ν=−1
ψk(ν)

∂Gi(ν)

∂n
|J | dν. (14)

4 Results

The direction of propagation of the incident wave
is in the x1, x3 plane, the scattered field can be ex-
pressed as

φsc(x) = φ̂sc(x)eikx1 sinφ0 , (15)

and the geometry of array suggests that

φ̂sc(x1, x2, x3) = φ̂sc(x1 +md1, x2 +md2, x3). (16)

The periodic form of the scattered field can be rep-
resented as a Fourier series

φsc(x) =
∑ ∑

Φpq
± e

i(αpx1+βqx2+γpqx3), (17)

where αp = k sinφ0 + 2πp/d1, βq = 2qπ/d2 and
γ2

pq = k2 − α2
p − β2

q . The terms of equation (17)
represent individual wave modes. Initially only the
zeroth order mode is propagating, but each higher
order mode has a cut on frequency that can be cal-
culated. We define the reflection and transmission
coefficients for each mode n by

T0 = 1 + Φ0
+, Tn = Φn

+, Rn = Φn
−. (18)
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Abstract

We propose a recursive integral equation algo-
rithm for the study of electromagnetic scattering by
a biperiodic multilayer grating structure. The com-
bined use of a Stratton-Chu integral representation
and an electric potential ansatz yields a singular in-
tegral equation on each interface. These equations
arise from each other via recursion from the bottom
to the top interface leading to a recursive algorithm.
We investigate the analytic properties of the derived
algorithm such as existence and uniqueness of solu-
tions resulting from it and show that these coincide
with the solutions of the original scattering problem.

Introduction

Scattering theory has numerous applications in
micro-optics like the construction of holographic
films, optical storage disks and antireflective coat-
ings. Many of these optical devices are implemented
by a multilayered structure. We study the special
case of electromagnetic scattering by biperiodic mul-
tilayered structures and in particular derive a recur-
sive integral equation algorithm. This generalizes
the results from [1] where the equivalent problem for
oneperiodic structures was treated.

1 The electromagnetic scattering problem

Let Σj , j = 0, . . . , N , be smooth non-selfintersec-
ting surfaces which are 2π-periodic in both x1- and
in x2-direction and separate the regions Gj ⊂ R3

filled with materials of constant electric permittivity
εj and magnetic permeability µj . The scattering of
a time-harmonic plane wave Ei (with wave vector
α = (α1, α2, −α3)

T) incident on the top layer Σ0 of
the multilayered structure from G0 is computed by
solving

curl curlEj − κ2
jEj = 0 in Gj∈JN

0
, (1)

n0 ×
(
E1 −

(
E0 − Ei

))
= 0 on Σ0, (2)

n0 ×
(
µ−1

1 E1 − µ−1
0

(
E0 + Ei

))
= 0 on Σ0, (3)

nj × (Ej+1 − Ej) = 0 on Σj∈J (4)

nj ×
(
µ−1

j+1Ej+1 − µ−1
j Ej

)
= 0 on Σj∈J , (5)

where J = {1, . . . , N −1}, JN
0 = J ∪{0, N}, and, the

outgoing wave condition at infinity is satisfied:

E0 − Ei =
∑

n∈Z2

E0
ne

i
(
α

(n)
0 ·x̃+β

(n)
0 x3

)
, (6)

EN =
∑

n∈Z2

EN
n e

i
(
α

(n)
N ·x̃−β

(n)
N x3

)
. (7)

Here, nj is the unit normal vector on Γj , Ej = E|Gj ,

α
(n)
j =

(
α1 + n1

α2 + n2

)
, β

(n)
j =

√
κ2

j − |α(n)
j |2, (8)

and, κj = ω
√

εjµj , j = 1, . . . , N . Note, that the tilde
over a three-dimensional vector indicates its orthog-
onal projection to the (x1, x2)-plane. The solutions
Ej , j = 1, . . . , N , of (1)-(7) shall possess locally finite
energy, i.e.

Ej , curlEj ∈
(
L2

loc(R3)
)3

. (9)

The α̃-quasiperiodicity of the incident waves moti-
vates the fields above to be α̃-quasiperiodic them-
selves, i.e. they shall satisfy the relation u(x̃ + 2π ·
m) = ei2πα̃·mu(x) for all m ∈ Z2. In the follow-
ing, we assume 0 ≤ arg εj , arg µj ≤ π, such that
arg εj + arg µj < 2π.

2 Integral equation method

In order to solve the electromagnetic scattering
problem, we derive an equivalent system of inte-
gral equations from potential representations of Ej

in Gj . For this, we combine a direct with an indi-
rect method, meaning that we are using the α̃-quasi-
periodic version of the Stratton-Chu integral repre-
sentation and an electric potential ansatz. As it is
common when working with periodic structures, we
restrict our calculations to one period of the mul-
tilayered structure. For this, we use the notation
Γj = {x ∈ Σj | − π ≤ x1, x2 < π} to refer to one pe-
riod of the interface Σj , j = 0, . . . , N . The one-sided
limits from Gj and Gj+1 will be denoted by Γ+

j and

Γ−
j , respectively.
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2.1 Potential operators

The potentials providing α̃-quasiperiodic solutions
of (1)-(7) are based on the α̃-quasiperiodic funda-
mental solution

Gκj ,α̃(x) =
i

8π2

∑

n∈Z2

e
i
(
α

(n)
j ·x̃+β

(n)
j |x3|

)

β
(n)
j

. (10)

The single layer potential Sα̃
j,k on Γj is then given by

Sα̃
j,kj(x) =

∫

Γk

Gκj ,α̃(x − y)j(y) dσ(y), (11)

for x ∈ R3 \ Γj . We define the electric potential
Ψα̃

Eκj ,k and the magnetic potential Ψα̃
Mκj ,k generated

by j ∈ H
− 1

2
α̃ (divΓk

,Γk) as

Ψα̃
Eκj ,kj = κ−1

j curl curl Sα̃
j,kj, and, (12)

Ψα̃
Mκj ,kj = curl Sα̃

j,kj, (13)

respectively. Moreover, we will need the operators

C
α̃,(m)
jk j(x) = {γD,k}Ψα̃

Eκj ,kj(x), x ∈ Γm, (14)

M
α̃,(m)
jk j(x) = {γD,k}Ψα̃

Mκj ,kj(x), x ∈ Γm, (15)

where {γD,k} = −1
2

(
γ−

D,k + γ+
D,k

)
with the Dirichlet

trace γ±
D,ku = (nk × u) |Γ±

k
. We will also make use of

the Neumann trace γ±
Nκj ,ku = κ−1

j (nk × curlu) |Γ±
k
.

2.2 Formulation of the recursive algorithm

With the potential ansatz

E0 = Ψα̃
Eκ0 ,0γ

+
Nκ0 ,0E0 + Ψα̃

Mκ0 ,0γ
+
D,0E0 in G0, (16)

Ej = Ψα̃
Eκj ,jγ

+
Nκj ,jEj + Ψα̃

Mκj ,jγ
+
D,jEj

+ Ψα̃
Eκj ,j−1ϕj−1

in Gj , (17)

EN = Ψα̃
EκN

,N−1ϕN−1 in GN , (18)

for solutions Ej∈JN
0

of (1)-(7), our algorithm leads to

the unknown densities ϕj ∈ H
− 1

2
α̃ (divΓj ,Γj) by the

recursive relation

ϕj = Qj−1ϕj−1, j ∈ J. (19)

The idea for this ansatz is taken from [2]. The op-
erators Qj−1 are determined by solving the integral
operator equation

CjQj−1 = −C
α̃,(j)
jj−1, (20)

where Cj =
[(

M
α̃,(j)
jj + 1

2I
)

Aj + ρj+1C
α̃,(j)
jj Bj

]
. The

initial values are given as

AN−1 = −C
α̃,(N)
N−1N−1,

BN−1 = −
(
M

α̃,(N)
N−1N−1 +

1

2
I
)

,
(21)

and, the subsequent terms are obtained by

Aj−1 = −C
α̃,(j)
j−1j−1

−
(
ρj+1C

α̃,(j)
j−1jBj + M

α̃,(j)
j−1jAj

)
Qj−1,

(22)

Bj−1 = −
(
M

α̃,(j)
j−1j−1 +

1

2
I
)

−
(
ρj+1M

α̃,(j)
j−1jBj + C

α̃,(j)
j−1jAj

)
Qj−1.

(23)

Then, the initial value ϕ0 of (19) is a solution of
[(

M
α̃,(0)
00 +

1

2
I
)

A0 + ρ1C
α̃,(0)
00 B0

]
ϕ0 = Ei. (24)

3 Analysis of the recursive algorithm

In our study, we establish necessary and sufficient
conditions such that the existence of solutions of (20)
and (24) implies that the electromagnetic scattering
problem (1)-(7) is solvable. This result follows from
the Fredholm properties of Cj which can be estab-
lished using the results in [2] and the techniques in
[3]. Following [4], it is also possible to find conditions
ensuring the uniqueness of solutions of (1)-(7).
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2D-Rapidly convergent quasi-periodic Green function for the scattering of acoustic waves from
rough surfaces throughout the spectrum–including Wood Anomalies.
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Abstract

This work deals with the scattering of acoustic waves
from one dimensional rough surfaces. Based on a
periodic green function that quickly converges both
at and away from Wood anomalies, we build a sec-
ond kind integral equation valid throughout the spec-
trum. Discretizing this integral equation by the
Nyström method, we obtain an efficient numerical
method to solve scattering problems by periodic grat-
ings.

1 Setting of the problem

We consider the problem of scattering of a plane
wave by a perfectly reflecting periodic surface

Γ = {(x, f(x)), x ∈ R},

where f : R 7→ R is an L-periodic r-times continu-
ously differentiable function with r ≥ 2. The inci-
dent and scattered waves propagate throughout the
domain

Ω = {(x, y) ∈ R2, such that y > f(x)}.

Letting k ∈ R+, θ ∈ (−π/2, π/2), α = k sin(θ) and
β = k cos(θ) (where θ is the angle between the direc-
tion of propagation of the incident field, measured
counterclockwise from the negative y-axis), we as-
sume the periodic surface is illuminated by the inci-
dent plane wave

uinc(x, y) = ei(αx−βy).

The scattered field us ∈ H1
loc(Ω) satisfies the partial

differential equation

∆us + k2us = 0 in Ω

as well as the quasi-periodicity condition

us(x+ L, y) = us(x, y)eiαL

together with either the Dirichlet boundary condi-
tions or Neumann boundary conditions

us = −uinc or
∂us

∂ν
= −∂u

inc

∂ν
on Γ.

where ν is the unit normal. To close the problem we
impose us to be outgoing, that is, for y > max

x∈[0,L]
f(x),

us is given by a Rayleigh expansion of the form

us(x, y) =
∑

n∈N
ane

i(αnx+βny),

where

αn = α+
nL

k
, βn =





√
k2 − α2

n if k2 ≥ n2,

i
√
α2
n − k2 otherwise.

Remark 1.1 In the case where there exists n ∈ Z
such that α2

n = k2 we have a Wood Anomaly fre-
quency.

Away from Wood anomalies, as is well known, the
scattering problems previously described can be re-
duced to second kind integral equations (cf. for in-
stance [1], [2]). For instance, for the Dirichlet prob-
lem, we can solve the second kind integral equation

∫

Γ#

∂ν(x′)G
q
(
x− x′, f(x)− f(x′)

)
µ(x′) ds(x′)

+
1

2
µ(x′) = −uinc

|Γ#
, (1)

the diffracted field being deduced by a post-
processing step using a representation formula. In
the previous formula Gq denotes the quasi-periodic
Green function (see [3]) which is defined by the
following converging series, except in the Wood
anomaly case:

Gq(X,Y ) =
i

4

∑

n∈Z
e−iαnLH1

0 (k
√

(X + nL)2 + Y 2).

The objective of our talk is to build an integral equa-
tion that works at an around the Wood anomalies.
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2 New, rapidly convergent quasi-periodic
Green functions series valid at and around
Wood anomalies

Based on a finite difference approach (see [4]), we
construct a family of periodic Green functions as fol-
lows: for j ∈ N, let

Gq
j (X,Y ) :=

i

4

∑

n∈Z
e−iαnL

j∑

m=0

Cmj (−1)m

H1
0

(
k
√

(X + nL)2 + (Y −mhj)2
)
, (2)

where h is a real parameter satisfying h > max(f)−
min(f). For j ∈ N∗, Gq

j is defined for any frequency
k. Indeed, the general term of the series behaves
linke n−j/2−1/2 if j is even and n−j/2−1 if j is odd.
As a result of this fast decay, the truncated sum of
the infinite series

Gq
j,N (X,Y ) :=

i

4

N∑

n=−N
e−iαnL

j∑

m=0

Cmj (−1)m

H1
0

(
k
√

(X + nL)2 + (Y −mhj)2
)
,

converges more rapidly than does a corresponding
truncation of the classical quasi-periodic Green func-
tion (see Figure 1).
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Figure 1: Absolute approximation error arising
from the rapidly convergent Green function as a

function of the truncation parameter N for various
differencing orders j at the Wood anomaly

frequency k = 1.

Replacing the quasi-periodic Green function by Gq
j

in Equation (1), we obtain an integral equation that
can be solved at and away from Wood Anomalies.

Remark 2.1 In fact, our proposed rapidly conver-
gent quasi-periodic Green function series results from
a slight but important modification of Gq

j .

3 Numerical results

Our numerical method incorporates the shifting
methodology developped in Section 2 together with
a suitable modified version of a well known Nyström
approach (see [5]) for high-order evaluation of basic
integral operators.

To demonstrate the beneficial effect of our new
method, we consider the problem of scattering by
the surface f(x) = π

10 cosx. In figure 2, we plot the
evolution of the error on the energy (see [1]) with
respect to the frequency k for the classical quasi-
periodic Green function and for the 9th order shifted
one. As expected our new method also works at the
Wood anomalies (k = 1 and k = 2), although the
classical fails.
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Figure 2: Energy balance with respect to the
frequency
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3.10 Theoretical issues in time harmonic scattering





Is the Helmholtz equation really sign-indefinite?
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Abstract

We introduce a new sign-definite (also called coer-
cive or elliptic) formulation of the Helmholtz equa-
tion posed in the interior of a star-shaped domain
with impedance boundary conditions. Like the stan-
dard variational formulation, this new formulation
arises just by multiplying the Helmholtz equation by
a particular test function and integrating by parts.

Introduction

The usual variational (or weak) formulations of the
Helmholtz equation are sign-indefinite in the sense
that the sesquilinear forms cannot be bounded be-
low by a positive multiple of the appropriate norm
squared. This is often for a good reason, since in
bounded domains under certain boundary conditions
the solution of the Helmholtz equation is not unique
at certain wavenumbers (those that correspond to
eigenvalues of the Laplacian), and thus the varia-
tional problem cannot be sign-definite. However,
even in cases where the solution is unique for all
wavenumbers, the standard variational formulations
of the Helmholtz equation are still indefinite when
the wavenumber is large.

Indeed consider the interior impedance problem for
the Helmholtz equation. That is, given a bounded
Lipschitz domain Ω ⊂ Rd, f ∈ L2(Ω), g ∈ L2(∂Ω),
and k > 0, find u such that

Lu := ∆u+ k2u = −f in Ω, (1a)

∂u

∂n
− iku = g on ∂Ω. (1b)

This problem can be put in weak (or variational)
form by multiplying by the complex conjugate of a
test function v and integrating by parts, i.e. using
Green’s identity

vLu = ∇ · [v∇u]−∇u · ∇v + k2uv. (2)

The result is that the boundary value problem (BVP)
(1) can be reformulated as:

Find u ∈ V such that a(u, v) = F (v) for all v ∈ V.
(3)

with V the Hilbert space H1(Ω) equipped with norm

‖v‖21,k,Ω := ‖∇v‖2L2(Ω) + k2 ‖v‖2L2(Ω) ,

the sesquilinear form a(·, ·) : V × V → C given by

a(u, v) :=

∫

Ω

(
∇u · ∇v − k2uv

)
dx− ik

∫

∂Ω
uv ds,

(4)
and the antilinear functional F : V → C given by

F (v) :=

∫

Ω
fv dx +

∫

∂Ω
gv ds, (5)

Given a variational problem of the form (3), ideally
one would like to prove that there exist constants
Cc, α > 0 such that

|a(u, v)| ≤ Cc ‖u‖V ‖v‖V for all u, v ∈ V, (continuity),

|a(v, v)| ≥ α ‖u‖2V for all v ∈ V, (coercivity).

“Sign-definite” is used as a synonym for “coercive”
(thus a variational problem is sign-indefinite if and
only if it is not coercive).

If continuity and coercivity can be established
then there are three important consequences (i) exis-
tence and uniqueness of the solution to (3) via the
Lax–Milgram theorem, (ii) quasi-optimality of the
Galerkin method applied to (3) for any finite dimen-
sional subspace of V , and (iii) sign-definiteness of the
finite dimensional matrix of the Galerkin method.

Returning to the variational formulation of the in-
terior impedance problem (4) and (5), one can show
that if k2 ≥ λ1 (the smallest eigenvalue of the neg-
ative Laplacian with Dirichlet boundary conditions)
then there exists a v ∈ V such that a(v, v) = 0;
thus a(·, ·) is not coercive. This indefiniteness has
implications for both the analysis and the practical
implementation of finite element methods based on
the variational formulation.

A new sign-definite variational formulation of
the Helmholtz equation

Consider the Hilbert space

V :=
{
v : v ∈ H1(Ω), ∆v ∈ L2(Ω), ∇v ∈

(
L2(∂Ω)

)d}

(6)
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with norm

‖v‖2V : = k2 ‖v‖2L2(Ω) + ‖∇v‖2L2(Ω) + k−2 ‖∆v‖2L2(Ω)

+ L
(
k2 ‖v‖2L2(∂Ω) + ‖∇v‖2L2(∂Ω)

)
,

and obvious inner product, where L is the diameter
(or some other characteristic length scale) of the do-
main Ω. (Note that if v ∈ V , then the restriction of
v to ∂Ω is in L2(∂Ω) by standard trace results.)

Define the sesquilinear form b : V × V → C by

b(u, v) :=

∫

Ω

(
∇u · ∇v + k2uv +

(
Mu+

1

3k2
Lu
)
Lv
)

dx

−
∫

∂Ω

(
ikuMv +

(
x · ∇∂Ωu− ikβu+

d− 1

2
u

)
∂v

∂n

+ (x · n)
(
k2uv −∇∂Ωu · ∇∂Ωv

))
ds,

and antilinear functional G : V → C by

G(v) :=

∫

Ω

(
Mv − 1

3k2
Lv
)
f dx +

∫

∂Ω
Mv g ds,

where β is an arbitrary real constant, d is the spatial
dimension,

Lu := ∆u+ k2u, Mu := x · ∇u− ikβu+
d− 1

2
u,

and ∇∂Ω is the surface gradient on ∂Ω.

With the Hilbert space V , sesquilinear form b(·, ·),
and functional G(·) defined as above, if u is the so-
lution to the BVP (1) then u ∈ V and

b(u, v) = G(v) for all v ∈ V (7)

(this is not immediately obvious, see [1, Proposition
3.2]).

Using the Cauchy–Schwarz inequality it is straight-
forward to show that the sesquilinear form b(·, ·) is
continuous on V . In particular, if β is independent of
k (as we choose it to be below), then the continuity
constant Cc ∼ k as k →∞.

The main novelty of b(·, ·) is that, for some do-
mains, it is coercive on V :

Theorem 1. [1, Theorem 3.4] Let Ω be a Lips-
chitz domain with diameter L that is star-shaped with
respect to a ball, i.e. there exists a γ > 0 such that

x · n(x) ≥ γL

for all x ∈ ∂Ω such that n(x) exists. If the arbitrary
constant β is chosen such that

β ≥ L

2

(
1 +

4

γ
+
γ

2

)

then, for any k > 0,

<b(v, v) ≥ γ

4
‖v‖2V for all v ∈ V,

i.e. b(·, ·) is coercive on V with constant γ/4.

The idea behind the new formulation

As we saw in above, the standard variational for-
mulation of the interior impedance problem (1) is
based on integrating over Ω Green’s identity for the
Helmholtz equation (2).

The new variational formulation (7) comes from
integrating the following identity over Ω

M1vLu+M2uLv
= ∇ ·

[
M1v∇u+M2u∇v + x(k2uv −∇u · ∇v)

]

+
(
d− 2− α1 − α2 − ik(β1 − β2)

)
∇u · ∇v

+
(
α1 + α2 − d+ ik(β1 − β2)

)
k2uv.

where the multipliers Mj are defined by

Mjv := x · ∇v − ikβjv + αjv, j = 1, 2,

and the real numbers βj , αj are chosen so as to ensure
coercivity of the resulting sesquilinear form.

The idea of multiplying the Helmholtz operator,
L, by the multiplier Mj goes back to Morawetz
and Ludwig [3] and was then extensively used by
Morawetz in her famous work on the wave equation
[2].

References

[1] A. Moiola and E. A. Spence, Is the Helmholtz
equation really sign-indefinite?, preprint, (2012).

[2] C. S. Morawetz, Decay for solutions of the ex-
terior problem for the wave equation, Commu-
nications on Pure and Applied Mathematics, 28
(1975), pp. 229–264.

[3] C. S. Morawetz and D. Ludwig, An inequal-
ity for the reduced wave operator and the jus-
tification of geometrical optics, Communications
on Pure and Applied Mathematics, 21 (1968),
pp. 187–203.

EUAN SPENCE AND ANDREA MOIOLA 246



Theoretical features of the hybrid resonance for time harmonic Maxwell’s equations

B. Després1,∗, R. Weder2 and L.M. Imbert-Gérard1

1 Laboratory Jacques Louis Lions, University Pierre et Marie Curie, 75252 Paris Cedex 05, France
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Abstract

The starting point is Maxwell’s equations for the
propagation of a wave in a strongly magnetized
plasma. It can be modeled by the so called cold
plasma dielectric tensor. In this context we con-
struct and analyze a mathematical solution of the
time harmonic Maxwell’s equations with a hybrid res-
onance in slab (planar) geometry. We use the limit
absorption principle to construct the relevant solu-
tions. This is related to an original singular integral
equation which is attached to the Fourier solution.

Introduction

In slab geometry the equations for the transverse
electric (TE) mode, E = (Ex, Ey, 0), and Ex, Ey in-
dependent of z, are





W +∂yEx −∂xEy = 0,

∂yW −αω2

c2
Ex −iδ ω2

c2
Ey = 0,

−∂xW +iδ ω
2

c2
Ex −αω2

c2
Ey = 0,

(1)

where the coefficients are

α = 1−
ω2
p

ω2 − ω2
c

δ =
ωcω

2
p

ω (ω2 − ω2
c )
,

and W is the vorticity (also equal to Bz). The plasma
parameter are the cyclotron frequency ωc = eB0

me

which can taken as constant in first approximation

and the plasma frequency ωp =
√

e2Ne
ε0me

which de-

pends on the electronic density Ne. The geometry
and the coefficients are described in figures 1 and 2.

1 The Budden problem

In the case where the solution is independent of y,
what for the plane waves corresponds to normal inci-
dence, the system (1) is called the Budden problem
[2] 




W − E′y = 0,

−αEx − iδEy = 0,
−W ′ + iδEx − αEy = 0.

It is instructive to design an analytical solution.

Figure 1: X-mode in slab geometry. The medium
is filled with a plasma.

Figure 2: The electronic density x 7→ Ne(x) is low
at the boundary, and increases towards a plateau.

The background magnetic field B0 is constant.

After elimination of Ex and W we obtain that,

−E′′y+
(
δ2

α − α
)
Ey = 0. Let us consider that α = −x

and δ is solution of δ
2

x −x = −1
4 + 1

x . The positive so-
lution is δ(x) =

√
x2 − x

4 + 1 > 0. The y-component
of the electric field is solution of

E′′y +

(
−1

4
+

1

x

)
Ey = 0. (2)

This equation is of Whittaker type. It is a partic-
ular case of the confluent hypergeometric equation,
and can also be rewritten under the Kummer form.
The general theory shows that the first fundamental
solution is regular v(x) = e−

x
2 x. Let us consider a
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second solution w with linear independence with re-
spect to the first one. The linear independence can be
characterized by the normalized Wronskian relation
v(x)w′(x)− v′(x)w(x) = 1. Seeking for a representa-
tion w = vz, one gets that

v2z′ = 1⇒ z =

∫
dx

v2
⇒ w = v

∫
dx

v2
= x e−x/2

∫
ex

x2
.

Moreover
∫
ex

x2
= − ex

x +
∫
ex

x = − ex

x + Ei(x) where
Ei(x) is the Exponential-integral function. It fol-
lows that w(x) = −ex/2+x e−x/2Ei(x). Furthermore

Ei(x) = ln |x|+ |∑∞j=1
xj

j·j! . It follows that,

w(x) = −1 + x ln |x|+O(|x|), |x| → 0. (3)

We notice that the second function w is bounded,
but non regular at origin. The y component of the
electric field of the Budden problem is a bounded
function: Ey = av + bw ⇒ Ey ∈ L∞] − ε, ε[. The
general form of the x component of the electric field
is a linear combination Ex = −iaδ vα−ibδwα where v

α is
a bounded function and w

α is not a bounded function.
Since Ewx 6∈ L2]−ε, ε[, we notice that the electric field
is not a square integrable function in general.

This singularity is the mathematical manifestation
of the resonance. We notice however that w

α can be
defined as a singular value.

2 Analysis

We solve the system (1) first using a Fourier reduc-
tion in the vertical direction, and second with a spe-
cific singular integral equation obtained after elimi-
nation of Ey and W . The structure of the singular
equation is as follows (U = Ex)

xU(x) +

∫ x

0
K(x, y)U(y)dy = f(x)

where the kernel K and the right hand side are func-
tions of the parameters of the problem. They are
bounded. However the singularity x = 0 makes this
integral equation highly singular. It is actually a
third kind integral equation [6], [1] for which the
Fredholm theory does not hold.

Very fortunately the friction of the particles in
a plasma generates a damping phenomenon which
yields the regularized integral equation

(x+ iν)Uν(x) +

∫ x

0
Kν(x, y)Uν(y)dy = fν(x).

Here ν > 0 is a very small positive number which
comes from the friction of particles inside the plasma:

Kν and fν are some regularizations of K and f . It
means that one can invoke the limit absorption
principle to give a meaning to the limit solution.
This mechanism is the fundamental tool which allows
to construct a physically and mathematically sound
solution to the system (1).

Our main result [3] can be summarized as follows.

Proposition 1 Under some natural hypotheses [3],
for every g ∈ L2(R) with ĝ of compact support there
exists a solution in the sense of distributions of (1)
with non homogeneous boundary condition

W + iλnxEy = g on the left boundary x = −L,

and that goes to zero at infinity (in the horizontal
direction). Moreover, unless the source term g is
identically zero, the electric field Ex does not be-
long to L1

loc((−L,∞) × (−∞,∞)). The other com-
ponents Ey and W are more regular, they belong to
L2((−L,∞)× (−∞,∞)).
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troisième espèce, Annales scientifiques de l’ENS,
28, 459-472, 1911.

[7] R. Weder, A Rigorous Analysis of High-Order
Electromagnetic Invisibility Cloaks, J.o Phys.
A: Mathematical and Theoretical, 41 (2008)
065207.

BRUNO DESPRES, RICARDO WEDER AND LISE-MARIE IMBERT-GÉRARD 248



Coercive modifications of the double-layer potential on Lipschitz domains

S. N. Chandler-Wilde1,∗, E. A. Spence2

1 Department of Mathematics and Statistics, University of Reading
2 Department of Mathematical Sciences, University of Bath

∗Email: S.N.Chandler-Wilde@reading.ac.uk

Abstract

A popular way of solving boundary value prob-
lems for the Helmholtz equation ∆u + k2u = 0,
with k a real constant, is to convert them into in-
tegral equations posed on the boundary of the do-
main. Although the numerical analysis of bound-
ary integral equations for the Helmholtz equation has
been investigated by many researchers over the years,
the following important result remains open: it has
not yet been proved that the Galerkin method con-
verges when applied to the standard second-kind in-
tegral equation formulation of the Helmholtz exterior
Dirichlet problem posed on a general Lipschitz do-
main. This result could be obtained by proving that
the Laplace double-layer potential satisfies a G̊arding
inequality on L2(Γ), where Γ denotes the boundary of
a general Lipschitz domain, but this result remains
open. In this paper we should that if the Laplace
double-layer potential is modified in a certain way,
then the stronger result of coercivity (a.k.a. L2(Γ)-
ellipticity) can be obtained for a general Lipschitz
domain. This then implies that an analogously mod-
ified operator for the Helmholtz equation satisfies a
G̊arding inequality.

Introduction

Let Ω− be a bounded Lipschitz open set in 3-d,
such that the open complement Ω+ := R3 \ Ω− is
connected (and thus Ω+ is a Lipschitz domain). Let
Γ := ∂Ω+. We consider the exterior Dirichlet prob-
lem for the Helmholtz equation; namely, given k > 0
and h ∈ H1(Γ), find u ∈ C2(Ω+) ∩ H1

loc(Ω+) such
that

∆u+ k2u = 0 in Ω+, (1a)

γ+u = h on Γ, and (1b)

∂u

∂r
− iku = o(r−1) as r := |x| → ∞, (1c)

where γ+ denotes the (exterior) trace on Γ.

Note that one usually assumes h ∈ H1/2(Γ), but
here we assume that h ∈ H1(Γ); this will be the
case, for example, if u is the scattered field arising

from plane-wave incidence, in which case h is given
in terms of the trace of the incident field on Γ – see,
e.g., [1, Theorem 2.12].

From Green’s integral representation we can ob-
tain two integral equations for the unknown Neu-
mann boundary value ∂+

n u:

Sk∂
+
n u =

(
−1

2
I +Dk

)
h, (2)

(
1

2
I +D′k

)
∂+
n u = Hkh, (3)

where Sk is the single-layer potential, Dk the double-
layer potential, D′k the adjoint double-layer potential,
and Hk the hypersingular operator (see, e.g., [1, §2.3,
§2.5]).

Since both integral equations (2) and (3) fail to be
uniquely solvable for certain values of k the standard
way to resolve this difficulty is to take a linear combi-
nation of the two equations. This yields the integral
equation

A′k,η∂
+
n u = f (4)

where

A′k,η :=
1

2
I +D′k − iηSk (5)

is the standard combined potential operator, with
η ∈ C the so-called coupling parameter, and f given
in terms of the right-hand sides of (2) and (3).

It can be shown that if <η 6= 0, then A′k,η is a
bounded and invertible operator as a mapping from
Hs(Γ) to itself for s ∈ [−1, 0] [1, Theorem 2.27].

When Ω+ a Lipschitz domain and h ∈ H1(Γ) the
regularity result of Nečas [1, Theorem A.5] implies
that ∂nu ∈ L2(Γ), and mapping properties of Dk

and Hk imply that f ∈ L2(Γ); thus we can consider
the integral equation (4) as an equation in Hs(Γ) for
any s ∈ [−1, 0]

The question now arises: what space should we
pick? If we seek to solve (4) with the Galerkin
method, then the variational formulation of (4) in
the space Hs(Γ) involves the Hs(Γ) inner product.
Whereas this is simple to implement when s = 0, it
is cumbersome when s 6= 0; thus we would ideally like
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to consider (4) as an integral equation in L2(Γ). The
standard way to prove that the Galerkin method for
(4) converges in L2(Γ) would be to show that A′k,η is
coercive up to a compact perturbation (a.k.a. satis-
fies a G̊arding inequality), i.e. there exists a compact
operator T : L2(Γ)→ L2(Γ) and an α > 0 such that

((A′k,η + T )φ, φ)L2(Γ) ≥ α ‖φ‖2L2(Γ) for all φ ∈ L2(Γ),
(6)

Since both Sk and D′k − D′0 are compact operators
on L2(Γ) one only needs to prove that (6) holds with
A′k,η replaced by 1

2I + D′0, but it is not yet known
whether this is true or not. (Note that the corre-
sponding result for (4) in H−1/2(Γ) was proved in-
dependently in[3, Appendix A] and [4, Theorem 3.2]
(see [1, p.145], [2, Theorem 1]).

The main result

The following results were obtained through at-
tempts to prove that A′k,η satisfies a G̊arding inequal-

ity in L2(Γ) (i.e. that (6) holds).
Given a vector field Z ∈ (L∞(Γ))d, and η ∈ C,

define the operator A′k,η,Z by

A′k,η,Z := (Z · n)

(
1

2
I +D′k

)
+ Z · ∇ΓSk − iηSk

where ∇Γ is the surface gradient on Γ (see, e.g., [1,
Equation (A.14)]). If Z = n, the outward-pointing
normal vector to Ω−, thenA′k,η,Z = A′k,η. If u satisfies
the exterior Dirichlet problem (1) one can show that
A′k,η,Z∂

+
n u = g, for some g ∈ L2(Γ) given in terms of

Z, η, and h [1, Theorem 2.36].
The novelty of A′k,η,Z is that, for certain Z, it sat-

isfies a G̊arding inequality on L2(Γ):

Theorem 1. If η ∈ C, Z ∈ (C0,1(Γ))d is real-valued
and

there exists c > 0 such that Z·n ≥ c > 0 for a.e. x ∈ Γ
(7)

then the operator A′k,η,Z : L2(Γ)→ L2(Γ) is the sum
of a coercive operator and a compact operator.

Theorem 1 is obtained as a corollary of the follow-
ing theorem:

Theorem 2. If Z ∈ (C0,1(Γ))d is real-valued and
satisfies (7), then there exists a real constant β (de-
pending on Z) such that the operator

(Z · n)

(
1

2
I +D′0

)
+ Z · ∇ΓS0 + βS0

is coercive on L2(Γ).

Although A′k,η,Z satisfies a G̊arding equality, to
prove that the Galerkin method converges we also
need that A′k,η,Z is injective. It is not yet known
whether this holds in general, but if Ω− is star-shaped
(so that the vector field x satisfies (7)) then A′k,η,x
is injective if η is suitably chosen; see [1, Theorems
2.3.7 and 5.2.6].
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Abstract

We study the acoustic radiation of a source in
a 2D waveguide in time harmonic regime and in
presence of a shear flow. The main difficulty is the
coupling between acoustic waves and vortices con-
vected by the flow. To describe this coupling, the
Goldstein equations [1] are chosen. It is a vecto-
rial model whose interest is to reduce to a scalar
model in the uniform flow parts. Theoretically in
the dissipative regime we prove that the radiation
problem is well-posed. Moreover for low Mach flows
we derive a simpler model which is accurate up to a
small error, varying like the square of the Mach. In-
troducing PMLs to bound the calculation domain,
a Finite Element methods coupling Lagrange and
Discontinuous Galerkin elements is used to high-
light the accuracy of the Low Mach Approximation.

1 The Goldstein equations in a waveguide

A 2D waveguide Ω∞ = R×]0, h[ is filled with a
compressible fluid with a velocity v0 = v0(y)ex. In
time harmonic regime e−iωt and in presence of a
source term f(x) compactly supported in Ω∞, the
perturbations satisfy the Goldstein equations:

D2φ = div (∇φ+ ξ) + f (Ω∞),

Dξ = M ′
[
−

(
∂φ

∂y
+ ξy

)
,
∂φ

∂x

]T

(Ω∞),

∂φ

∂y
+ ξy = 0 (∂Ω∞). (1)

φ is the velocity potential and ξ is the hydrody-
namic unknown such that v = ∇φ + ξ is the per-
turbation velocity. D = M(y)∂/∂x − ik is the
convective operator where M(y) = v0(y)/c0 is the
Mach number and k = ω/c0 the acoustic frequency
with c0 the sound speed. Compared to other lin-
earized aeroacoustics systems like Euler’s equations
[2] or Galbrun’s equation [3], Goldstein’s equations
have the main advantage to be essentially scalar,
the vectorial unknown ξ just living in the shear ar-
eas, where M ′ ̸= 0.

2 Theory in the dissipative regime

k is replaced by kε = k + iε and thanks to the
dissipation ε > 0 we are authorized to look for a
solution with finite energy φ ∈ H1(Ω) and ξ ∈

L2(Ω) (which stands for the radiation condition).
M is supposed positive in this section.

2.1 The hydrodynamic equation

The second equation of (1) admits a unique so-
lution ξ = Aεφ = (Aε

xφ,A
ε
yφ)T where

Aε
xφ = Gε ∗

(
−M ′∂φ

∂y

)
+ G̃ε ∗

(
−M ′2∂φ

∂x

)
,

and Aε
yφ = Gε ∗ M ′∂φ/∂x with the Green func-

tions MGε(x, y) = Y (x)eikεx/M and M2G̃ε(x, y) =
Y (x)xeikεx/M . Moreover using the inequality ||G ∗
h||L2(Ω) ≤ ||G||L1(Ω)||h||L2(Ω) we proved thatAε

is continuous from H1(Ω) onto L2(Ω)2 with the
constant γε =

√
2(s1/ε) [1 + (s1/ε)], where s1 =

maxy∈[0,h] |M ′(y)|.

2.2 Well-posedness of the acoustic problem

The first equation of (1), after injection of the
expression of ξ, leads to the following variational
formulation:

{
Find φ ∈ H1(Ω) such that ∀ψ ∈ H1(Ω),

aε(φ,ψ) = bε(φ,ψ) + cε(φ,ψ) =
∫
Ω fψ,

(2)

with

bε(φ,ψ) =

∫

Ω
∇φ · ∇ψ − DεφDεψ,

cε(φ,ψ) =

∫

Ω
(Aεφ) · ∇ψ.

This problem has good mathematical properties:
for instance the Lax-Milgram theorem applies if the
flow is subsonic and enough dissipation is intro-
duced.

Theorem 1 The variational problem (2) is well-
posed for s0 = maxy∈[0,h] |M(y)| < 1 and ε large
enough.

Indeed using |bε(φ,φ)| ≥ |kε|ℑm (−bε(φ,φ)/kε)
is found that bε(φ,ψ) is coercive with the constant
Cc

ε = min
(
ε(1 − s20)/|kε|, ε|kε|

)
and we deduce that

aε(φ,ψ) is coercive with the constant σε = Cc
ε −γε.

Since limε→∞ σε = 1 − s20 > 0, aε(φ,ψ) is coercive
for ε large enough, such that the introduced dis-
sipation compensate the growing of hydrodynamic
instabilities whose strength is proportional to s1.
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Aε is defined by integrals highly oscillating when
M is small. For instance the expression of Aε

y is:

Aε
yφ =

M ′(y)
M(y)

∫ x

−∞
e
i kε

M(y)
(x−s)∂φ

∂x
(s, y)ds.

In fact an integration by parts leads to (non-
stationary phase theorem):

Aε
yφ =

iM ′(y)
kε

(
∂φ

∂x
−

∫ x

−∞
e
i kε

M(y)
(x−s)∂

2φ

∂x2
(s, y)ds

)
,

(3)
and Aε

y has a well-defined limit when M → 0 (the
integral term vanishes). More generally by consid-
ering only the first term in the previous expression
we can derive for small M an alternative model.

2.3 Low Mach Approximation

We consider the general flow M(y) = Mm(y)
with M now a constant and max0≤y≤h |m(y)| < 1.
We suppose that ε is fixed, we note AM instead
of Aε the hydrodynamic operator and φM the so-
lution. We look for an approximation φ̃M of φM

at low Mach numbers such that the calculation of
φ̃M does not require the evaluation of oscillating
integrals [4]. AMφ is approximated by:

Ã
M
φ =

iM

kε
m′(y)

(
−∂φ
∂y
,
∂φ

∂x

)T

.

φ̃M is a good approximation of φM in the sense:

Theorem 2 ∃M0 ∈]0, 1[ and C > 0 such that
∀ 0 ≤ M ≤ M0:

||φM − φ̃M ||H1(Ω) ≤ CM2.

When comparing to the no flow case we get only
||φM − φ0||H1(Ω) ≤ CM and ||φ̃M − φ0||H1(Ω) ≤
CM , which proves the quality of the Low Mach
Approximation. The idea of the proof is to show

that
∣∣∣
∣∣∣AMφM − Ã

M
φ̃M

∣∣∣
∣∣∣
L2(Ω)2

is bounded by M2

and this is mainly due to the integration by parts
(3) which leads to:

(
AM

y − ÃM
y

)
φ0 = −M2Gε ∗ im

′(y)m(y)

kε

∂2φ0

∂x2
.

3 Problem with PML and numerical re-
sults

For the numerical results we take ε = 0 and we
introduce PMLs ΩL

± of length L to bound the cal-
culation domain Ωb = [0, d] × [0, 1]:

ΩL
−

f

0 d + L−L Γ

Ωb

d

ΩL
+

Σ+Σ−

Γ

M(y)

The Goldstein equations become:




D2
αφ− divα (∇αφ+ Aαφ) = f (Ω),

∂φ

∂y
+Aα

yφ = 0 (∂Ω),

∂φ

∂x
= 0 (Σ±),

where Ω = Ωb∪ΩL
±, Dα = M(y)α̃

∂

∂x
−ik with α̃ = 1

in Ωb and α̃ = α in ΩL
± where α is the complex

PML parameter. For a source f = 1 in the disc of
center (1, 0.5) and of radius 0.1, a profile with the
strongest shear located at yc = 0.5, namelyM(y) =
0.5 {(Mmax −Mmin) tanh [κ(y − yc)] +Mmax +Mmin}
with Mmin = 0, Mmax = 0.1, κ = 10, k = 5, d = 3,
L = 0.5 and α = 0.3(1 − i), the obtained vertical
velocities vy = ∂φ/∂y + ξy in the domain Ωb are:

ℜe(vy) Low Mach ℜe(vy) exact
The vertical velocities are not exactly the same due
to the Low Mach Approximation: patterns highly
oscillating, located at y = yc and associated to
the large wave number k/M(yc) = 100 (wavelength
λ = 6.10−2) are clearly cancelled by the Low Mach
Approximation. However the pressure, which is the
most important quantity since it corresponds to the
heard sound, is nearly the same (error of 1.6% in
L2-norm):

p = −Dφ Low Mach p = −Dφ exact

References

[1] M. E. Goldstein, Unsteady vortical and entropic
distortions of potential flows round arbitrary ob-
stacles, Journal of Fluid Mechanics 89(3), 433-
468 (1978)

[2] Y. Ozyoruk, E. Alpman, V. Ahuja and L. N.
Longs, Frequency-domain prediction of turbofan
noise radiation, Journal of sound and vibration
270(4-5), 933-950 (2004)

[3] A.-S. Bonnet-Ben Dhia, J.-F. Mercier, F. Mil-
lot, S. Pernet and E. Peynaud, Time-Harmonic
Acoustic Scattering in a Complex Flow: a Full
Coupling Between Acoustics and Hydrodynam-
ics, Commun. Comput. Phys. 11(2) 555-572
(2012)

[4] A.-S. Bonnet-Ben Dhia, J.-F. Mercier, F. Millot
and S. Pernet, A low Mach model for time har-
monic acoustics in arbitrary flows, J. of Comp.
and App. Math. 234(6), 1868-1875 (2010)

JEAN-FRANCOIS MERCIER AND FLORENCE MILLOT 252



WAVENUMBER-EXPLICIT COERCIVITY ESTIMATES IN SCATTERING BY SCREENS

D. P. Hewett1,∗, S. N. Chandler-Wilde1

1 Department of Mathematics and Statistics, University of Reading, Berkshire, UK
∗Email: d.p.hewett@reading.ac.uk

Abstract

We consider time-harmonic acoustic scattering by
flat sound soft and sound hard screens occupying an
arbitrary bounded open set in the plane. We pro-
pose mathematical models for such problems, and
show that these are well-posed, by proving the coer-
civity of the single-layer and hypersingular integral
operators arising in the boundary integral equation
reformulations of the problems. We also tease out
the explicit wavenumber dependence of the norms
and coercivity constants of these integral operators,
this in part extending previous results of Ha Duong.

Introduction

This paper is concerned with the mathematical
analysis of classical time-harmonic acoustic scatter-
ing problems, modelled by the Helmholtz equation

∆u+ k2u = 0, (1)

where k > 0 is the wavenumber. The scatterer is
assumed to be a thin flat screen, occupying some
bounded and relatively open set Γ ⊂ Γ∞ := {x =
(x1, ..., xd) ∈ Rd : xd = 0} (d = 2 or 3), with (1) as-
sumed to hold in D := Rd \Γ. We suppose the screen
is sound soft, in which case u=0 on Γ, or sound hard,
when the normal derivative ∂u/∂n = 0 on Γ.

This is a well-studied problem, both theoretically
and in applications. However, all previous studies
assume that Γ ⊂ Γ∞ is at least a Lipschitz relatively
open set (in the sense of [2]), and most that Γ is sub-
stantially smoother. The focus of the present paper
is: (i) to formulate these problems correctly when Γ
is an arbitrary bounded relatively open set; (ii) to
get wavenumber-explicit estimates on the associated
boundary integral operators. For full details see [1].

1 Preliminaries

Our analysis is in the context of Sobolev spaces,
for which we follow the notation in [2], except we
use wavenumber dependent norms (equivalent to the
usual norms). Explicitly, on the Bessel potential
space Hs(Rd−1), s ∈ R, we define

‖u‖2Hs
k(Rd−1) :=

∫

Rd−1

(k2 + |ξ|2)s |û(ξ)|2 dξ,

where ̂ represents the Fourier transform in Rd−1.
Let Hs(Γ) := {U |Γ : U ∈ Hs(Rd−1)}, where |Ω

denotes the restriction to Γ, and let H̃s(Γ) denote
the closure of C∞0 (Γ) in the space Hs(Rd−1). Then
Hs(Γ) is the dual space of H̃−s(Γ); we denote by
〈·, ·〉Γ,s the duality pairing on Hs(Γ) × H̃−s(Γ). Let
Hs

Γ
:= {u ∈ Hs(Rd−1) : suppu ⊂ Γ}. Clearly

H̃s(Γ) ⊂ Hs
Γ
, and when Γ is C0 (so certainly if Γ

is Lipschitz), it holds that H̃s(Γ) = Hs
Γ

[2, Theorem
3.29], but in general these spaces are not equal.

2 Boundary value problems

Definition 2.1 (Problem D). Given gD ∈ H1/2(Γ),
find u ∈ C2 (D) ∩W 1

loc(D) such that

∆u+ k2u = 0, in D, (2a)

u = gD, on Γ, (2b)

[u] = 0, (2c)

[∂u/∂n] ∈ H̃−1/2(Γ), (2d)

and u satisfies the Sommerfeld radiation condition.
Here [f ] = f+ − f− represents the jump of f across
Γ (interpreted in the sense of traces).

Conditions (2c)-(2d) ensure well-posedness for an ar-
bitrary relatively open subset Γ. In interpreting

(2c)-(2d) we remark that, a priori, [u] ∈ H
1/2

Γ
and

[∂u/∂n] ∈ H−1/2

Γ
, and, while [u]|Γ = 0 (from (2b)), it

could hold that [u] 6= 0 with supp(u) ⊂ ∂Γ. We note
that (2c)-(2d) are automatically satisfied when Γ is
Lipschitz, because then ∂Γ cannot support non-zero

elements of H1/2(Rd−1), and also H̃−1/2(Γ) = H
−1/2

Γ
.

Definition 2.2 (Problem N). Given gN ∈ H−1/2(Γ),
find u ∈ C2 (D) ∩W 1

loc(D) such that

∆u+ k2u = 0, in D, (3a)

∂u

∂n
= gN, on Γ, (3b)

[∂u/∂n] = 0, (3c)

[u] ∈ H̃1/2(Γ), (3d)

and u satisfies the Sommerfeld radiation condition.

Again, (3c)-(3d) automatically hold if Γ is Lipschitz.
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Example 2.3. In the scattering by Γ of an incident
plane wave ui(x) := eikx·d, x ∈ Rd, where d ∈ Rd is
a unit direction vector, a ‘sound soft’ and a ‘sound
hard’ screen are modelled respectively by problems D
(with gD=−ui|Γ) and N (with gN=−∂ui/∂n|Γ), with
u representing the scattered field.

3 Boundary integral equations

We introduce the standard single- and double-layer
potentials Sk : H̃−1/2(Γ) → C2(D) ∩ W 1

loc(D) and
Dk : H̃1/2(Γ) → C2(D) ∩W 1

loc(D), and single-layer
and hypersingular operators Sk :H̃−1/2(Γ)→H1/2(Γ)
and Tk : H̃1/2(Γ)→ H−1/2(Γ). For φ ∈ C∞0 (Γ) the
latter two have the integral representations

Skφ(x) =

∫

Γ
Φ(x,y)φ(y) ds(y), x ∈ Γ,

Tkφ(x) =
∂

∂n(x)

∫

Γ

∂Φ(x,y)

∂n(y)
φ(y) ds(y), x ∈ Γ,

where Φ is the fundamental solution of (1). Problems
D and N are equivalent to certain integral equations
involving Sk and Tk, as the following theorems show.

Theorem 3.1. Suppose that u is a solution of prob-
lem D. Then Green’s representation formula

u(x) = −Sk [∂u/∂n] (x), x ∈ D,
holds, and φ := [∂u/∂n] ∈ H̃−1/2(Γ) satisfies

−Skφ = gD. (4)

Conversely, suppose that φ ∈ H̃−1/2(Γ) satisfies (4).
Then u :=−Skφ satisfies problem D, and [∂u/∂n]=φ.

Theorem 3.2. Suppose that u is a solution of prob-
lem N. Then Green’s representation formula

u(x) = Dk[u](x), x ∈ D,
holds, and ψ := [u] ∈ H̃1/2(Γ) satisfies

Tkψ = gN. (5)

Conversely, suppose that ψ ∈ H̃1/2(Γ) satisfies (5).
Then u :=Dkψ satisfies problem N, and [u]=ψ.

Because the screen is flat we have Fourier rep-
resentations for Sk and Tk. For φ ∈ C∞0 (Γ) and
x̃ ∈ Γ̃ := {x̃ ∈ Rd−1 : (x̃, 0) ∈ Γ} ⊂ Rd−1,

Skφ(x̃, 0) =
i

2(2π)(d−1)/2

∫

Rd−1

eiξ·x̃

Z(ξ)
φ̂(ξ) dξ,

Tkφ(x̃, 0) =
i

2(2π)(d−1)/2

∫

Rd−1

Z(ξ)eiξ·x̃φ̂(ξ) dξ,

where

Z(ξ) :=

{√
k2 − |ξ|2, |ξ| ≤ k

i
√
|ξ|2 − k2, |ξ| > k,

ξ ∈ Rd−1.

These representations allow us to prove the fol-
lowing k-explicit continuity and coercivity estimates,
which improve on those in [3], [4].

Theorem 3.3. For any s ∈ R, the single-layer
operator Sk : H̃s(Γ) → Hs+1(Γ) is bounded, and
∃C > 0, independent of k and Γ, such that, for all
0 6= φ ∈ H̃s(Γ̃) and k > 0, and with A :=diam Γ,

‖Skφ‖Hs+1
k (Γ)

‖φ‖H̃s
k(Γ)

≤
{
C(1 +

√
kA), d = 3,

C log (2 + (kA)−1)(1 +
√
kA), d = 2.

Theorem 3.4. Sk : H̃−1/2 → H1/2(Γ) satisfies

〈Skφ, ψ〉Γ,1/2 ≥
1

2
√

2
‖φ‖2

H̃
−1/2
k (Γ)

, φ ∈ H̃−1/2(Γ), k > 0.

Theorem 3.5. For any s ∈ R, the hypersingular
operator Tk : H̃s(Γ)→ Hs−1(Γ) is bounded, and

‖Tkφ‖Hs−1
k (Γ) ≤

1

2
‖φ‖H̃s

k(Γ) , φ ∈ H̃s(Γ), k > 0.

Theorem 3.6. Tk : H̃1/2(Γ) → H−1/2(Γ) satisfies,
for any k0 > 0, and k ≥ k0,

〈Tkφ, ψ〉Γ,−1/2 ≥ C(kA)β ‖φ‖2
H̃

1/2
k (Γ)

, φ ∈ H̃1/2(Γ),

where C > 0 is a constant depending only on k0A,
and β = −2/3 for d = 3 and β = −1/2 for d = 2.

The Lax-Milgram Lemma then implies:

Theorem 3.7. Equation (4), and hence also problem
D, has a unique solution for all gD ∈ H1/2(Γ).

Theorem 3.8. Equation (5), and hence also problem
N, has a unique solution for all gN ∈ H−1/2(Γ).
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Abstract

We investigate the question of the electromagnetic
propagation in thin electric cables from a mathemat-
ical point of view via an asymptotic analysis with
respect to the (small) transverse dimension of the ca-
ble: as it has been done in the past in mechanics for
the beam theory from 3D elasticity, we use such an
approach for deriving simplified effective 1D models
from 3D Maxwell’s equations.

Position of the problem

Denoting δ > 0 a small parameter, we consider a
family of (thin) domains Ωδ = Gδ

(
Ω
)

where

Gδ : (x1, x2, x3) −→ (δx1, δx2, x3).

and Ω is a normalized cylinder of axis x3 and variable
cross section(see Figure 1, left picture)

Ω = ∪
z∈R

Sz, Sz = Oz \ Tz

where Oz and Tz (the hole) are simply connected,
Lipschitz, open sets included in the plane x3 = z, so
that ∂Sz has two connected components ∂S+

z (ex-
terior) and ∂S−z (interior). We are interested in

Figure 1: The structure of the co-axial cable

the electromagnetic field (Eδ, Hδ) solution of the 3D
Maxwell’s equation in Ωδ :





εδ ∂tE
δ + σδe E

δ − curl Hδ = jδ,

µδ ∂tH
δ + σδmH

δ + curl Eδ = 0,
(1)

where the permittivity εδ, the permeability µδ, the
electric and magnetic conductivities σδe and σδm, as

well as the source term jδ are obtained by a scal-
ing in the transverse variable xT = (x1, x2) of fixed
distributions in the reference domain Ω :

εδ(xT , x3) = ε(xT /δ, x3), · · ·

We are interested in the behaviour of the solution for
small δ.

The main result

Under usual non degeneracy assumptions about
the geometry of Ω and the coefficients in (1), one
proves, by mean of formal asymptotics, that (∇ holds
for the 2D transverse gradient in xT , that can be
identified to a 3D vector with third component 0)





Eδ(xT , x3, t) ∼ V (x3, t) ∇ϕ∞s (xT /δ, x3)

+

∫ t

0
V (x3, s) ∇ϕr(xT /δ, x3, t− s) ds,

Hδ(xT , x3, t) ∼ I(x3, t) ∇ψ∞s (xT /δ, x3)

+

∫ t

0
I(x3, s) ∇ψr(xT /δ, x3, t− s) ds,

(2)

where

• The scalar potentials ϕ∞s (·, x3) and ψ∞s (·, x3)
are solutions of specific 2D ”elliptic” problems
in each cross section Sx3 . For instance, for
ϕ∞s (·, x3) (see [1] for ψ∞s (·, x3))




div
(
ε(·, x3)∇ϕ∞s (·, x3)

)
= 0, in Sx3 ,

ϕ∞s (·, x3) = 0 on ∂S+
x3 , = 1 on ∂S−x3 .

(3)

• The scalar functions (ϕr(·, x3, t), ψr(·, x3, t)
)
∈

H1
0 (Sx3)2 are solutions of non standard 2D evo-

lution problems in each cross section Sx3 . For
intance, for ϕr(·, x3, t) (see [1] for ψr(·, x3, t))




∂t
[
div

(
ε∇ϕr

)]
+ div

(
σe∇ϕr,0) = 0

ϕr(·, x3, 0) = ϕr,0(·, x3)
(4)
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where the initial data ϕr,0(·, x3) is defined by





div
(
ε∇ϕr,0

)
= − div

(
σe∇ϕ∞s ) ,

ϕr,0 = 0 , on ∂Sx3 ,
(5)

• The functions V (x3, t) and I(x3, t), respectively
called the electric potential and the electric cur-
rent, are new 1D unknowns.

V (x3, t) and I(x3, t) are governed by the generalized
telegraphist’s equations :





C∞(x3)
∂V

∂t
+G∞(x3)V +

∂I

∂x3
(x3, t)

+ ke(x3, ·) ∗ V (x3, ·) = j,

L∞(x3)
∂I

∂t
+R∞(x3) I +

∂V

∂x3
(x3, t)

+ km(x3, ·) ∗ I(x3, ·) = 0,

(6)

where ∗ holds for time convolution. In (6), j(x3, t) is
an effective source term given by:

j(x3, t) =

∫

Sx3

jT (x3, ·, t) · ∇ϕ∞s (x3, ·)

+

∫ t

0

∫

Sx3

jT (x3, ·, t− s) · ∇ϕr(x3, ·, s) ds,
(7)

the capacity C∞(x3), the inductance L∞(x3), the re-
sistance R∞(x3) and the conductance G∞(x3) are
given by:

C∞(x3) ≡
∫

Sx3

ε(·, x3)
∣∣∇ϕ∞s (·, x3)

∣∣2 dxT ,

L∞(x3) ≡
∫

Sx3

µ(·, x3)
∣∣∇ψ∞s (·, x3)

∣∣2 dxT ,

G∞(x3) ≡
∫

Sx3

σe(·, x3)
∣∣∇ϕ∞s (·, x3)

∣∣2 dxT ,

R∞(x3) ≡
∫

Sx3

σm(·, x3)
∣∣∇ψ∞s (·, x3)

∣∣2 dxT ,

(8)

and the convolution kernels ke(x3, ·) and km(x3, ·) by





ke(x3, t) =

∫

Sx3

σe(·, x3) ∇ϕr(·, x3, t) · ∇ϕ∞s (·, x3),

km(x3, t) =

∫

Sx3

σm(·, x3) ∇ψr(·, x3, t) · ∇ψ∞s (·, x3).

(9)

Miscillaneous results

Formula (2) shows that, in the limit δ → 0, the
electromagnetic field is transversely polarized. It also
exhibits a 1D structure for the limit solution, via a
”quasi” separation of variables in xT and x3. More-
over, the kernels ke and km are such that

ke(·, t) 6= 0⇐⇒ σe(.x3)
ε(.,x3)

is not constant in Sx3

km(·, t) 6= 0⇐⇒ σm(.x3)
µ(.,x3)

is not constant in Sx3

In other words, the presence of the convolution terms
results from the presence of losses conjugated with
the heterogeneity of the cross sections.

We have been able to justify our model rigorously by
means of error estimates which show that, in cylin-
drical geometry, our model is second order accurate
for the transverse fields and first order for the longi-
tudinal fields (see [2]). It is easy to propose a first
order corrector for the longitudinal fields in order to
restore the global second order accuracy.

We have implemented a code for the simultion of
wave propagation in a thin cable using our 1D model.
Numerical simulations will be presented at the con-
ference. The computation is made in two steps:

• Pre-processing : one computes all the coefficients
appearing in (6) by solving 2D auxiliary prob-
lems - in particular (3),(4),(5) - in each cross
section (in order to determine ϕ∞s , ϕr, ψ

∞
s , ψr)

and applying formulas (7), (8) and (9).

• Calculation : one solves the 1D evolution prob-
lem (6).

We are currently working on higher order models,
which leads, in the loss less case, to introduce the
concept of non local capacitance and inductance op-
erators Cδ and Lδ. This work is in progress.
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Abstract

We study the essential spectrum of strongly singu-
lar volume integral operators arising in the scatter-
ing of time harmonic electromagnetic waves. We will
first treat the case of piecewise constant constitutives
parameters like the electric permittivity ε and the
magnetic permeability µ. We will recall the known
results for the dielectric operator and will show that
the magnetic one has the same essential spectrum in
the case of a smooth boundary Γ which is the set
{0, 1

2 , 1} and that the situation for a Lipschitz one
is quite different. Then we will explain how such
results give necessary and sufficient criteria for the
Fredholmness of the total operator for both regular
and Lipschitz interfaces. For non constant param-
eters, the spectrum is shown to be contained in the
set corresponding to constant case multiplied by con-
trast parameters for the dielectric and the magnetic
problem.

Introduction

We consider the scattering of time-harmonic elec-
tromagnetic waves by a penetrable object. The
mathematical model is given by the Maxwell equa-
tions involving the wave number k ∈ R, the electric
permittivity ε and the magnetic permeability µ. We
consider here that ε and µ are constant outside a
bounded domain Ω such that the scattering problem
is equivalently described by the Lippmann-Schwinger
integral equation on Ω [1]. This equation, sometimes
simply called “volume integral equation” (VIE) of
electromagnetic scattering has been intensively used
by physicists for numerical calculations. However, a
complete mathematical study of the (VIE) when the
parameters ε and µ are discontiuous on the surface Γ
of the scatterer Ω does not yet seem to be available
in the literature. Partial results have been obtained
in [2], [3], [4], [5], [6].
Let Ω be a bounded Lipschitz domain. Let ε and µ
be such that

ε = ε0 > 0, µ = µ0 > 0 in R3 \ Ω;

ε = εrε0, µ = µrµ0 in Ω; εr, µr ∈ L∞(Ω)

Define the electric and the magnetic contrast

η = 1− εr, ν = 1− 1

µr
;

The (VIE) can then be written as:

Find u such that u−Aηku−Bν
ku = u0.

where the integral operators Aηk and Bν
k are given,

for x ∈ Ω by

Aηku(x) = (−∇∇.− k2)

∫

Ω
gk(x− y) η(y)u(y) dy,

Bν
ku(x) = ∇×

∫

Ω
gk(x− y) ν(y)∇× u(y) dy;

and where gk is the fundamental solution of the
Helmholtz equation and u0 is a data.
In this talk, we will first consider the case where ε
and µ are constant on Ω. Furthermore, we will give
here a complete spectral analysis of the operators in-
volved in the (VIE) for a regular or Lipschitz domain
Ω, namely the operators Ak := A1

k, Bk := B1
k and the

operator ηAk + νBk.
This approach helps us to approximate the essential
spectrum of the operators Aηk and Bν

k in a more gen-
eral case where ε and µ are not constant, at least of
class C1 with discontinuity across Γ.

1 The case of piecewise constant constitutive
parameters:

We denote by Σ = σess(
1
2I +K ′) where 1

2I +K ′ is
the normal derivative of the single layer potential in
the interior domain.

1.1 Motivation: Results for the dielectric scattering
equation(ν = 0):

First, we remember that the operator Ak can be
extended from H(∇×,Ω) to L2(Ω) as a bounded op-
erator and that Ak−A0 is a compact operator defined
on L2(Ω) [3]. For the determination of the essential
spectrum of the operator A0, we have these results
already shown in [2]:

• If Γ is smooth, then

σess(Ak) = {0, 1

2
, 1}
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• If Γ is Lipschitz, then

σess(Ak) = {0} ∪ {1} ∪ (Σ)

We will give a more elegant proof of the last two
statements also based on the orthogonal decomposi-
tion:

L2(Ω) = ∇H1
0 (Ω)⊕H0(div0,Ω)⊕W

with W = ∇H1(Ω) ∩H(div0,Ω) the space of gradi-
ents of harmonic H1 vector fields.

1.2 Results for the magnetic problem(η = 0):

For the operator Bk, we will demonstrate via
the analysis of the boundary transmission conditions
that it cannot be extended to L2(Ω). This result
can also be checked using integrations by parts. Its
essential spectrum is then given in H(∇×,Ω) by

• If Γ is smooth, then

σess(Bk) = {0, 1

2
, 1}

• If Γ is Lipschitz, then

σess(Bk) = {0} ∪ {1} ∪ (1− Σ)

The proof is also based on an orthogonal decompo-
sition of the space H(∇×,Ω) in addition to a classi-
cal result from the theory of linear operators which
states:
Let X and Y be two vector spaces, P : Y → X and
Q : X → Y two linear operators then we have:

σess(QP ) \ {0} = σess(PQ) \ {0}

1.3 Results for the electromagnetic configuration:

For a smooth boundary Γ, we use the same or-
thogonal decomposition as for Bk. We then do
some integrations by parts to decompose the oper-
ator ηAk + νBk like the operator Bk and finish by
applying the same method done for the last one to
find that:

σess(ηAk + νBk) = {0, η
2
,
ν

2
, η, ν}

If Γ is Lipschitz, we use the classical lemma given in
paragraph 1.2 to obtain this inclusion of spectrum:

σess(ηAk + νBk) ⊂ {0, η, ν} ∪ (ηΣ) ∪ (ν − νΣ)

2 Some further results for piecewise regular
parameters:

Let η, ν ∈ C1(Ω̄). In order to determine the es-
sential spectrum of the two operators Aηk and Bν

k ,
we reduce them modulo compact operators such that
Aηk ∼ ηA0 in L2(Ω) and Bν

k ∼ νB0 in H(∇×,Ω). Via
some elementary tools from the Fredholm theory, we
will show that if Ω is a star-shaped Lipschitz domain
then

σess(A
η
k) ⊂ ησess(Ak) = {η(x)λ|x ∈ Ω̄, λ ∈ σess(Ak)}

σess(B
ν
k ) ⊂ νσess(Bk) = {ν(x)λ|x ∈ Ω̄, λ ∈ σess(Bk)}
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Abstract

We study a 2D transmission problem between a
positive material and a negative material. In electro-
magnetism, this negative material can be a metal at
optical frequencies or a negative metamaterial. We
highlight an unusual instability phenomenon for this
problem in some configurations: when the interface
between the two materials presents a rounded corner,
it can happen that the solution depends critically on
the value of the rounding parameter.

1 Numerical observations

O

O′

π/4

δ

Ωδ
−Ωδ

+

Figure 1: Domain Ωδ.

Let us denote (r, θ) the polar coordinates centered
at the origin O. Consider δ ∈ (0; 1) and define (see
Figure 1) the domains:

Ωδ
+ :={(r cos θ, r sin θ) | δ < r < 1, π/4 < θ < π};

Ωδ
− :={(r cos θ, r sin θ) | δ < r < 1, 0 < θ < π/4};

Ωδ :={(r cos θ, r sin θ) | δ < r < 1, 0 < θ < π}.

We define the function σδ : Ωδ → R by σδ = σ± in
Ωδ

±, where σ+ > 0 and σ− < 0 are constants. We
shall focus on the problem:

Find uδ ∈ H1
0(Ω

δ) such that
−div(σδ∇uδ) = f,

(1)

where H1
0(Ω

δ) := {v ∈ H1(Ωδ) s.t. v|∂Ωδ = 0}. We
choose a source term f ∈ L2(Ωδ) whose support
does not meet O and we try to approximate the so-
lution of problem (1), assuming it is uniquely de-
fined, by a classical finite element method. We call
uδ

h the numerical solution and we make δ tends to

zero. The results are displayed on Figure 2. For
a contrast κσ := σ−/σ+ = −1.0001, the sequence
(∥uδ

h∥H1
0(Ωδ))δ is relatively stable with respect to δ,

for δ small enough. For κσ := σ−/σ+ = −0.9999,
it looks that there exists of sequence of values of δ,
which accumulates in zero, such that problem (1) is
not well-posed. In other words, it seems that the so-
lution of problem (1) is not stable with respect to δ
when δ tends to zero. The goal of the present docu-
ment is to understand these two observations.
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Figure 2: Evolution of ∥uδ
h∥H1

0(Ωδ) w.r.t. 1 − δ.
Above, we take σ+ = 1 and σ− = −1.0001. Below,
we take σ+ = 1 and σ− = −0.9999.

2 Properties of the problem for δ = 0

We associate with problem (1) the continuous
linear operator Aδ : H1

0(Ω
δ) → H−1(Ωδ) defined by

⟨Aδu, v⟩Ωδ = (σδ∇u,∇v)Ωδ , ∀u, v ∈ H1
0(Ω

δ). As it
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is known from [1], Aδ is a Fredholm operator of
index 0 if and only if κσ := σ−/σ+ ̸= −1, as the

interface Σδ := Ω
δ
+ ∩ Ω

δ
− is smooth and meets ∂Ωδ

orthogonally.

Now, for δ = 0, the interface no longer meets
∂Ωδ perpendicularly. In the sequel, we denote A, Ω
and σ instead of A0, Ω0 and σ0. As shown in [1],
there exist values of the contrasts κσ = σ−/σ+ for
which the operator A fails to be of Fredholm type.
More precisely, for the chosen configuration, A is a
Fredholm operator (and actually, an isomorphism)
if and only if, κσ < 0 does not belong to the critical
interval [−1;−1/3]. Here, the value 3 comes from
the ratio of the two apertures: 3 = (π − π/4)/(π/4).

⋆ When κσ = −1.0001 /∈ [−1; −1/3], A is an
isomorphism (c.f. [1]). In this case, we can prove
that Aδ is an isomorphism for δ small enough.
Moreover, defining uδ = (Aδ)−1f and u = A−1f , we
can show that the sequence (uδ) converges to u for
the H1 norm. This explains the first curve of Figure
2.

⋆ When κσ = −0.9999 ∈ [−1;−1/3], A is not
of Fredholm type (c.f. [1]). In this configuration,
there is a qualitative difference between problem (1)
for δ > 0, and problem (1) for δ = 0. In [2], we define
a new functional framework to restore Fredholmness
for the limit problem. More precisely, we prove that,
for κσ ∈ (−1; −1/3) the operator A+ : V+

β → V1
β(Ω)∗

defined by ⟨A+u, v⟩Ω = (σ∇u,∇v)Ω, ∀u ∈ V+
β ,

v ∈ C ∞
0 (Ω), is an isomorphism for all β ∈ (0; 2).

In this notation, V+
β := span{s+} ⊕ V1

−β(Ω), where

s+ ∈ L2(Ω) \ H1(Ω) is a singular function at O and
V1

−β(Ω) is the completion of C ∞
0 (Ω) for the weighted

norm ∥·∥V1
−β(Ω) = (∥r−β∇·∥2

L2(Ω)+∥r−β−1·∥2
L2(Ω))

1/2.

3 Asymptotic expansion of the solution in-
side the critical interval

For a contrast inside the critical interval, the exotic
functional framework introduced for the limit prob-
lem leads to two surprising phenomena in the asymp-
totic expansion of the solution of problem (1). First,
when we proceed to a usual matched asymptotic ex-
pansion method, we observe that we can define an
asymptotic expansion of the solution uδ only for

δ ∈ Sadm := (0; 1) \ Sforb with Sforb :=
∪

k∈N
δk
⋆δ0,

δ⋆, δ0 being two numbers of (0; 1). Notice that 0 is
an accumulation point for Sforb. For α ∈ (0; 1/2),
we define I(α) :=

∪
k∈N[δk+1−α

⋆ δ0; δ
k+α
⋆ δ0] ⊂ Sadm .

In [3], we prove the following result:

Proposition 1. Let β ∈ (0; 2) and f ∈ V1
β(Ω)∗.

There exists δ0 such that problem (1) is uniquely solv-
able for all δ ∈ (0; δ0)∩I(α), with α ∈ (0; 1/2). More-
over, we can build an approximation ûδ ∈ H1

0(Ω
δ) of

uδ such that, for all ε in (0; β), ∀δ ∈ (0; δ0) ∩ I(α),
there holds

∥uδ − ûδ∥H1
0(Ωδ) ≤ c δβ−ε∥f∥V1

β(Ω)∗ ,

where c > 0 is a constant independent of δ and f .

The second original phenomenon in this asymptotic
expansion concerns the approximation ûδ introduced
in Proposition 1. The function ûδ depends on δ
and its far field does not converge to the far field of
(A+)−1f when δ → 0, even for the L2 norm . This
proves that the solution of problem (1), when it is
well-defined, is unstable with respect to δ.

4 Discussion

In this document, we have considered a special ge-
ometry for Ωδ because it simplifies the numerical cal-
culations of the first paragraph. However, we observe
exactly the same curiosities for a rounded corner:
when the contrast lies inside the critical interval, the
solution of problem (1), which is defined except for
a sequence of values of δ which tends to 0, depends
critically on the rounding parameter. From a physi-
cal point of view, one may wonder what happens in
a neighbourhood of the corner...
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H-Matrix vs. FMM : Fast Methods applied to BEM Solvers
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Abstract

For the numerical simulation of wave propagation
in accoustics and electromagnetism, EADS Innova-
tion Works relies on integral equations solved with
the Boundary Elements Method, leading to the need
to solve dense linear systems. In this presentation,
we intend to present two famillies of fast solvers (Fast
Multipole Method and H-Matrix method) that can
be used on these systems. We propose to under-
line their similarities, their connections and their dif-
ferences, to present their complementarity in future
high performance solvers and to illustrate their per-
formances on industrial class applications.

1 Context

EADS Innovation Works is EADS research center,
dedicated to upstream research applied to all Busi-
ness Units (Airbus, Eurocopter, Astrium, Cassidian).
The applied mathematics team has developped over
the years a family of software called Aseris destined
to solve various physical problems (acoustics, electro-
magnetism, electrostatics, etc.) using integral equa-
tions and boundary elements methods. This software
suite is used in design and research departement to
work on noise reduction, stealthiness, antenna sit-
ting, etc.

The advantages of integral equations and BEM
solver are well known: mainly accuracy, and sim-
pler (surfacic) mesh. The main drawback is the need
to cope with a dense matrix whose size can be quite
large for wave propagation problems, where the mesh
step is governed by the wavelength of the physical
problem treated (in frequency domain).

Since the late 90’s, fast methods have been in-
troduced to deal with these limitations. First, the
Fast Multipole Method (FMM) allowed to compute
fast matrix-vector products (in O(n log2(n)) instead
of O(n2) for the standard algorithm), and hence to
design fast solvers using iterative methods. Lately,
H-Matrix methods have gained wide acceptance by
introducing fast direct solvers, allowing to solve sys-
tems in O(n log2(n)) – or less – without the hassle
of using iterative solvers (unknown convergence rate
and difficulty to find a good preconditionner).

2 Fast Multipole Methods

The initial FMM was introduced in the late 80’s for
particle simulation [1]. Basically, the idea is to gather
the particle in clusters and to compute all the interac-
tions not point-to-point, but cluster-to-cluster, using
approximations adapted to the considered kernel. A
hierarchical approach for bulding the clusters leads
to a multi-level algorithm, which we refer to as “the”
FMM. The introduction of FMM for Helmholtz ker-
nel [2] paved the way to a very broad use of FMM in
the field of wave propagation, mainly in electromag-
netism, but also (at EADS) in acoustics [3].

Since then, new FMM formulations have been in-
troduced. The directional FMM [4] extends the black
box FMM to all oscillatory kernels, for instance for
2D applications. The advantage of this “black box”
approach is that it only relies on kernel evaluations,
and not on an analytical decomposition of this ker-
nel. In [5], the authors deal with a numerical break-
down that prevents the classical FMM for Helmholtz
to handle low-frequency problems. Recently, this
method has been improved and simplified [6], lead-
ing to a new FMM scheme for Helmholtz stable at
all frequencies.

3 H-Matrix

H-Matrix [7] is a lossy, hierarchical storage scheme
for matrices that, along with an associated arith-
metic, provides a rich enough set of approximate op-
erations to perform the matrix addition, multiplica-
tion, factorization (e.g. LU or LDLT ) and inversion.
It relies on two core ideas : (a) nested clustering of
the degrees of freedom, and of their products; and
(b) adaptative compression of these clusters. Several
choices exist in the literature for these two ingredi-
ents, the most common being Binary Space Parti-
tioning for the clustering and Adaptative Cross Ap-
proximation for the compression.

The first step yields a tree-like matrix structure as
shown in the figure 1, that is “filled” in a second step
with low-rank approximations of the corresponding
matrix blocks, representing the interaction of two
clusters. The algorithms then perform the opera-
tions on this structure, using adaptative recompres-
sion to avoid inflating the matrix as the algorithm
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Figure 1: H-Matrix structure. Grey blocks will
not be compressed, white ones will.

progresses.

Together, they allow for the construction of a fast
direct solver with complexity O(n log2(n)) in some
cases [8], which is especially important for BEM ap-
plications as it gracefully handles a large number of
Right-Hand Sides (RHS). They also provide a kernel-
independent fast solver, allowing one to use the
method for the several physics addressed by Aseris
in short order.

EADS has recently implemented the H-Matrix
arithmetic and successfully applied it to a wide range
of industrial applications in electromagnetism and
acoustics. Furthermore, these algorithms are hard to
efficiently parallelize, as the very scarce literature on
the subject shows [9]. We developed a parallel solver
that goes beyond the aforementioned reference, using
innovative techniques on top of a state-of-the-art run-
time system. This enables the solving of very large
problems, with a very good efficiency. In this presen-
tation, we show some results on the accuracy of the
this method on several challenging applications, and
its fast solving time and efficient use of resources.

The figure 2 shows an antenna diagram for a VHF
antenna (127MHz) on an A319 with 290.000 un-
knowns. The results show a very good agreement
between the three solvers, with a slightly better re-
sult for the H-Matrix solver. Computation time was
25 hours on 64 cores for the direct solver, 33 minutes
and 17 minutes for the FMM and H-Matrix solvers
on 12 cores.
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2 Department of Aeronautics and Astronautics, Stanford University, Stanford, CA, USA
∗Email: toivanen@stanford.edu

Abstract

A new optimal feed-forward local active noise con-
trol (ANC) method is proposed for stochastic envi-
ronments. The method is based on frequency do-
main finite element acoustical models. Stochastic
domains and noise sources are considered. Measure-
ments from an array of microphones are mapped to
secondary loudspeakers, by an offline optimized lin-
ear mapping minimizing the expected value of a noise
functional. The presented ANC method gives robust
and efficient noise attenuation. A numerical study
demonstrates it in a passenger car cabin.

Introduction

The basic idea of ANC is to produce secondary,
opposite-phase sound to cancel the noise. Typi-
cally it is particularly effective at low frequencies.
A novel feed-forward ANC method is introduced for
enclosed cavities [2]. This is an extension of the ear-
lier study [1]. The expected value of a noise measure
is computed in a stochastic environment by integrat-
ing the noise over the underlying probability space.
The feed-forward map from the measurements to the
secondary sources is computed offline by solving a
quadratic programming problem.

1 Acoustic model

The time harmonic sound propagation in an en-
closed domain Ω is modeled by the Helmholtz equa-
tion

−∇ · 1

ρ
∇p − ω2

c2ρ
p = 0 in Ω,

where ρ is the density of air, and c is the speed of
sound. The complex-valued solution p defines the
amplitude and the phase of the sound pressure. A
partially absorbing wall material is described by the
impedance boundary conditions

∂p

∂n
=

iηω

c
p + f on ∂Ω,

where η is the absorption coefficient and f is the
sound source which is nonzero on a part of the bound-
ary ∂Ω. An approximate solution for the above
model is obtained using a finite element method.

2 Noise control problem

The acoustical model is posed in a stochastic do-
main Ω(r), where r is a stochastic variable with the
PDF (probability density function) Fr(r). The total
pressure field is

p(x, r, s, γγγ) = p0(x, r, s) + γγγTp(x, r),

where p0(x, r, s) is the sound pressure originating
from a stochastic noise source governed by a stochas-
tic variable s with the PDF Fs(s). The vector
p (x, r) = (p1(x, r), . . . , pna(x, r))T gives the sound
pressures originating from unit secondary sources.
The amplitudes and phases of the secondary sources
are defined by γγγ ∈ Cna .

The aim is to minimize the noise measure

N(r, s, γγγ) =

∫

VC(r)

|p(x, r, s, γγγ)|2 dx,

where VC(r) ⊂ Ω(r) is a control volume. Its expected
value is given by

E [N(r, s, γγγ)] =

∫

r

∫

s

N (r, s, γγγ) Fs (s) dsFr (r) dr.

To find the optimal γγγ for the secondary sources,
an optimal linear form defined by a matrix C
is sought between the measurements m(r, s) =(
p0(x

1, r, s), . . . , p0(x
nm , r, s)

)T
and the secondary

sources in the form

γγγ = Cm(r, s).

The minimization of the expected value of the noise
measure leads to the optimization problem

min
C

E [N(r, s,Cm(r, s))] .

This problem can be formulated as a quadratic pro-
gramming problem. Without any constraints, C can
be computed by solving a system of linear equations
describing the optimality conditions.
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3 Numerical example

The proposed ANC method is demonstrated in
BMW 330i car interior shown in Figure 1. The
computational domain is the cabin excluding the
driver. Variations on the posture of the driver define
a stochastic domain Ω (r). The posture is controlled
by a three-dimensional stochastic vector r. The ob-
jective is to minimize noise at the ears of the driver.
Thus, the control volume VC(r) is a set of two points
defined by the left and right ear. These points can
be seen as virtual error microphones. A stochastic
source is modeled as a vibrating rectangular surface
behind the leg room and it is controlled by a four-
dimensional stochastic vector s.

The frequency range 10–1000 Hz is considered with
10 Hz steps. Thus, 100 frequencies are sampled. The
domain is sampled by 125 postures of the driver. The
maximum number of the measurement points is 16.
By employing the reciprocity principle, it is sufficient
to perform one acoustic simulation for each measure-
ment point and both ears for each posture and fre-
quency. Thus, the total number of offline finite ele-
ment simulations is 18 × 125 × 100 = 225000.

The number of secondary sound sources is chosen
to be 6; see Figure 1. Once the simulations have been
performed the optimal matrices C for each frequency
can be computed offline by solving a small linear sys-
tem. The online controller only needs to perform
Fourier transformations between time and frequency
domains, and matrix-vector multiplications by the
precomputed C.

Figure 1: The interior of the car, the locations of
the noise source, the measurement points L1...L8,

R1...R8, and the secondary sources A1...A6.

Figure 2 shows the expected noise reduction over
the considered frequency range. At the frequencies
below 100 Hz the reduction is 20–30 dB while around
500 Hz the reduction is 10–20 dB. Increasing the

number of measurement points improves the reduc-
tion. Figure 2 shows the same plot when the mea-
surement error is 4 %. All results are based on a more
robust formulation including terms for measurement
errors. For details, see [2]. With these errors the
effectiveness of ANC is reduced by 0–10 dB. Also
increasing the number of measurements is less bene-
ficial in this case.
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Figure 2: The expected noise attenuation based on
2, 4, 8, and 16 measurement points (lines from top
to bottom respectively) without measurement error.
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Figure 3: The expected noise attenuation based on
2, 4, 8, and 16 measurement points (lines from top

to bottom respectively) with 4% measurement error.
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Abstract

We present a detailed numerical study of an itera-
tive solution to 3-D sound-hard acoustic scattering
problems at high frequency considering Combined
Field Integral Equations. We propose a combination
of an OSRC preconditioning technique and a Fast
Multipole Method which leads to a fast and efficient
algorithm independently of both a frequency increase
and a mesh refinement. To validate its effectiveness,
we apply the resolution algorithm to various and sig-
nificant test-cases using a GMRES solver.

1 The problem setting

Let us consider a bounded domain Ω− ⊂ R3 rep-
resenting an impenetrable body with Lipschitz con-
tinuous boundary Γ := ∂Ω−. We denote by Ω+ :=
R3 \Ω− the exterior domain of propagation. We are
concerned with the scattering of an incident time-
harmonic acoustic wave uinc, characterized by the
wavenumber k, by the obstacle Ω−. The scattered
field u+ satisfies the Helmholtz exterior boundary-
value problem





∆u+ + k2u+ = 0, in D′(Ω+),

∂nu
+
|Γ = g = −∂nuinc

|Γ , in H−1/2(Γ),

lim
|x|→+∞

|x|
(
∇u+ · x|x| − iku

+

)
= 0.

(1)

Several integral equations have been derived for solv-
ing this scattering problem (see for instance [3]). We
consider the following CFIE (Combined Field Inte-
gral Equation): Find ϕ = −(u+

|Γ + uinc
|Γ ) ∈ H1/2(Γ)

solution to
(
I

2
+M − ηD

)
ϕ = −uinc

|Γ + η∂nu
inc
|Γ , on Γ, (2)

where η is a complex coupling parameter. The op-
erator I is the identity operator, and M and D the
first and second traces of the double-layer potential
respectively. The CFIE (2) is uniquely solvable in
H1/2(Γ) for all frequency k > 0. This equation is

a first-kind integral equation and does not provide
an interesting spectral behavior. It involves the first-
order, strongly singular and non-compact operator
D. To obtain better spectral properties, a strategy
consists in introducing an efficient approximation Ṽ
of the exact Neumann-to-Dirichlet map in order to
precondition the EFIE operator D before combining
it with the MFIE operator (I/2 +M) [1]. The oper-
ator Ṽ is derived from On-Surface Radiation Condi-
tion (OSRC) methods

Ṽ =
1

ik

(
1 +

∆Γ

k2
ε

)−1/2

. (3)

The operator ∆Γ is the Laplace-Beltrami operator
over the surface Γ and the parameter kε = k + iε is
complex-valued (ε ∈ R∗). The analytical precondi-
tioner Ṽ has a sparse structure, is very easy to im-
plement and implies a low additional computational
cost. This choice leads to the well-posed second-kind
Fredholm integral equation

(
I

2
+M − Ṽ D

)
ϕ = −uinc

|Γ + Ṽ ∂nu
inc
|Γ , on Γ. (4)

The following relation holds

I

2
+M − Ṽ D =

(
1

2
+
kε
2k

)
I + C, (5)

where C is a compact operator [1].

2 Numerical results

2.1 Spectral analysis

A thorough study of the eigenvalues behavior of
the integral operators involved in (2) and (4) is real-
ized in order to illustrate the impact of the OSRC-
preconditioning technique on the spectrum of the
CFIE operator. First, let us say few words about dis-
cretization: we consider a classical P1 boundary finite
element discretization. We denote by nλ the density
of discretization points per wavelength. Concerning
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the preconditioner Ṽ , the localization of the square-
root operator is efficiently realized by only solving
Np Helmholtz-type sparse linear systems thanks to
a Padé paraxial approximation of order Np with a
rotating branch-cut technique. The single-level Fast
Multipole Method is applied to the calculation in-
volving the integral operators D and M .

When the scatterer is the unit sphere, explicit ex-
pressions of the eigenvalues of the CFIE operators are
known. In Fig. 1, we can observe that the numerical
eigenvalues of the OSRC-preconditioned operator are
well clustered at a point near to (1, 0) which is the
accumulation point of the analytical ones according
to (5). This is not the case of the CFIE. We observe
a dispersion of the eigenvalues in the elliptic part.
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Figure 1: Unit sphere: distribution of the
eigenvalues, k = 11.85, nλ = 10

Now, let us consider a 3-D trapping domain and a
submarine.

Y
Z

Y
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Z

X
Z

XY
Z

XY

Figure 2: Scatterers: Sphere with cavity,
Submarine

In the case of the sphere with cavity, Fig. 3 shows
a dispersion in the elliptic part and eigenvalues in a
neighborhood of zero in the hyperbolic zone for the
CFIE; clustering around a point near to (1, 0) for the
OSRC-preconditioned CFIE. Same conclusions hold
for the submarine. Consequently, the condition num-
ber of the CFIE depends on both a frequency increase
and a mesh refinement. The OSRC-preconditioner Ṽ
avoids these dependencies.
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Figure 3: Sphere with cavity: distribution of the
eigenvalues, k = 8, nλ = 9.6, Np = 8

2.2 Convergence results

The convergence of the GMRES, with respect to
both physical and mesh parameters, corroborates
the spectral analysis. The speed of convergence is
strongly improved by the OSRC preconditioning and
the application of FMM does not disturb this bene-
fit. Consequently, only a few GMRES iterations are
required to obtain the same accuracy as the CFIE
with no preconditioning when we increase the fre-
quency or the mesh density (cf. Fig. 4 for the sphere
with cavity). Moreover, the algorithm complexity is
essentially governed by the FMM due to the low com-
putation cost of the preconditioner. The details on
this work can be found in [2].
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Abstract

A high-order Nyström method to solve the integral
equation formulation of volumetric scattering prob-
lem in two dimensions is proposed in the text. To
achieve desired approximations, this scheme relies on
analytic resolution of singularities present in the in-
tegral operator via changes of parametric variables
along with a suitable use of partitions of unity to de-
couple boundary regions of the scatterer for a high-
order specialized treatment. The interactions from
interior regions, aided by these partitions of unity,
can be computed efficiently and accurately through
an existing FFT based methodology leading to an
overall efficient and rapidly converging algorithm.

1 Introduction

We present a high-order methodology for solution
of scalar volumetric scattering problems in two di-
mensions. Among fast numerical schemes for this
problem, only a couple of techniques converge with
second order for discontinuous scattering configura-
tions – one that rely on the use of “discontinuous
FFT” [6] while the other uses FFT for accelerated
evaluation of convolution in polar coordinates after
a suitable decomposition of the Green’s function via
addition theorem [5]. Another high-order convergent
method for acoustic volumetric scattering problem,
introduced in [1], [2], is designed to be computation-
ally efficient only for “thin”scatterers. Our present
approach, in fact, extends the ideas presented in [1]
to obtain a solver for general scattering configura-
tions while retaining high-order accuracy even in the
presence of material discontinuity.

The integral equation formulation for acoustic
scattering problem by penetrable scatterers is given
by [3], u(x) + k2K[u](x) = ui(x), where K[u](x) =∫
Ω

G(x,x′)m(x′)u(x′)dx′ with kernel G(x,x′) =

(i/4)H1
0 (k|x − x′|) and m(x) = 1 − n(x)2, n being

the refractive index which is assumed to be 1 outside
the bounded scattering medium Ω.

Rapid convergence of Nyström scheme is achieved
by designing a high-order accurate quadrature for ap-
proximation of the integral K[u](x). We start by

covering the scatterer Ω by P number of overlapping
coordinate patches where the pth patch is homeomor-
phic to an open set (0, 1)2 via a smooth invertible
parameterization xp = xp(s, t). With the help of a
partitions of unity {wp(x) : p = 1, ..., P} subordinate
to this covering, K[u](x) is rewritten as a sum of P
integrals, K[u](x) =

∑P
p=1Kp[u](x) where

Kp[u](x) =

1∫

0

1∫

0

G(x,xp(s′, t′))φup(s′, t′)ds′dt′, (1)

φup(s, t) = m
(
xp(s, t)

)
u
(
xp(s, t)

)
wp
(
xp(s, t)

)
Jp(s, t),

with Jp as the Jacobian of the transformation xp.
Clearly, Kp[u](x) accounts for the interaction of the
pth patch with the target point x. The difficulty
in numerical calculations of such interactions when
x lies within the patch is primarily due to singular
nature of the kernel. Another aspect that demand
varying strategy in computations of Kp[u](x) arise
due to differences in the behavior of integrands at
boundaries of individual patches. Indeed, we see that
wp vanishes to high-order on the boundary of only
those patches whose closures do not intersect with
the boundary of Ω, i.e., interior patches. Using this
criterion, we divide these patches into a set of interior
patches, and a set of boundary patches, which require
different schemes. As a result of these variations, we
break the computation of integral operator in (1) into
four different imteractions that are described next.
Boundary-Boundary Interactions: When the

integration region is a boundary patch and the target
point happens to lie again on one of the boundary
patches but outside of the integration patch, then
the integrand is smooth, and can be integrated accu-
rately using a high-order quadrature rule. The sin-
gular nature of the integrand in the case when the
target point belongs to the integration, on the other
hand, requires a more careful treatment for obtain-
ing accurate approximations. A change of variable
in s′ not only analytically removes the logarithmic
singularity in G, but also resolves the near singular
behavior of the integrand in t′.

Interior-Boundary Interactions: This case
occurs when x lies in an interior patch while integrat-
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(a) Plane wave incidence (b) Total field

(c) Plane wave incidence (d) Total field

Figure 1: : (a), (b) – Scattering of a plane wave by
a penetrable disc — numerical approximations on a
3×64×64 grid with 0.01 % error; (c), (d) - Scattering
computations for bean shaped obstacle

ing over a boundary patch. Within this scenario, if
x does not belong to any boundary patches then the
integrand can be integrated accurately using a high-
order accurate quadrature rule, already discussed in
Boundary-Boundary interaction. When x happens
to lie on a boundary patch, on the other hand, one
can interpolate its value from the data computed in
the “Boundary-Boundary Interactions” step.

Boundary-Interior Interactions: Similar to
previous interactions, if x lies outside the integra-
tion patch, then the corresponding integration can
be performed using a spectrally accurate trapezoidal
rule as, unlike boundary patches, the integrand is
smooth as well as periodic in both variables. When
x belongs to the integration patch, on the other hand,
singularities that arise in the integrand can be sur-
mounted analytically by, for example, going to polar
coordinates, which again, can be approximated to
high-order by simple use of trapezoidal rule.

Interior-Interior Interactions: Finally, the
case when x is in an interior patches and the inte-
gration domain itself is an interior patch can be han-
dled in a manner similar to the strategy discussed
in the “Boundary-Interior” interactions. These in-
teractions, however, can be computed in a more
efficient manner using the approach introduced in
[5]. The computation of “Interior-Boundary” and

“Boundary-Interior” interactions can also be accel-
erated by a suitable use of two face equivalent source
approximations on Cartesian grids, introduced in [7],
that has already been employed in [1], to accelerate
“Boundary-Boundary” interactions.

2 Numerical results

We present, in subfigures (a) and (b) of Fig. 1, a
comparison of our approximate scattering solution on
a computational grid of 64×64 in each patch against
the Mie series solution for a disc shaped scatterer
of the size of 12-wavelengths with a constant refrac-
tive index of

√
2. A similar computation for an in-

cident plane wave shown in (c) by a
√

2 refractive
index bean shaped scatterer is presented in (d) to
demonstrate method’s adaptability and applicability
in dealing with complex scattering configurations.
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Abstract

We present a fast multipole-accelerated boundary
element method (FM-BEM) for the simulation of
elastic waves in semi-infinite media. To avoid the
costly discretization of large portions of the free sur-
face, our new FM-BEM is based on the elastic half-
space Green’s tensor satisfying a traction-free con-
dition on the infinite boundary of the half-space, for
which a multipole-type expansion is established. The
efficiency of this new approach is demonstrated on
numerical examples involving up to 6 105 DOFs.

1 Context

In a previous study [2], we developed a FM-BEM
based on the elastodynamic full-space fundamental
solution. This approach has been shown to perform
well for the simulation of elastic waves in semi-infinite
media, but nevertheless suffers from the drawback of
requiring a BE discretization of the free surface. In
practice, the free-surface was truncated at an em-
pirically chosen radius ”large enough” for achieving
a good accuracy in the target domain of study. A
large number of BEM degrees of freedom (DOFs) was
thus required on the free-surface for the sole purpose
of enforcing the traction-free boundary condition. To
avoid both the computational burden entailed by dis-
cretizing the free surface and the truncation issue,
one can preferably use a Green’s tensor that satis-
fies a traction-free boundary condition on a planar
unbounded surface bounding an elastic half-space,
thereby reducing the overall size of the BE model
since the planar part of the free surface is no longer
discretized (Figure 1). The derivation and imple-
mentation of this Green’s tensor [4] are involved. In

Γ1Ω

x
y1, y2

y3

Γ1

y3 = 0

Figure 1: Support of the BE discretization (in
green) when using the half-space Green’s tensor.

particular, unlike its full-space counterpart, the half-
space Green’s tensor cannot be expressed in terms
of simpler kernels (e.g. Laplace or Helmholtz fun-
damental solutions) having already-known multipole
expansions. Its multipole expansion thus cannot be
obtained in a simple way and requires a specific ap-
proach [3], to which this communication is devoted.

2 Methodology

First, the Green’s tensor UHS (resp. THS) is ad-
ditively decomposed into three terms: the full-space
fundamental solution U∞ (resp. T∞), the image full-
space fundamental solution Ū∞ (resp. T̄∞) and a
complementary term UC (resp. TC) to satisfy the
traction-free condition on the free-surface:

UHS = U∞ + Ū∞ + UC , THS = T∞ + T̄∞ + TC .

The single-layer and double-layer potentials involved
in integral equations are then similarly decomposed:

S[t](x) :=

∫

Γ1

UHS(x, ·)t dS =
[
S∞+ S̄∞+SC

]
(x),

D[u](x) :=

∫

Γ1

THS(x, ·)u dS =
[
D∞+ D̄∞+DC

]
(x).

The key to the proposed treatment then lies in ex-
pressing UC as a 2D Fourier transform w.r.t. spatial
coordinates parallel to the free surface, as this formu-
lation (not shown here for brevity) is found to achieve
the separation of variables required by the FMM [3].
Substituting that representation of UC into the def-
inition of the complementary single-layer potential
SC[t](x) and rearranging terms, one obtains

SC[t](x) =
1

4π2k2
Sµ

∑

a,b=P,S

∫ +∞

0
ξAab(ξ)

{∫ 2π

0

Ru
a(ξ, α)

[
exp(q−b (ξ, α)·x)V −b (ξ, α)

]
dα

}
dξ

where the multipole moments are given by

Ru
a(ξ, α) :=

{∫

Γ1

exp(q+
a (ξ, α)·y) t(y) dSy

}
·V +

a (ξ, α)

and the scalar functions Aab and vector-valued func-
tions V +

a,b, q
+
a,b, V

−
a,b, q

−
a,b are known [3] (details omit-

ted for brevity). The Fourier integral is in practice
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evaluated by means of a product quadrature rule so
that one has

SC[t](x) =
1

4π2k2
Sµ

∑

a,b=P,S

nξ∑

i=1

wξi ξiAab(ξi)

{ nα∑

j=1

wαj

Ru
a(ξi, αj)

[
exp(q−b (ξi, αj)·x)V −b (ξi, αj)

]}
+E(nξ, nα)

where (ξi, w
ξ
i )1≤i≤nξ

and (αj , w
α
j )1≤j≤nα denote the

sets of nodes and weights used for the radial and
angular quadratures, respectively, and E(nξ, nα) is
the quadrature error. In the same way, the double-
layer complementary potential has the form

DC[u](x) =
1

4π2k2
S

∑

a,b=P,S

∫ +∞

0
ξBab(ξ)

{∫ 2π

0
Rt
a(ξ, α)

[
exp(q−b (ξ, α)·x)V −b (ξ, α)

]
dα

}
dξ

where the multipole moments are given by

Rt
a(ξ, α) :=

{∫

Γ1

exp(q+
a (ξ, α)·y)u(y) dSy

}
·W+

a (ξ, α),

amd the scalar functions Bab and vector-valued func-
tions W+

a are also known. The computational com-
plexity of the evaluation of SC[t](x) and DC[u](x)
is thus of order O(nξnαN) (where nξ and nα de-
pend on N), since the computational work for a given
quadrature node is clearly proportional to the O(N)
number of BE DOFs. Actual computation of SC[t]
and DC[u](x) exploit generalized Gaussian quadra-
ture (GGQ) rules, generated using a method pro-
posed in [1] and customized for the present needs,
for the radial integration.

To compute, in an optimal manner, the contri-
butions S∞ + S̄∞ and D∞ + D̄∞ we use previous
work [2] on the FMM based on U∞ while extending
the method developed in acoustics in a half space [5].

3 Numerical efficiency of the new FM-BEM

We first show numerically that the proposed for-
mulation achieves a complexity significantly lower
than using the non-multipole version of the Green’s
tensor (Fig. 2). Then, the accuracy of this new FM-
BEM (which does not require meshing the free sur-
face) is compared to that of the FM-BEM based on
the elastic full-space fundamental solutions (which
requires meshing the free surface). Moreover, the
numerical efficiency of both approaches is compared

102 104 106

N
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10-2

100

102

104

CP
U

 (s
)

FMM (Complementary term)
FMM (Full and Image terms)
without separation of variables
(Complementary term)

O(N2.15)

O(N1.55)

O(N log2N)

Figure 2: CPU time for the evaluation of S[t] as a
function of the DOF count N : SC[t] without FMM

(red) and with FMM (blue); (S∞+ S̄∞)[t] with
FMM (green).

on seismology-oriented examples such as the scatter-
ing of plane waves by a cavity embedded in an elastic
half-space. Despite the additional computational ef-
fort required by the evaluation of the proposed FM-
capable form of the half-space fundamental solution,
the new approach is shown to reduce several-fold the
overall analysis time, thus establishing the net bene-
fit brought by removing the free-surface mesh.

References
[1] J. Bremer, Z. Gimbutas, V. Rokhlin, A nonlin-

ear optimization procedure for generalized Gaussian
quadrature, SIAM J. Sci. Comput. 32:1761–1788
(2010).

[2] S. Chaillat, M. Bonnet and J.F. Semblat, A multi-
level fast multipole BEM for 3-D elastodynamics in
the frequency domain, Comput. Meth. Appl. Mech.
Eng. 197:4233-4249 (2008).

[3] S. Chaillat and M. Bonnet, A new Fast Multi-
pole Formulation for the Elastodynamic Half-space
Green’s tensor, under review.

[4] L. Pan, F. Rizzo and P.A. Martin, Some efficient
boundary integral strategies for time-harmonic wave
problems in an elastic halfspace, Comput. Meth.
Appl. Mech. Eng. 164:207–221 (1998).

[5] Y. Yasuda, K. Higuchi, T. Oshima and T. Sakuma,
Efficient technique in low-frequency fast multipole
boundary element method for plane-symmetric acous-
tic problems, Eng. Anal. Bound. Elem. 36:1493-1501
(2012).

STÉPHANIE CHAILLAT AND MARC BONNET 272



Reduced basis strategies for aeroacoustic simulations

F. Casenave1,2,∗, A. Ern1, T. Lelièvre1,3, G. Sylvand2
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Abstract

Herein, two aeroacoustic problems solved by means
of finite element and boundary element method are
considered. The Reduced Basis method, a model re-
duction technique for parametrized partial differen-
tial equations, is applied. The considered formula-
tions are stable at all frequencies, which is required,
especially when the frequency is a parameter of in-
terest.

Introduction

Under environmental pressures, aircraft manufac-
turers have developed tools to simulate acoustic
waves propagation. We consider herein two cases of
interest: acoustic scattering by an impedant surface
by means of a Boundary Element Method (BEM) for-
mulation; and acoustic scattering under a potential
convective flow by means of a coupled Boundary Ele-
ment Method - Finite Element Method (BEM-FEM)
formulation [1]. For applications like propagation of
uncertainty studies and optimization problems, one
has to solve a parametric problem for many values
of the parameters. In this context, model reduc-
tion techniques provide a way to reduce computation
costs.

After presenting the two cases of interest, we give
elements to justify their well posedness and we apply
the Reduced Basis (RB) method.

1 Scattering by an impedant surface

We consider a solid object in the air at rest, see
Figure 1. The surface Γ of the object is Lipschitz
and impedant, meaning that any incident wave will
be partially absorbed and partially scattered. The
proportion of absorbed and scattered parts are quan-
tified by an impedance coefficient, which is used in a
Robin boundary condition at Γ. A monopole source
is located in Ω+.

A two-current BEM formulation is used, leading to
a problem well-posed at all frequencies of the source
[2], [3]. Figure 2 shows an example of scattered pres-
sure field. A RB strategy is carried-out on this test

Figure 1: Geometry of the first test-case

case (see [4] for an application of the RB method with
integral equations).

Figure 2: An example of scattered field for the
second test-case with two impedant surfaces

2 Scattering under a potential convective
flow

We consider a solid object in a flow, see Figure
3. We suppose that the flow around the object is
potential in a neighbourhood Ω− of the object, and
uniform in the exterior domain Ω+. The common
boundary between Ω− and Ω+ is a Lipschitz surface
denoted Γ∞. The flow is continuous through Γ∞. A
monopole source is located in Ω+
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Figure 3: Geometry of the second test-case

To compute the scattered acoustic field, we first
apply a Prandtl–Glauert transformation to kill the
convective term in the exterior domain. Then, we
write a direct coupling between a FEM resolution
in Ω− and a BEM resolution on Γ∞. The Prandtl–
Glauert transformation enables to recover the classi-
cal integral equations for the Helmholtz equation.

It is proven in [2] that the obtained formulation is
well-posed, except for given frequencies of the source.
We propose a new formulation based on Hipmair and
Meury stabilization procedure [5], that is well-posed
for all frequency of the source, see Figure 4.

Once we dispose of a well-posed formulation for
all frequencies of the source, we can consider a RB
strategy for which the frequency is the parameter of
interest. Since the dependence of the operator in the
frequency is not affine, we have to consider strategies
like the Empirical Interpolation Method [6].

3 Conclusion

For our two problems of interest, we derived in-
tegral formulations well-posed at all frequencies and
for any Lipschitz surface. This enable to consider
robust model reduction techniques like the Reduced
Basis method. The next step is to use the derived
surrogate models in a many queries context, like op-
timization or propagation of uncertainty.
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Figure 4: Condition number of the matrices
obtained after discretization of the unstable and

stabilized formulations
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and efficient evaluation of the a posteriori error
estimator in the reduced basis method, submit-
ted, http://arxiv.org/abs/1212.0970.

[4] M. Fares, J.S. Hesthaven, Y. Maday, and B.
Stamm. The reduced basis method for the elec-
tric field integral equation. Journal of Compu-
tational Physics, 230(14):5532 – 5555, 2011.

[5] R. Hiptmair and P. Meury, Stabilized FEM-BEM
coupling for Helmholtz transmission problems.
SIAM J. Numer. Anal., 44(5):2107–2130, 2006.

[6] M. Barrault, Y. Maday, N.C. Nguyen and A.T.
Patera, An empirical interpolation method: ap-
plication to efficient reduced-basis discretization
of partial differential equations. Comptes Ren-
dus Mathematique, 339(9):667–672, 2004.

FABIEN CASENAVE, ALEXANDRE ERN, TONY LELIÈVRE AND GUILLAUME SYLVAND 274



An Efficient Multigrid Calculation of the Far Field Map for Helmholtz Equations

S. Cools1,∗, B. Reps1,2 and W. Vanroose1,∗
1 Dept. Math. & Comp. Sc., University of Antwerp, Middelheimlaan 1, 2020 Antwerp, Belgium

2 Intel R© ExaScience Lab, Kapeldreef 75, B-3001 Leuven, Belgium.
∗Email: siegfried.cools@ua.ac.be, wim.vanroose@ua.ac.be

Abstract

In this work we present a new highly efficient cal-
culation method for the far field amplitude patterns
that arise from scattering problems governed by the
d-dimensional Helmholtz equation. The method is
based upon a reformulation on a complex contour
of the standard real-valued Green’s function integral
expression for the far field amplitude. On this com-
plex contour the scattered wave can be calculated
efficiently using the iterative multigrid method, re-
sulting in a fast and scalable calculation of the far
field mapping. The new approach is successfully va-
lidated on model problems in two and three spatial
dimensions.

Introduction

This paper focuses on calculating the far field map
resulting from a Helmholtz scattering problem. The
calculation of the far field mapping is typically a two
step process. First a Helmholtz problem with absorb-
ing boundary conditions (PML, ECS) is solved on a
finite numerical box covering the object of interest.
In the second step a volume integral over the Green’s
function involving the numerical solution yields the
angular dependency of the far field amplitude. The
main computational bottleneck generally lies within
the first step, since it requires a suitable (iterative)
method for the solution of a high dimensional indef-
inite Helmholtz system.

Preconditioned Krylov subspace methods are cur-
rently among the most efficient numerical algorithms
for the solution of high dimensional positive definite
systems. A generalization of this approach led to the
development of the Complex Shifted Laplacian (CSL)
preconditioner, proposed in [1] as an effective Krylov
subspace method preconditioner for Helmholtz prob-
lems. The key idea behind CSL is the formulation
of a perturbed Helmholtz problem which includes a
complex valued wave number. This implies a damp-
ing in the problem, thus making the preconditioning
system solvable using multigrid in contrast to the
original Helmholtz problem. Recently a variation on
CSL by the name of Complex Stretched Grid (CSG)

was proposed [2], introducing a complex valued grid
distance (complex rotation) in the preconditioner.
The far field map computation proposed in this work
reformulates the integral over the Green’s function
on a complex contour. Hence, one requires the solu-
tion of the Helmholtz equation on a complex contour.
It is shown that the latter problem is equivalent to a
CSL problem that can be solved very efficiently using
a multigrid method. However, whereas CSL was pre-
viously only used as a preconditioner, the proposed
complex-valued far field map calculation effectively
allows for multigrid to be used as a solver.

1 The far field map for Helmholtz problems

The Helmholtz equation is a mathematical represen-
tation of the physics behind a wave scattering at an
object O located within a domain Ω ⊂ Rd. The equa-
tion is
(
−∆− k2(x)

)
u(x) = k2

0χ(x)uin(x), x ∈ Ω, (1)

where χ(x) = (k2(x) − k2
0)/k2

0 represents the object
of interest. Note that χ(x) = 0 for x ∈ Ω \ O. The
above equation can in principle be solved in a nu-
merical box (i.e. a discretized subset of Ω) covering
the support of χ, with absorbing boundary condi-
tions along all boundaries, yielding a numerical so-
lution denoted by uN . The far field scattered wave
then satisfies the following inhomogeneous Helmholtz
equation with constant wave number

(
−∆− k2

0

)
u(x) = g(x), x ∈ Rd, (2)

where g(x) = k2
0χ(x)(uin(x) + uN (x)). The analyti-

cal solution to (2) is given by the Green’s integral

u(x) =

∫

Ω
G(x,x′) g(x′) dx′, x ∈ Rd. (3)

Consequently, the asymptotic form of the scattered
wave in the direction of the unit vector α ∈ Rd is

lim
ρ→∞

u(ρ,α) = D(ρ)F (α), α ∈ Rd, (4)

where the far field (amplitude) mapping is given by

F (α) =

∫

Ω
e−ik0x

′·αg(x′) dx′. (5)
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Figure 1: Classical real domain and complex
contour far field integral calculation.

nx × ny × nz 163 323 643 1283 2563

CPU time 0.20 s. 0.78 s. 6.24 s. 53.3 s. 462 s.
‖r‖2 3.3e-5 7.9e-5 2.7e-5 1.1e-5 4.6e-6

Table 1: 3D Helmholtz problem solved using one
FMG-cycle with GMRES(3) smoother. CPU time
and residual norm for various discretizations.

2 Calculation on a complex contour

The far field integral (5) can be split into a sum of
two contributions F (α) = I1 + I2, where

I1 =

∫

Ω
e−ik0x·αχ(x)uin(x)dx, (6)

I2 =

∫

Ω
e−ik0x·αχ(x)uN (x)dx. (7)

Calculation of first integral I1 is generally easy, since
it only requires the expression for the incoming wave.
The second integral however requires the solution
uN of the Helmholtz equation on the numerical box,
which is known to be notoriously hard to obtain us-
ing present-day iterative methods. However, if both
u and χ are analytical functions, the integral I2 can
be calculated over a complex contour defined by the
rotated real domain Z1 = {z ∈ C | z = xeiγ : x ∈ Ω},
where γ is a fixed rotation angle, followed by the
curved segment Z2 = {z ∈ C | z = beiθ : b ∈ ∂Ω, 0 ≤
θ ≤ γ}, as presented schematically on Figure 1. The
integral I2 can then be written as

I2 =

∫

Z1

e−ik0z·αχ(z)uN (z)dz, (8)

where the integral over Z2 has vanished because χ
is per definition zero everywhere outside O, thus no-
tably in all points of Z2. The advantage of this ap-
proach is that we only need the value of uN evalu-
ated along this complex contour, where equation (1)
is reduced to a damped equation. This problem is
equivalent to a CSL problem, and can thus be solved
very efficiently using multigrid, resulting in a fast and
scalable computation of the far field mapping.

Figure 2: Left: 3D object of interest |χ(x)|.
|χ(x)| = c isosurfaces for c = 0, 1e-2, 1e-10 and

1e-100. Right: 3D Far field map.

3 Numerical results

The theoretical result presented above is validated
on a Helmholtz scattering problem on a 3D cubic
domain Ω = [−20, 20]3 with an object of interest

χ(x, y, z) = −1

5

(
e−(x2+(y−4)2+z2) + e−(x2+(y+4)2+z2)

)

with (x, y, z) ∈ Ω, representing two spherical point-
like objects in 3D space. The incoming wave is de-
fined by

uin(x) = eik0η·x, x ∈ Ω, (9)

where η is the unit vector in the x-direction. The
resulting far field map for k0 = 1 is shown on Fig-
ure 2. The complex-valued Helmholtz problem was
solved on a nx× ny × nz = 64× 64× 64 full complex
grid with γ ≈ 10◦ using a series of multigrid V-cycles
with GMRES(3) smoother up to a residual reduction
tolerance of 1e-6.
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Abstract. In this paper we illustrate how the far
field map of a high-dimensional Schrödinger equation
can be calculated with the help of a complex val-
ued contour integral. The advantage of the method
is that the Schrödinger equation along this contour
can be solved with multigrid, an iterative method for
sparse linear systems. The method is validated on a
model problem and gives the same numerical results
as traditional methods but it has a better scalability.

Introduction. Predicting the outcome of colli-
sions between small atomic and molecular systems is
of fundamental importance for many areas of science.
Understanding their dynamics is crucial for plasma
physics, combustion and electron driven chemistry,
amongst other examples. However, it is computa-
tionally very challenging to predict from first princi-
ples the outcome of these collisions since it requires
the solution of high–dimensional Schrödinger equa-
tions. These are hard to solve even with state-of-
the-art iterative methods. To calculate, for example,
the breakup reaction rates of the hydrogen molecule
requires the solution of a 7–dimensional scattering
problem. The reaction rates, also known as the cross
sections, are the far field amplitudes of the solution.
The development of efficient solvers for this problem
remains an important challenge. In this talk we dis-
cuss the development of solvers for these scattering
problems based on multigrid.

The Schrödinger equation in d-dimensions is

(−1

2
∆ + V (x)− E)ψ(x) = φ(x), for x ∈ Rd (1)

where V (x) is the potential, ψ is the wave function
and φ is the right hand side that is related to the
initial state of the system.

Solving the equation on a complex contour.
Scattering problems are described by solutions of (1)
with a positive energy E and for these energies the
equation is equivalent to a Helmholtz equation

(−∆− k2(x))u = f(x) (2)

with a wave number k2(x) = 2 (E − V (x)) solved
with absorbing boundary conditions.

In atomic and molecular scattering problems the
use of Exterior Complex Scaling (ECS) as absorbing
boundary conditions is wide spread [2], [3]. In ECS
the coordinates beyond a certain radius are rotated
into the complex plane. This makes outgoing waves
decaying and allows the application of homogeneous
Dirichlet boundary conditions at the end of the ab-
sorbing layers. This is a form of complex stretching
as in Chew and Weedow [4].

The far field amplitudes indicate the probability
of detecting a certain reaction product with a given
energy at a certain space angle in the experiment.
The typical calculation is a two step proces [2], [3].
First, the scattering equation is solved on a finite
numerical box with absorbing boundary conditions.
The box size covers the support of the right hand
side of the equation so that it is zero before the start
of the absorbing boundary condition. In the second
step an integral over the product of a Greens function
and the numerical solution is calculated resulting in
the far field map.

The first step is computationally most expensive
since it requires the solution of a very large sparse
linear system that is indefinite and non-Hermitian
due to the absorbing boundary condition. For these
problems iterative methods such a Krylov methods
converge poorly and multigrid fails all together.

However, recent advances in the solution of the
Helmholtz problems such as the Complex Shifted
Laplacian preconditioner [5] can help us to solve the
problem. In these shifted problems the wave num-
ber is multiplied with a complex shift such that the
Helmholtz equation becomes

(−∆− (1 + iβ)k2(x))u = f(x) (3)

where the rule of thumb is to take β > 0.5. Due
to the complex shift the problem can be solved by
multigrid and (3) is often used as a preconditioner
[5].

However, it can also be used as a solver [1]. If
the volume integral for the far field map is formu-
lated along a complex contour only the numerical
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solution of a complex shifted Schrödinger equation is
required to calculate the far field amplitude. Indeed,
the potentials in the Schrödinger equation are usu-
ally analytical functions so the far field map integral
can be calculated along a Complex Scaling contour
instead of an Exterior Complex Scaling contour. Re-
sult is that the Schr”odinger equation only needs to
be solved along the complex scaling contour where it
is equivalent to a Complex Shifted Helmholtz prob-
lem [1] and can be solved with multigrid.

Numerical Validation. To validate the new
approach we illustrate the approach on a model
Schrödinger equation derived from a partial wave ex-
pansion of a three body problem. The equation is





(
−1

2
∂2

∂x2
− 1

2
∂2

∂x2
+ V (x) + V (y)

+V12(x, y)− E)ψ(x, y) = φ(x, y) x, y ≥ 0,

ψ(x, 0) = 0 ∀x ≥ 0,

ψ(0, y) = 0 ∀y ≥ 0,

(4)
where V (x) = −4.5 exp(−x2) and V12(x, y) =
2 exp(−(x + y)2). The coordinates x, y must be in-
terpreted as two radial coordinates.

The system has a single ionized bound state with
energy −1.0215. For energies E = −1.025 between
E = 0, the scattering states are single ionization
states that are localized along the edges of the prob-
lem where either x or y is small. These are solutions
of the Schrödinger equation that correspond to a
quantum state where one particle is in a bound state
and the second particle is in a scattering state. These
solution are oscillatory in on direction and smooth in
the other direction. They can also be interpreted as
evanescant waves. The amplitude of these waves as
a function of the energy is shown in Fig. 1.

For energies above E > 0 there are both single ion-
ization and double ionization and result in scattering
solutions that cover the whole domain. This results
in a double ionization amplitude also shown in Fig. 1.

The figure also shows these amplitude calculate
with the new method (abbreviated with CC). Both
agree with the results calculated in the traditional
way. The red line shows the total cross section, sin-
gle and double ionization calculated with the optical
theorem.

Conclusions. This paper discusses the initial ap-
plication of the complex contour multigrid method
originally proposed for the Helmholtz equation in [1]
to solve the scattering solution of the Schrödinger

Figure 1: Total cross section for single and double
ionization as a function of the energy E for the

model problem. The single and double ionization
cross sections are calculate both through the
traditional way and over the complex valued

contour. The later solves the scattering equation
along a complex contour and evaluates the integral

for the far field along this contour.

equation. The proposed method is attractive since
the equation can be solved with a multigrid solver.
In this paper we have validated the approach and
shown that the results agree with a traditional ECS
calculation.

However, further work is necessary to illustrate its
performance for problems with long range potentials
such as Coulomb potentials that appear in all realis-
tic problems.
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Abstract

We propose methods for computing Fresnel inte-
grals based on modified trapezium rule approxima-
tions to integrals on the real line. Our approxima-
tions are exponentially convergent as a function of
N , the number of quadrature points, with an explicit
error bound which shows that relative accuracies of
10−15 uniformly on the real line are achievable with
N = 12, this confirmed by numerical computations.
The approximations we obtain are attractive, addi-
tionally, in that they are analytic on the real axis
(echoing the analyticity of the Fresnel integrals), and
are straightforward to implement.

Introduction

The trapezium rule can be a very accurate method
to approximate integrals of the form

∫ ∞

−∞
f(t)e−t

2
dt. (1)

In particular, it is well known – the proof uses con-
tour integration and Cauchy’s residue theorem and
dates back to Turing [1] – that the trapezium rule
is exponentially convergent when f is analytic and
bounded in a strip surrounding the real axis.

Let C(x), S(x), and F (x) be the Fresnel integrals
defined by

C(x) :=

∫ x

0
cos
(
1
2πt

2
)

dt, S(x) :=

∫ x

0
sin
(
1
2πt

2
)

dt,

(2)
and

F (x) :=
e−iπ/4√

π

∫ ∞

x
eit

2
dt. (3)

F , C, and S are related through

√
2 eiπ/4F (x) = 1

2 − C
(√

2/π x
)

+i
(
1
2 − S

(√
2/π x

))
, (4)

and our normalisation of F is such that

F (x) = 1− F (−x). (5)

Fresnel integrals arise in applications throughout sci-
ence and engineering, especially in problems of wave
diffraction and scattering, so that methods for the
efficient and accurate computation of these functions
are of wide application.

1 New Methods for Fresnel Integrals

Our approximation of F (x) is built on a method for
computation of the complementary error function of
complex argument developed by Matta and Reichel
[3] and improved by Hunter and Regan [4]. Both
these papers propose modifications of the trapezium
rule in the case where the integrand has a pole singu-
larity near the real line. These modifications follow
naturally, as residue contributions, from the contour
integration arguments used to prove that the trapez-
ium rule is exponentially convergent. The starting
point for applying the method of [4] is the well-known
integral representation (e.g., [4])

F (x) =
x

2π
ei(x

2+π/4)

∫ ∞

−∞

e−t
2

x2 + it2
dt, for x > 0.

(6)
Our approximation to F (x) is an extension and trun-
cation of the modified trapezium rule approximation
of [4] applied to (6). Our approximation is analytic
on the real line, in contrast to the piecewise analytic
approximation of [4], and our approximation is fully
explicit in that we make clear how the trapezium rule
step-size should be chosen given a choice of the num-
ber of terms (2N + 1) to retain in the trapezium rule
sum. Explicitly our approximation (see [2]) can be
written as

FN (x) =
1

exp
(
2ANxe−iπ/4

)
+ 1

(7)

+
x

AN
ei(x

2+π/4)
N∑

k=1

e−t
2
k

x2 + it2k
, (8)

where

tk :=
(k − 1/2)π√
(N + 1/2)π

, AN :=
√

(N + 1/2)π. (9)
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The corresponding approximations to C(x) and S(x)
are obtained by substituting this approximation in
(4) and separating real and imaginary parts. We note
that, echoing (5),

FN (x) = 1− FN (−x), (10)

so that FN (0) = F (0) = 1/2. Matlab functions
for evaluating these approximations are given in [2].
These use (7) for x ≥ 0 and then extend the approx-
imation to the negative real axis using (10).

2 Error bounds

Our main numerical analysis result is the following
bound on the relative error:

Theorem 1 For the Fresnel integral F (x) and its
approximation FN (x) we have that, for all real x,

|F (x)− FN (x)|
|F (x)| ≤ c∗Ne−πN . (11)

Here c∗N is a decreasing sequence of positive con-
stants given explicitly in [2], with c∗1 ≈ 10.4 and
limN→∞ c∗N = 100e−π/2/9 ≈ 2.3. The derivation of
this result makes use of a bound on the absolute er-
ror and a new sharp lower bound on |F (x)| for x ≥ 0
(see [2] for details).

The bound (11) shows exponential convergence of
the relative error, |FN (x) − F (x)|/|F (x)|, uniformly
on the real line, in particular that the relative error
is ≤ 1.6× 10−16 on the whole real line if N = 12.

3 Numerical Results

Numerical computations in [2] confirm and illus-
trate the theoretical error bound (11), and explore
the accuracy and efficiency of our new method. We
present some of these results below.

In Figure 1 we plot against x the relative error in
FN (x) for N = 9 and the rigorous pointwise upper
bound that is equation (51) in [2]. We see that the
theoretical error bound is an upper bound as claimed,
and that the theoretical upper bound captures the
shape of the behaviour of the true error. In Figure 2
we plot against N the maximum value of the relative
error, |F (x)− FN (x)|/|F (x)|, on x ≥ 0, approximat-
ing this maximum value on [0,∞) by computing at
40,000 equally spaced points between 0 and 1,000
and replacing F (x) by F20(x). It can be seen that
the exponential convergence predicted by the bound
(11) is achieved, indeed this bound overestimates the

maximum relative error by at most a factor of 10.
Further, with N as small as 12 it appears that we
achieve a maximum relative error in FN (x) which is
< 9.3× 10−16.

Figure 1: Relative error, |(F (x)− FN (x))/F (x)|,
and its upper bound (51) in [2] (−), plotted against
x. Here N = 9 and F (x) is approximated by F20(x).

Figure 2: Maximum relative error,
maxx≥0 |(F (x)− FN (x))/F (x)|, and its upper

bound (11) (−−), plotted against N , where F (x) is
approximated by F20(x).
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Abstract

This contribution outlines a robust strategy to gen-
erate a structured nonorthogonal finite-difference dis-
cretisation of the differential form of Maxwell’s equa-
tions when a circular material interface is present in-
side a problem domain with rectangular boundaries.

Introduction

Solving a system of PDEs using a structured dis-
cretisation grid when an object with a circular shape
is embedded in rectangular domain boundaries can
be a challenging problem [1]. This manuscript de-
scribes the key issues that must be considered in
order to generate a structured nonorthogonal finite-
difference discretisation of Maxwell’s equations in 2-
D when a circular material interface is present inside
a problem domain with rectangular domain bound-
aries. Most of the previously proposed strategies re-
sort to a polygonal approximation of the circular in-
terface to facilitates the enforcement of the field con-
tinuity conditions (e.g. [2, 3]); however, by using a
suitable coordinate mapping and staircased overlap-
ping grid partitions, it is possible to create a struc-
tured finite-difference discretisation without intro-
ducing any polygonal approximations. The motiva-
tion for proposing a new approach that avoids the
introduction of geometrical approximations is that,
when the geometrical representation of the material
interfaces and boundaries of a problem is exact, the
global error behaviour is dominated by the local trun-
cation error of the finite-difference approximations
used to discretise the partial derivatives of Maxwell’s
equations rather than by the crudeness of the geo-
metrical representation of the interfaces and bound-
aries of the problem. This opens up the possibility
of exploiting high-order approximations effectively.

Proposed Strategy

Under a structured approach [4], the general strat-
egy for incorporating curved material interfaces and
boundaries is to employ a spatial mapping

xp → uq for p, q = 1, 2 (1)

Legend:!
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Dimensions:!
 !1 = 2 cm  !2 = 1 cm
xc
1 = 1 cm xc

2 = 0.5 cm
d = 0.5 cm

xc
1

 !1

xc
2

 !2

d 2

µ0 ,!0

x2

x1

Fig. 1: 2-D cavity with perfect electric conductor (PEC)
boundaries and a circular vacuum-dielectric interface.

where uq stands for the coordinates of a general curvi-
linear coordinate system and xp for the two Cartesian
coordinates (x1 = x and x2 = y). The mapping is
constructed in such a way that all the material inter-
faces and boundaries of the problem can be described
by uq coordinate lines, that is to say, by lines speci-
fied by equations of the form

uq = constant for q = 1, 2. (2)

By constructing (1) in this way, a uniform finite-
difference discretisation with respect to the uq co-
ordinates maps onto a structured nonorthogonal dis-
cretisation in Cartesian coordinates where the grid
cells conform to the curvature of the material inter-
faces and boundaries of the problem. This approach
is easy to formulate when the mapping in (1) trans-
forms the metric tensor from a Kronecker delta in
Cartesian coordinates to a second-rank tensor, gpq for
p, q = 1, 2, whose components are discontinuous only
along coordinate lines; however, to have the ability
to place a circular material interface inside a domain
with rectangular boundaries, it is necessary to allow
the components of the metric tensor to have a discon-
tinuity that cuts diagonally across the computational
domain along a line described by

uq = ±up + constant for p 6= q. (3)
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Fig. 2: Plots for a mapping that can be used to model
the problem described in Fig. 1. The coordinate lines

plotted in (a) map to the lines plotted in (b).

To illustrate this point, consider the 2-D structure
in Fig. 1. Coordinate line plots for one of the map-
pings that can be used to model this structure are
provided in Fig. 2; the mapping was generated by
making small modifications to the mapping proposed
in [1]. When the coordinate mapping described in
Fig. 2 is employed, the metric tensor components
are discontinuous along the six black lines marked
in Fig. 3. Such discontinuities are the result of em-
ploying coordinate lines that have sudden changes
in direction (see Fig. 2 (b)). A discontinuity in the
metric tensor that lies along a coordinate line can be
handled through a conventional grid partition with
overlapping regions [5]; nonetheless, when a discon-
tinuity lies along a diagonal line, it is necessary to
staircase the grid partition in the adjacent regions to
accommodate the structure of the discontinuity. For
this reason, when employing the mapping described
in Fig. 2, the computational domain must be parti-
tioned as shown in Fig. 3. It is important to under-
stand that staircasing a grid partition is not the same
as staircasing the geometry of the circular interface
(a strategy that is often employed when discretis-
ing directly in Cartesian coordinates). The point of
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Fig. 3: Proposed partition of the computational domain.

partitioning the computational domain is to create
overlapping extensions of the grid along the bound-
aries of each region (which are typically only a few
cells wide) as a way to generate smooth overlapping
extensions of the electric and magnetic field profiles
that make explicit use of the field continuity condi-
tions to cope with sudden changes in the structure of
the metric tensor.

Conclusion

To summarise, the partition of the computational
domain outlined in Fig. 3 and the mapping described
in Fig. 2 can be used to embed a circular material in-
terface in a rectangular domain without making any
polygonal approximations of the interface. Such fea-
ture is attractive because it opens up the possibility
of exploiting high-order finite-difference approxima-
tions in a meaningful way.
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Abstract

In this paper the wave propagation problem is
studied for the rectangular waveguide with randomly
rough walls. Using the perturbation method and
Fourier analysis the eigenvalue correction consistent
with that obtained by Bass et al.[1] is derived. The
approach is based on the asymptotically consistent
boundary-value problems at each asymptotic order
and it does not involve the Dyson-type integral equa-
tions. The eigenvalue correction describes the atten-
uation factor in the studied waveguide and it depends
on the correlation function of the randomly rough
surface. In the plane wave regime the approxima-
tions are compared with the numerical results ob-
tained with the finite element method (FEM).

Introduction

The scattering of waves by randomly rough surface
has been analyzed with different approaches[2]. For
the case of single reflection (i.e. half-space bounded
by the rough surface) the small perturbation method
(SPM) and Kirchhoff approximations have been de-
veloped to find the analytical solution of the wave
problem[1], [3], [4].

In the case of multiple reflections occurring in the
waveguide with small irregularities SPM can be ap-
plied. In works written by Isakovich [5] and Lapin [6]
the finite rough section of the waveguide wall is re-
placed by the extraneous sources and the wave prob-
lem is solved with SPM that allows obtaining the
intensity of the scattered wave field. The averaged
scattered wave field as well as the dispersion rela-
tion have been also obtained with SPM [7]. Based
on the randomly rough small roughness the Dyson-
type integral equation can also be derived to find the
Green function and the dispersion relation that in-
volves mass operator of the volume scattering [1].

In this paper the wave propagation problem in the
rectangular acoustic waveguide with the randomly
rough rigid walls is studied. It is assumed that the
rough surface is subject to the Gaussian distribution
with the small standard deviation σ compared to
the waveguide width h and the typical wavelength
L where h ∼ L. This defines the small parameter

ǫ = σ/h ≪ 1. The smallness of the irregularities is
used to decompose the acoustic wave field into the
deterministic (averaged) pa and small random com-
ponents pr. The application of the Fourier trans-
form and expansion of the transformed components
with respect to the small parameter leads to the the
asymptotically consistent boundary value problem at
each asymptotic order. The derived approach allows
obtaining the correction to the eigenvalue ξn of the
smooth waveguide. The eigenvalue correction char-
acterises the attenuation in the rough waveguide. In
the plane wave regime the averaged acoustic pressure
can be approximated by the single exponential func-
tion dependent on the derived eigenvalue correction.
The approximations are compared with the numeri-
cal results obtained with FEM. In the numerical ap-
proach realizations of the rough section of the waveg-
uide wall are simulated with random number gener-
ator in accordance with the normal distribution.

1 Eigenvalue correction

In this study, total acoustic pressure p is the solu-
tion of the Helmholtz equation subject to the bound-
ary conditions

∂p

∂z
= 0, at z = h, (1)

(
−ηx

∂

∂x
+

∂

∂z

)
p = 0, at z = η(x), (2)

where η(x) describes stochastically rough bottom
wall and it is function that belongs to the sample
space defined by the Gaussian distribution with the
standard deviation σ, correlation length l and zero
mean value.

The random component of the solution p is gener-
ated by the randomly rough surface. Due to the small
irregularities the acoustic pressure can be presented
as a superposition of the averaged and random wave
fields, i.e.

p = p(0)
a + ǫp(1)

r + ǫ2p(2)
a + O(ǫ3), (3)

where in the leading order p
(0)
a is the solution for the

smooth waveguide, random component p
(1)
r is linked

1
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to the first moment of the probability distribution

and scattered solution p
(2)
a is defined by the second

moment of the probability distribution (i.e. correla-
tion function W(x)).

In order to solve the problem for the given wave-
length regime (i.e. h ∼ L) the Fourier transform

p̂(z, ξ) =

∫ +∞

−∞
p(x, z)e−iξxdx is applied first. The

wavenumber q in the transformed equation is de-
fined through perturbed eigenvalue qn =

√
k2 − ξ2

n =
πn/h of the smooth waveguide so that q2 = q2

n +
ǫ2q2

n,2+O(ǫ4). Collecting the same order of smallness
in the transformed Helmholtz equation and boundary
conditions gives asymptotically consistent boundary
value problems. By solving them one can derive the
perturbed eigenvalue as

ξ = ξn +
i

2

σ2

h2

M∑

m=0

1

ξnξ+
m(1 + δ0n)(1 + δ0m)

× (4)

[
(k2 − ξnξ+

m)2Ŵ (ξn − ξ+
m) + (k2 + ξnξ+

m)2Ŵ (ξn + ξ+
m)

]
,

where M corresponds to the total number of prop-
agating modes in the waveguide. In the plane wave
regime the averaged solution is approximated by

pa ≈ A0e
i(k+ξ0,2)x. (5)

within which the excitation coefficient A0 = 1 and
eigenvalue correction can be reduced to

ξ0,2 =
i

2

σ2

h2
k2Ŵ (2k) and Ŵ (ξ) =

√
πle−ξ2l2/4. (6)

Figure 1 shows that the attenuation of the propa-
gated wave exhibits minimum in the vicinity of the
dimensionless frequency parameter h/λ = 0.24 with
λ = 2πc/ω. This coincides with the maximum of the
eigenvalue correction (6) at

h

λ
=

h

2
√

2πl
(7)

The accuracy of the approximation (5) is within
5% from the numerical result that was obtained with
the finite element method. As the parameter h/λ ap-
proaches the first cut on value 1/2 the accuracy de-
teriorates and the solution (5) should include higher
order modes.
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Abstract

Full waveform inversion (FWI) of seismic data re-
quires repeated solutions of the wave equation in ei-
ther time or frequency domains. Industry practice
is currently to solve the wave equation in the time
domain in part due to challenges in devising scal-
able parallel and fast solvers for the 3D Helmholtz
equation. We have investigated the moving perfectly
matched layer (PML) sweeping preconditioner of En-
gquist and Ying [2] and explored modifications for
distributed memory clusters. In particular, we use a
recursive multilevel form of the sweeping precondi-
tioner coupled with optimized Schwarz methods [4]
to avoid issues with distributed memory parallel di-
rect solvers.

Introduction

In seismic inversion, we must solve the wave equa-
tion for many different right hand sides: an overview
of full waveform inversion is given in [1]. Here we con-
sider the heterogeneous scalar Helmholtz equation
− ω2

c(x)2
u−∇2u = f , which is well known to be a chal-

lenge in designing fast preconditioners [3]. Engquist
and Ying [2] proposed the sweeping PML precondi-
tioner for the Helmholtz equation that uses low-rank
approximations to half-space Green functions to con-
struct a powerful fast preconditioner with complex-
ity O(N

4
3 ) setup cost and O(NlogN) per iteration,

with O(NlogN) memory requirement. We consider
a 3D grid of dimension (n, n, n) with N = n3 the
number of unknowns. For 3D models, it is necessary
to solve O(N) related quasi-2d problems on slabs of
size (n, n, b) where b = O(1). For large-scale parallel
applications on a distributed memory cluster, using
available parallel direct solvers to factor and solve
all the quasi-2D problems in parallel for large n is
problematic, not the least because the memory re-
quirement is huge. These methods extend to elastic
waves, although we confine this study to the acous-
tic case in order to explore the key algorithms and
parallel implications.

Hybrid preconditioning

Poulson et al. [5] show that a special purpose par-
allel direct solver, designed around the moving PML
problems is very effective for solving 3D problems
using the sweeping preconditioner. Here, we investi-
gate replacing the direct solver in each moving PML
with a hybrid strategy, aiming to achieve a practical
strategy for 3D frequency-domain FWI on general-
purpose clusters. Our approach is not weakly scal-
able.

We explore optimized domain decomposition and
recursive application of the sweeping preconditioner,
which reduces the work of the direct solver on slabs.
Each quasi-2D problem on a slab of size (n, n, b) is
decomposed and parallelized in the xy-directions by
the optimized Schwarz method of Gander et al [4].
We have a three-level preconditioner: The outer level
uses flexible GMRES with the moving PML sweeping
preconditioner operating in the z-direction. The sec-
ond level employs a variant of the optimized Schwarz
method of [4] operating across an xy-decomposition
in each slab, within a truncated BicgStab or GM-
RES iterative solver. At the third level, each do-
main within the Schwarz procedure is further pre-
conditioned by means of a recursive application of
the moving PML preconditioner in the x-direction
(Figure 1).

We explored truncating the inner solver after a
few iterations of the optimized Schwarz method to
provide a usable parallel algorithm, with options for
multicolouring and overlap. This is ongoing work and
conclusions are tentative at this stage, but there are
several possibilities for approximation of the trans-
mission conditions in the optimized Schwarz method
[4]. The transmission operators are of the form
∂
∂nu + Su = 0 where n is the normal on the do-
main interface and S is a non-local operator acting
along the interface.

Within the moving PML method, it is attractive to
explore the PML to construct a DtN operator [6] in
the optimized Schwarz method. We compare trans-
mission operators based on Robin conditions and the
PML within the sweeping preconditioner. Numerical
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Figure 1: Use of sweeping preconditioner within a
single domain. An inner recursive sweep is used

within each moving PML

results and preliminary analyses are shown for 3D
seismic inversion.

Example

We apply the hybrid preconditioner for the SEG
salt model at 7Hz. Figure 2 shows the velocity
model. The mesh size is 676×676×220 before adding
the PML and employs a Robin condition in the
Schwarz iterations. After one outer iteration of the
hybrid preconditioner, slices through the wavefield
are shown in Figure 3. Here, it was necessary to iter-
ate the second level solver to a 10−5 tolerance, impos-
ing a serious performance penalty on the present hy-
brid method. We are continuing to investigate faster
alternatives for parallel inversion applications.

Figure 2: SEG salt model

Figure 3: One application of the hybrid
sweeping/domain decomposition preconditioner for

the SEG model at 7 Hz.
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Abstract

Complete radiation boundary conditions (CRBCs)
are proposed for solving a time-harmonic wave prop-
agation problem in R2. For numerical computation of
wave propagation, the unbounded domain surround-
ing a wave source is truncated and CRBCs are im-
posed on the fictitious boundaries. We present that
CRBCs provide corner compatibility conditions in
case where absorbing boundaries form a corner and
verify that the resulting truncated problem supple-
mented with CRBCs is well-posed. Numerical exper-
iments show that CRBCs are efficient and well-suited
for finite elements methods.

Introduction

In this talk, we study the complete radiation
boundary conditions applied to time-harmonic wave
propagation problems on a domain with corners. The
simple model problem under consideration is to find
the acoustic pressure u defined in the quarter plane
Ω∞ = {(x, y) ∈ R2 : x > 0 and y > 0} satisfying

∆u + ω2u = f in Ω∞, (1)

u = 0 for x = 0 or y = 0, (2)

lim
r→∞

r1/2

(
∂u

∂r
− iωu

)
= 0, (3)

where ω is positive wavenumber and f is a com-
pactly supported wave source such that supp(f) ⊂
Ω = (0, 1) × (0, 1). We truncate the unbounded do-
main Ω∞ to the finite computational region Ω and
introduce CRBCs on the two artificial boundaries to
capture the behavior of the radiating solutions. The
original CRBCs [1] were proposed for solving wave
propagation in time-domain. For time-domain calcu-
lations, CRBCs are derived in term of the auxiliary
function formulation, which leads to a more efficient
and natural implementation of high order radiation
conditions than those proposed by Higdon [2] and by
Givoli and Neta [3].

For frequency-domain application, the p-th order
CRBCs on the East boundary ΓE are defined by re-
cursive formulations for auxiliary functions φj satis-

fying the Helmholtz equation on a neighborhood of
ΓE : with φ0 = u

(
∂

∂x
+ aj)φj = (− ∂

∂x
+ aj)φj+1, (4)

φp+1 = 0 on ΓE , (5)

where aj = σj − iωcj are damping parameters such
that 0 < cj < 1 and σj > 0. The CRBCs for the
North boundary ΓN are defined analogously.

As other high-order absorbing boundary condi-
tions based on Fourier analysis, they are well-
understood in such a case where absorbing bound-
aries are simply lines or segments. However in case
that absorbing boundaries form a corner of a trun-
cated domain, corner conditions become a crucial is-
sue for well-posedness and accuracy [4], [5]. In this
talk, corner compatibility conditions are provided by
investigating a spectral problem associated with CR-
BCs. We show that the truncation procedure with
CRBCs and the corner conditions leads to a well-
posed problem.

Eigenfunction expansion

We first study the eigenvalue problem associ-
ated with CRBCs to find Φ = (φ0, . . . , φp+1)

t ∈
(L2(0, 1))p+2 satisfying Φ′′ + λ2Φ = 0 and the three
conditions, φ0(0) = 0, the recursions (4) given
in the interval (0, 1) and the terminal condition
(5). We prove that the eigenpairs −λ2

n and Φn =
(φ0,n, . . . , φp+1,n) for each n ≥ 0 satisfy

• ℑ(λ2) < 0

• The asymptotic behavior of the eigenvalues for
large n is λ2

n = n2π2 + 4
∑p

j=0 aj + O(n−1)

• The eigenfunctions {Φn}∞
n=0 are complete in

(L2(0, 1))p+1.

By exploiting the completeness of eigenfunctions, the
wave source f can be written as

f(x, y) =
∞∑

n,m=0

fn,mφ0,n(x)φ0,m(y). (6)
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It then follows that the solution can have the series
representation

u(x, y) =
∞∑

n,m=0

un,mφ0,n(x)φ0,m(y), (7)

where un,m = fn,m/(ω2 − λ2
n − λ2

m). We notice
that the Fourier coefficients of the solution u is well-
defined since the imaginary part of λ2

n is negative.

Corner compatibility conditions

Denoting

φj,k(x, y) =
∞∑

n,m=0

un,mφj,n(x)φk,m(y) (8)

for j, k = 0, . . . , p + 1, we observe that the solution u
and the doubly indexed auxiliary functions φj,k sat-
isfy the Helmholtz equation and the following recur-
sions

(
∂

∂x
+ aj)φj,k = (− ∂

∂x
+ aj)φj+1,k on ΓN , (9)

(
∂

∂y
+ ak)φj,k = (− ∂

∂y
+ ak)φj,k+1 on ΓE (10)

with the terminal conditions φj,p+1 = φp+1,k = 0 at
the NE corner for j, k = 0, . . . , p + 1.

Motivated by the above recursions, we derive the
practical boundary conditions of CRBCs with the
corner conditions by eliminating all the tangential
derivatives on ΓE ∪ ΓN and all derivatives at the NE
corner. It can be shown that the problem with the
practical CRBCs admits a unique solution. See [6]
for the derivation of the practical CRBCs and verifi-
cation of well-posedness.

Illustrations

This section presents numerical examples illustrat-
ing the performance of CRBCs. The source function
f is prescribed in a way that the analytic solution is
given by

u(r, θ) = χ(r)
3∑

n=1

1

(2n)2
H1

2n(ωr) sin(2nθ) (11)

in polar coordinates, where ω = 10 and χ is a smooth
cut-off function vanishing for 0 < r < 1/4 and hav-
ing one for r > 1/2. The parameters aj for CRBCs
imposed on ΓE ∪ ΓN are chosen to be

aj =
sin2 θj

cos θj
− iω cos(θj), (12)
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Figure 1: Relative errors as a function of p

where θj = π(j + 1)/(2p + 4) for j = 0, 1, . . . , p.
The relative L2 errors obtained by finite elements

with different mesh sizes h are reported in Figure 1.
The convergence of approximate solutions satisfying
CRBCs can be observed in Figure 1 until the mesh
size errors dominate.
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Abstract

We construct and analyze the performance of a
new second-order radiation boundary condition for
the Helmholtz equation. The condition involves a
fractional power of the wave number which comes
from the modeling of grazing waves. By performing
a collection of numerical experiments, we show how
it impacts on the accuracy of the solution and, in
particular, how it outperforms standard second-order
conditions like BGT ones.

Introduction

The diffraction of acoustic waves is governed by the
Helmholtz equation. Its numerical solution currently
involves a truncated problem posed in a bounded
computational domain. This is a classical problem
that has been widely studied. Regarding its dis-
cretization, Finite Element Methods are surely the
most efficient but there is always a need in design-
ing new FEM to make for the solution of complex
Helmholtz problems involving high frequency and/or
heterogenities. Another important issue concerns
the performance of the boundary condition which is
placed on the outer boundary of the computational
domain. This condition, called Radiation Boundary
Condition (RBC), should express the exact transmis-
sion of the wave field from the truncated domain
to the outside to ensure the external surface is fic-
titious. In practice, reflections are observed and they
can be mitigated by improving the modeling effected
by RBC. Several attempts have been made to the
Helmholtz equation [1,2,3]. In [1], the RBC is im-
proved by taking the variation of the curvatures of
the fictitious surface into account. In [3], a new
condition is obtained by including evanescent waves
into the modeling. In [2], the condition is derived
by constructing an analytical extension of the prin-
cipal symbol of the Dirichlet-to-Neumann (DtN) op-
erator that minimizes the contributions of grazing
modes. The construction is possible only if the ficti-
tious boundary is close to the surface of the scatterer.
This condition is thus mainly adapted to an On Sur-

face Radiation Condition (OSRC) approach [5]. We
propose here a new RBC that includes a fractional
power of the wave number. Its construction differs
from the condition proposed in [2] because it is based
on the representation of the DtN operator for glanc-
ing waves. It is more general since its construction
applies for general situations, not only in the OSRC
context.

1 Problem setting

Let Ω be a bounded domain representing the scat-
terer and let Γ be its boundary. We denote by n the
normal vector defined on Γ and inwardly directed to
Ω. The scatterer is supposed to be perfectly conduct-
ing and immersed into a fluid Ωf . It is well-known
that an approximate scattered field can be computed
by solving the mixed boundary value problem:

∆p + k2 p = 0 in Ωt
f (1)

p = −pinc on Γ (2)

∂np + αp − β∆Σp = 0 on Σ (3)

The scalar field p represents the approximate pres-
sure in the fluid and k denotes the wave number.
This modeling is obtained by introducing an exterior
boundary Σ that modifies Ωf into the truncated do-
main Ωt

f . By this way, the computational domain
is bounded and any numerical method based on a
grid can be used. The obstacle Ω is illuminated by
the incident wave pinc propagating into the exterior
fluid. The boundary condition on Σ is an ABC which
involves the Laplace-Beltrami operator ∆Σ and the
coefficients α and β are complex valued functions in-
corporating the geometry of Σ. They are respectively
given by:

α =

(
κ/2 − ik + (ik)2/3(6κ)1/3 Γ(2/3)

Γ(1/3)

)−1

(4)

and

β =α

(
(ik)2/3(6κ)1/3 Γ(2/3)

Γ(1/3)
− k2

)
(κ/2 − ik). (5)
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2 Construction of the new ABC

Most of the ABCs are obtained as approximations
of the DtN operator. The approximation process is
based on the fact that the symbol of the DtN opera-
tor admits an asymptotic development. The approx-
imation is then valid for a given set of frequencies
which is defined in the propagation region [4]. The
simplest approximation that includes the geometry
of the surface is given by:

∂np − ikp + κ/2p = 0 on Σ (6)

where κ denotes the curvature of Σ. It is obtained
by approximating the symbol of DtN operator by the
two first terms of its asymptotic development. This
condition can be enriched by considering higher or-
ders of approximation [1]. In that case, the set of
frequencies is the same than for the simplest condi-
tion but the DtN operator is approximated by using
a truncated symbol composed of more than the two
first terms of its asymptotic development [1]. This is
what we call a regular ABC.
This is not the only way for improving the perfor-
mance of an ABC. Indeed, another approach con-
sists in combining a regular ABC with another con-
dition that is obtained by considering another set of
frequencies. In [3], a condition is obtained for the
acoustic wave equation by combining condition (6)
with a Robin condition depending on a parameter
that is fixed empirically. The combination improves
the performance of the regular condition (6) and it
outperforms the BGT condition proposed in [1]. The
Robin condition corresponds to the simplest approx-
imation of the DtN operator in the set of frequencies
corresponding to evanescent waves.
Now, let us consider the principal part of the
Helmholtz equation written in a system (r, s) of co-
ordinates representing locally the surface Σ. To con-
sider the principal part of the Helmholtz operator
amounts to work with frequencies in the glancing re-
gion [6]. In the vicinity of Σ, it is given by:

∂2
rp + k2p + (1 − 2rκ)∆Σp = 0 (7)

and by applying a partial Fourier transform in the
variable s, we get an Airy equation. By solving this
equation, we then get the following result:
Theorem. In the vicinity of glancing points, the
symbol of the DtN operator is given by:

σ(DtN) = (iξ)2/3(2κ)1/3 Ai′
(
(iξ)2/3(2κ)1/3η

)

Ai
(
(iξ)2/3(2κ)1/3η

) (8)

where η =
k2 − ξ2

2ξ2κ
. We then propose to model glanc-

ing waves by setting the boundary condition

∂np + (ik)2/3(6κ)1/3 Γ(2/3)

Γ(1/3)
p = 0 on Σ (9)

where Γ denotes the classical gamma function.
An enriched ABC is then obtained by combining

(6) with (9) which corresponds to condition (3) af-
ter eliminating the term ∂2

n thanks to the Helmholtz
equation.

3Performanceassessmentof the enriched ABC

It is very interesting to observe that the new ABC
formulates as BGT-like ABCs. It is thus abso-
lutely relevant to compare their numerical perfor-
mance since they involve exactly the same compu-
tations. Nevertheless, the new ABC includes the be-
havior of glancing waves while BGT-like conditions
represent propagating waves only. This should im-
prove the performance of the condition when Σ is
close to the scatterer surface Γ. Indeed, it has been
shown in [2] that including the modeling of glanc-
ing waves improves regular ABCs. It is now worth
noting that the radiation condition obtained in [2] is
different from the enriched ABC that we proposed in
this work. In particular, the condition in [2] involves
k1/3 while our condition includes k2/3. To compare
these two conditions is thus necessary and we will
show that our condition is the more efficient in most
of the cases.
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Abstract

A new perfectly matched layer (PML) is proposed
for convex truncated domains in the context of time-
dependent acoustics. With this formulation, the size
of the computational domain can be reduced when
classical shapes of truncated domains are less appro-
priate. A numerical discretization based on the dis-
continuous Galerkin method is then described and
validated. An example of realistic three-dimensional
application is finally proposed.

Introduction

Perfectly matched layers (PMLs) are used to trun-
cate the computational domain of wave-like problems
defined on unbounded spatial domains. Various ver-
sions have been proposed in the classical curvilin-
ear coordinate systems to deal with planar, cylin-
drical or spherical truncations. In [4], the PML is
extended to general convex truncated domains in a
time-harmonic electromagnetic context. A general
convex truncation permits the decrease of the com-
putational cost by diminishing the size of the com-
putational domain when the classical shapes of trun-
cation are less appropriate.

In this paper, we derive a new PML for con-
vex truncations in the time domain. In Section 1,
the PML equations are written for three-dimensional
problems. In Section 2, we propose a numerical dis-
cretization using the discontinuous Galerkin finite el-
ement method. The obtained numerical scheme is
validated using a three-dimensional reference bench-
mark. A realistic application is finally presented in
Section 3.

1 Governing equations in the PML

We consider the time-evolution of the pressure
p(x, t) and the velocity u(x, t) in the convex bounded
domain Ω ∈ R3, that is surrounded by a PML Ωpml

with a constant thickness δ. The external boundary
Γ of Ω is assumed to be sufficiently smooth.

Employing the strategy proposed in [2], the gov-

erning equations in the PML are built by using a
complex stretching of spatial coordinates in the fre-
quency domain. For this purpose, the time-harmonic
equations are firstly written in a convenient curvi-
linear coordinate system. Following [4], we consider
the system associated to the orthonormal local ba-
sis (n, tϕ, tθ) where, for a point P of Ωpml, the unit
vectors n, tϕ and tθ are the external normal and the
two principal directions of the surface Γ at the clos-
est point PΓ of Γ to P . The curvilinear coordinate r
associated to the direction n, that corresponds to the
distance between P and PΓ, is then stretched using

r → r̃ = r − 1
iω

∫ r
0 σ(r′)dr′,

where σ(r) is the absorption function. Following [3],
we use the hyperbolic function σ(r) = cr/(δ−t), that
does not require any optimization. Time-dependent
cartesian equations are finally obtained by perform-
ing an inverse Fourier transform in time, by defining
additional differential equations and by moving back
to the cartesian coordinate system.

In both Ω and Ωpml, the fields are then governed
by the equations

∂tp+ ρc2 ∇ · u = sp, (1)

∂tu + ρ−1 ∇p = su, (2)

where ρ and c are positive constants. In Ω, the clas-
sical equations are recovered considering the source
terms sp and su equal to zero while, in Ωpml, these
terms are

sp = −σpn − κ̄ϕσ̄pϕ − κ̄θσ̄(p− pn − pϕ), (3)

su = −σn(n · u)− κ̄ϕσ̄tϕ(tϕ · u)− κ̄θσ̄tθ(tθ · u),

with κ̄ϕ = (κ−1
ϕ + r)−1, κ̄θ = (κ−1

θ + r)−1, σ̄ =∫ r
0 σ(r′)dr′, where κϕ and κθ are the main curvatures

of Γ at PΓ. Finally, the two additionnal fields pn and
pϕ introduced in the equation (3) are governed by

∂tpn + ρc2 [n(n · ∇)] · u = −σpn, (4)

∂tpϕ + ρc2 [tϕ(tϕ · ∇)] · u = −κ̄ϕσ̄pϕ. (5)
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2 Numerical scheme

Discontinuous Galerkin method

The equations above are solved using a nodal DG
finite element scheme [1] with a mesh made of tetra-
hedra. The scheme is built by considering the conser-
vative form of the governing equations and by mul-
tiplying them by test functions. Integrating the re-
sulting equations over a cell and using integration by
part leads to the weak form. The numerical fluxes
used in the interface terms of the first two equations
(1) and (2) are defined using a Riemann solver, while
Lax-Friedrichs fluxes are considered for the two ad-
ditional equations (4) and (5). Each scalar field and
each cartesian component of u is approximated by a
first-order Lagrange polynomial. The time-stepping
is made with the fourth-order Runge-Kutta method.

Validation

To validate the method, we consider a truncated
domain shaped as an ellipsoid of revolution and
surrounded by a PML of thickness δ = 500 m.
The lengths of the axis of the ellipsoid are 6.6 km
(x−direction) and 2.4 km (y− and z−directions). A
Gaussian is prescribed as initial condition on p, i.e.

p(x, 0) = e−‖x−x0‖
2/R2

with x0 = (−2.45 km, 0, 0.4 km) and R = 150 m,
while the other fields are initially equal to zero. We
use c = 1.5 km/s and ρ = 1 kg/m3. As time goes by,
spherical waves are generated and reach the PML
with different incidences.

During the simulation, the numerical solution is
compared with the exact solution in the truncated
domain Ω. Figure 1 shows the convergence of the
relative mean error ξr defined by

∫ tf
0

∫
Ω

(
1

2ρc2
(pana − pnum)2 + ρ

2‖uana − unum‖2
)
dΩ dt

∫ tf
0

∫
Ω

(
1

2ρc2
(pana)2 + ρ

2‖uana‖2
)
dΩ dt

and computed for the duration tf = 4 s.

3 Realistic benchmark

A submarine is added in the geometry described
above. Figure 2 shows the snapshot of p at two in-
stants of the simulation. The spherical waves are not
deformed near the external boundary of the domain
Ω and are damped in the PML.
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Figure 1: Convergence of the relative mean error.
NDOF is the total number of degrees of freedom.

Figure 2: Iso-surfaces of p at t = 0.8 s (top) and
t = 2.4 s (bottom) for the realistic benchmark.
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Abstract

We study a 2D dielectric cavity with a metal in-
clusion. The permittivity ε of the metal depends on
the frequency ω and, in a given frequency range, the
metal can be (almost) dissipationless (|Im(ε(ω))| �
|Re(ε(ω))|) and such that Re(ε(ω)) < 0. We look
for the cavity resonance values ω. Due to the de-
pendence of ε with respect to ω, this is a non li-
near eigenvalue problem. Below we consider mainly
the linearized-problem where this dependence is fro-
zen. Under some conditions on ε and the inclusion’s
geometry, the linearized-problem principal operator
is self-adjoint with compact resolvent. Besides when
the inclusion has corners adding to the fact that ε is
sign changing at the boundaries between the metal
and the dielectric, self-adjointness and compactness
of the resolvent may be no longer true. This is due
to very singular phenomena at the corners, which re-
quire a new functional framework for the theoretical
analysis, and a specific numerical treatment. The non
linear case which requires a fixed point algorithm is
briefly discussed.
Introduction

Let’s consider a cavity Ω, Ω = Ω1∪Ω2, with a die-
lectric material Ω1, and a metal inclusion Ω2. Let’s
call the interface Σ = Ω1 ∩ Ω2. We study the follo-
wing eigenvalue problem :

(1)





Find u 6= 0, ω ∈ R s.t. :

−div( 1
ε(ω)∇u) = ω2µ(ω)u in Ω

u = 0 on ∂Ω

where the electric permittivity ε(ω) is a non linear
real valued function of the frequency ω.

Ω1

Ω2

ε > 0

ε(ω) < 0 Ω1 Ω2

a) b)

Figure 1: : Examples of a cavity. The configuration
b) will provide support for numerical illustrations.

For simplicity we consider the linearized eigenva-
lue problem in ω, which consists in replacing ε(ω)

by ε in (1) and, we focus our attention on the case
where ε < 0 in the inclusion. More precisely, we take
ε and µ piecewise constant functions, µ > 0 almost
everywhere and ε sign changing at the interface Σ.
Let’s define the principal operator :

A : D(A) ⊂ L2(Ω) −→ L2(Ω)
u 7→ − 1

µdiv(1
ε∇u) with

D(A) = {u ∈ H1
0 (Ω), 1

µdiv(1
ε∇u) ∈ L2(Ω)} and

consider the weighted L2 inner product (u, v) 7−→∫
Ω µuv dΩ. Thus our goal is to find the eigenvalues of
A. For a given ε and depending on the interface Σ,
the operator A can be self-adjoint or not. The next
part is dedicated to solving the self-adjoint case, the
one after that to solving the non self-adjoint case.
We also present some computations in each section,
with a specific numerical treatment in the second one
because of particular phenomena near the corners.

1 The self-adjoint case

When ε > 0 almost everywhere, the operator A is
self-adjoint with compact resolvent (noted for simpli-
city SC. in the rest of the paper). The eigenvalues are
positive with finite multiplicity and tend to infinity.

When ε changes sign, one can still have SC. pro-
perties for A under some conditions on ε and the
interface Σ (precised below)[1], [2] : the eigenvalues
then consist in two sequences of real numbers with
finite multiplicity tending respectively to ±∞ (see
fig.5a).

For a regular interface Σ (fig.1a), A is SC. if and

only if
ε|Ω2
ε|Ω1
6= −1. When Σ has corners (fig.1b), the

operator is SC. if and only if
ε|Ω2
ε|Ω1

doesn’t belong to a

critical interval containing −1, which is determined
by the sharpest corner of the interface.

In this case, we have made computations with stan-
dard Finite Element for the geometry fig.1b. We ob-
serve stability of the results with respect to the mesh
size (see fig.2). In fig.3 we observe that the modes are
confined outside or inside the metal inclusion depen-
ding on the eigenvalues’ sign.
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Nodes 3469 7325 32049 132001

1st ev > 0 1.4836 1.4837 1.4807 1.4805

1st ev < 0 -4.083 -4.0771 -4.0762 -4.0758

Figure 2: : First positive and negative eigenvalues (of
smallest modulus) for several mesh sizes.

Figure 3: : First positive (left) and negative (right)
modes of the SC. operator, associated to the two pre-
vious eigenvalues.

2 The non self-adjoint case

For
ε|Ω2
ε|Ω1

chosen in the critical interval (excluding

ε|Ω2
ε|Ω1

= −1), due to singular phenomena at the cor-

ners, the SC. properties of A are no longer satisfied in
the classical functional framework. In this case, the
spectrum of A is the whole complex plane.

In [2], [3] (see also [4]) is given an extension of the
operator A which has a compact resolvent, called A+.
It is defined by D(A+) = D(A)⊕span{s+

1 , · · · , s+
k } ⊂

L2(Ω), where s+
1 , · · · , s+

k , k ∈ N are singular func-
tions at k corners (k 6 total corners’ number of the
interface Σ) that don’t belong to H1. These singula-
rities, selected by a limiting absorption principle (see
[3]), can be interpreted as waves propagating along
the interface Σ towards the k corners : they are called
black-hole plasmonic waves.

Numerically, there is no Finite Element conver-
gence due to these black-hole waves. Thus, in order
to capture confined plasmonics waves near the cor-
ners, a specific numerical treatment is performed. We
operate an original use of PMLs (Perfectly Matched
Layers) : by the Euler change of variables (r, θ) 7−→
(log(r), θ) we transform a disk centered at a cor-
ner into a waveguide [2] which we can troncate with
PMLs. The PMLs domain corresponds to the small
hole at the corner in fig.4. Numerical results confirm
that the PMLs’ method is efficient to ensure the sta-
bility of the Finite Element approximation. The A+’s
spectrum contains complex eigenvalues which clearly
proves its non self-adjointness. We can prove that the
eigenvalues belong to {z ∈ C s.t. Im(z) ≤ 0}, which
is numerically almost satisfied (see fig.5b).

Figure 4: : Third and fifth modes of operator A+

(associated to the smallest eigenvalues in modulus :
λ3 = 3.7426 − 1.0046i and λ5 = 5.0821 − 1.1043 ×
10−3i).

(a) (b)

Figure 5: : (a) Spectrum of the SC. operator in the
complex plane. (b) Spectrum of operator A+ in the
complex plane. (The scales are different.)

3 Conclusion/Ongoing work

Once we are able to understand the linearized ei-
genvalue problem, we could solve in principle our
starting non linear problem (1). The cavity modes
could be obtained for instance with a fixed point al-
gorithm.

We thank the DGA for financial support.
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Abstract

We propose a new Perfectly Matched Layer for the
linearized Shallow Water Equations. Its construction
is similar to the one we proposed in [2], but it does
not require the use of an auxiliary variable in the
whole computational domain. Moreover, it can be
extended to derive an Absorbing Layer for non linear
Shallow Water Equations.

Introduction

Shallow Water Equations, which are a simplifi-
cation of Navier Stokes equations when the verti-
cal length scale is much smaller than the horizon-
tal length scale, are widely used in atmospheric and
ocean modeling. A important example of application
can be found in meteorological forecasting models
which take into account the Earth’s rotation (Cori-
olis Forces). In such applications, the physical do-
mains are huge (for instance the whole ocean) and
to compute an accurate numerical solution to these
equations is not possible, even with High Perfor-
mance Computing techniques. The simulations are
then performed on smaller domains whose bound-
aries, which are artificial, should be transparent.
In the case of acoustic wave equation, this can be
achieved by using Absorbing Boundary Conditions
or Perfectly Matched Layers (PML). The principle of
this latter consists in surrounding the computational
domain by a non-physical absorbing layer. They are
called Perfectly Matched because their interface with
the computational domain does not generate any re-
flection, whatever the frequency and the angle of in-
cidence of the waves. However, the extension of this
technique to non linear equations is still an open is-
sue. A absorbing layer has been proposed in [1] but
it required the introduction of a small damping term
to be stable, and is not perfectly matched. In [4],
the instabilities in the layer are removed by a filter,
which does ensure the perfect matching neither.

In [2], we have proposed a PML for linearized Shal-
low Water Equations, which required the introduc-
tion of an auxiliary variable in the whole computa-
tion domain. We propose here a new formulation of

this PML which overcomes this drawback, and we
show that the technique we use can be extended to
construct an efficient Absorbing Layer for the non
linear Shallow Water equations.

PML for Shallow Water equations

We consider here the nonconservative form of the
2d-Shallow Water equations on an f−plane:




∂th + u∂xh + v∂yh + h (∂xu + ∂yv) = 0,
∂tu + u∂xu + v∂yu + g∂xh− fv = 0,
∂tv + u∂xv + v∂yv + g∂yh + fu = 0,

(1)

where h is the elevation of the water from z = 0, u
and v are the components of the velocity field, g is
the gravity constant and f is the Coriolis parameter.
Supposing that h, u and v vary weakly around a
mean state, denoted respectively by H, U and V ,
the linearized equations for 2d read as




(∂t + U∂x + V ∂y)h+H (∂xu+ ∂yv) = 0
(∂t + U∂x + V ∂y)u+ g∂xh− fv = 0
(∂t + U∂x + V ∂y) v + g∂yh+ fu = 0

(2)

where h is the water elevation from the mean value
and u and v are such that u = U +u and v = V + v.
We only consider in this work the subsonic regime,
i.e. such that U2+V 2 < gH. The dispersion relations
for (2) are known to be

(ω + Ukx + V ky)
2 = gH

(
k2x + k2y

)
+ f2 (3)

for inertia-gravity adjustment waves and

ω + Ukx + V ky = 0 (4)

for geostrophic adjustment waves. The main diffi-
culty of forming PML equations for oblique mean
flow is that both types of waves present inconsis-
tencies between their group and phase velocities.
It is well-known [3] that this induces instabilities
with classical Perfeclty Matched Layers. However,
geostrophic adjusment waves are divergence free and
satisfy transparent conditions on the boundary of the
computational domain. Hence, an efficient strategy
consists in deriving Perfeclty Matched Layers act-
ing only on inertia-gravity adjusment waves and in
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absorbing geostrophic waves by a transparent condi-
tions at the end of the layers.However, when consider-
ing the 2d shallow water system, this method requires
the computation of an additional auxilliary variable
in the whole computational domain. To avoid this
drawback, we propose to rewrite system (2) by using
the divergence of the flow, δ = ∂xu+ ∂yv and its ro-
tational ξ = ∂xv−∂yu. Then, linear combinations of
equations in system (2) yields the following div-rot
formulation for the unknowns (h, δ, ξ)

Gh+Hδ = 0, (5)

Gξ + fδ = 0, (6)

Gδ + g∆h− fξ, = 0 (7)

where we have denoted G = ∂t + U∂x + V ∂y.

To uncouple the rotational free waves from the di-
vergent free ones, we formally left multiply (5) by
∆ and (7) by G and substract the first equation
from the second one. Using finally (6), we check that
the divergent part of the flow satisfies the advective
Klein-Gordon equation

G2δ − gH∆δ + f2δ = 0. (8)

The dispersion relation of this equation is once again
given by (3). The quantity φ = h/H − ξ/f is
called the potential vorticity and satisfies the trans-
port equation Gφ = 0. Hence, stable PML for the
linear shallow water system can be obtained by a)
applying a preliminary change of variable to remove
the inconsistent waves; b) applying the PML change
of variable only to equation (8) and c) applying the
inverse change of variable to a).

We have performed numerical simulations in order
to assess the performance of the method. The ex-
ternal Rossby deformation radius rE =

√
gH/f is

set to rE = 100Km and g = 10ms−2. The Coriolis
parameter is f = 1.0285.10−4 (s−1) (i.e.; evaluated
at mid-latitude 45◦-northern hemisphere) so that the
corresponding mean height is H = 10.578m. As-
sume also that an oblique background flow is moving
with constant velocity U = V = 13.1Km/h (orien-
tation of 45◦) such that the Froude number defined
by F =

√
U2 + V 2/

√
gH is equal to 0.5 flow. Initial

conditions for the shallow-water equations are tested
with radial Gaussian pulses as follows:

{
h(x, y, 0) = Ae−

(x−x0)
2+(y−y0)

2

L2

u(x, y, 0) = v(x, y, 0) = 0

for inertia-gravity waves, and




h(x, y, 0) = Ae−
(x−x0)

2+(y−y0)
2

L2

u(x, y, 0) = − g
f ∂yh(x, y, 0)

v(x, y, 0) = g
f ∂xh(x, y, 0)

for geostrophic adjustment waves, where L = 2.5rE
is the width of the Gaussian, A denotes its amplitude
and (x0, y0) its center placed at the geometric center
of the computational domain. Namely, we have set
the amplitude A = 0.5H to get nonlinear effects, be-
cause the choice of small amplitudes leads simply to
level contours approximately the same as in the linear
case. We evaluate the effectiveness of the proposed
PML model on a domain of width D = 4000km in-
cluding an absorbing layer of width l = 10%D. To
validate our method, we have compared our results to
the ones obtained on a larger computational domain
Dref = 24000km. We have calculated the relative
error in time near the upper corner (two grid points
points away from the corner). The solid line depicts
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Figure 1: Relative Error near the corner of the
PML

the relative error obtained for the linearized Shallow
Water equation while the dashed one depicts the rel-
ative error obtained for the non-linear Shallow Water
equation, using an extension of the new PML to the
non linear case. We obtain a relative error below
1% in each case, which shows the efficiency of the
method.
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Abstract

We study the stability of a perfectly matched layer
(PML) for systems of symmetric second order hyper-
bolic partial differential equations on a half plane.
We are particularly interested in boundary conditions
supporting surface waves, and will focus on the elas-
tic wave equation subject to the traction free bound-
ary condition. In the PML the traction free boundary
condition must be modified to achieve perfect match-
ing. Using a mode analysis, we can show that for
a constant coefficient layer, the boundary condition
does not support temporally growing modes. In par-
ticular Rayleigh waves decay in the layer. Numerical
computations demonstrate the validity of the result
also for a variable coefficient layer of finite extent.

.

Introduction

There are many wave propagation problems where
boundary phenomenon such as surface waves and
wave reflections are important. Typical examples
are in non-destructive testing, seismology, earth-
quake engineering, ultrasonics, and ground penetrat-
ing radar technologies. These situations can be mod-
eled by systems of second order symmetric, hyper-
bolic, timedependent partial differential equations in
semi-bounded domains. To perform numerical simu-
lations the domain must be truncated and artificial
boundary conditions must be introduced. A pop-
ular technique is to surround the artificial bound-
aries with a perfectly matched layer (PML). In the
PML the underlying equations are transformed such
that waves decay rapidly in the layer. A very impor-
tant property of the PML is perfect matching. This
means that waves propagate from the physical space
into the PML without reflections. A PML is usually
derived by assuming a homogeneous media and an
infinite domain in all directions. In a domain with
physical boundaries, the application of the PML in-
troduces boundary corners where physical boundary
conditions interact with the PML. In order to en-
sure perfect matching, the underlying boundary con-
ditions must be accurately extended from the inte-

rior into the PML. We will discuss derivation of layer
equations, and explain how to extend boundary con-
ditions.

Even if the PML is perfectly matched, there is no
guarantee that solutions decay with time. Analysis of
temporal stability of PMLs is therefore a main topic
of research. For Cauchy problems, the stability of the
PML can be predicted by the geometric stability con-
dition, [2]. Numerical experiments have shown that
PMLs which are Cauchy stable can exhibit growth
when some physical boundaries are imposed. Below
we apply a normal-mode analysis to the half-plane
problem for the elastic PML, and show that growing
modes are not supported when the boundary condi-
tion is correctly extended. The same technique shows
that the PML for the elastic wave equations subject
to Dirichlet boundary conditions, and to the PML for
the curlcurl Maxwells equation subject to insulated
walls and perfectly conducting walls boundary con-
ditions do not support temporally growing modes.

We will present numerical computations demon-
strating how different types of waves are damped. In
particular we show an example with a Rayligh wave.
The computations use high-order finite difference dis-
cretizations based on the summation-by-parts tech-
nique, and impose boundary conditions weakly.

The Elastic Wave Equation

Consider the second order system

utt = (Aux)x + (Cuy)x + (CTux)y + (Buy)y,

on a half-plane , 0 ≥ y > ∞, −∞ < x < ∞. In
the standard isotropic case the coefficient matrices
are given by

A =

(
2µ+ λ 0

0 µ

)
, B =

(
µ 0
0 2µ+ λ

)
, C =

(
0 λ
µ 0

)
,

where µ, λ are the lame parameters. In this paper
the parameters will be constant. A boundary con-
dition admitting boundary waves is the free surface
condition

Buy + CTux = 0 at y = 0.
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This initial-boundary-value problem satisfies an en-
ergy estimate.

The Perfectly Matched Layer

At x = L we add a layer. The layer equations can
be derived by a complex coordinate transformation
in the dual space (Laplace transform in time) ,

x̃ = x̃(x),
dx̃

dx
= 1 +

σ(x)

α+ s
,

see [1]. Here σ(x) is a positive, smooth function with
σ(L) = 0 and α ≥ 0 is the so called complex fre-
quency shift. Before inverting the Laplace transform
auxillary variables need to be introduced. The re-
sulting layer system in time domain is

utt + σut = ( Aux + Cuy)x + (Buy + CTux)y−
− A(σv)x +B(σw)y + σα(u− q),

vt = −(σ + α)v + vx,
wt = −αw + uy,
qt = α(u− q).

To ensure perfect matching boundary conditions
must also be transformed as above. In the dual space
the traction free boundary condition becomes

Bûy +
α+ s

α+ s+ σ
CT ûx = 0,

which corresponds to

Buy + CTux + σBw = 0,

in physical space.

Normal mode analysis

To understand the effect of the PML on boundary
modes we perform a normal mode analysis. Intro-
duce

r(x, y, t) = eikxx+str̂(y),

for the variables r = u1, u2, v, w, q in the frozen co-
efficient PML system. The auxilary variables can be
eliminated, leaving a second order system of ordinary
differential equations. The general solution consists
of terms of the form

û = eκyψ,

where κ satisfies a characteristic equation. Only
roots with Re(κ) > 0 are admissible. If F0(s, kx, κ) =

0 is the characteristic equation for the original, un-
damped system, then the characteristic equation for
the PML is

F0(s,
α+ s

α+ s+ σ
kx, κ) = 0.

Standard analysis shows that the original system has
two admissible roots, which will be admissible roots
also in the PML. Thus the general solution con-
sists of two components with unknown coefficients.
By inserting the general solution into the boundary
condition we obtain a linear system for these coeffi-
cients, described by a 2 × 2 matrix C0(s, k̃x), where
k̃x = kx(α + s)/(α + s + σ). As above C0(s, kx) is
the corresponding matrix for the undamped problem.
Modal solutions are determined by |C0(s, k̃x)| = 0.
For the undamped problem

|C0(s, kx)| = 0

is the Rayligh dispersion equation with solutions
s = 0, s = ±iβ. The non-zero values correspond to
boundary modes, the so-called Rayligh waves, while
the zero corresponds to the trivial solution. We can
now straightforwardly analyze how the PML changes
the temporal behavior of the boundary modes. The
result is that the corresponding roots move into the
stable half-plane, indicating that the Rayligh waves
are damped by the PML.

To rigorously establish well-posedness of the PML
we would need to construct and derive an estimate
of the solution of the PML equations with forcing
only on the boundary. Following the same steps as
above we can use Laplace transform technique for
the construction. A bound in Laplace-space can then
be transformed to physical space. This construction,
together with the well-posedness of the corresponding
Cauchy problem would leads to well-posedness for
the PML problem.
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Abstract

In this paper we discuss the stability of the per-
fectly matched layer (PML) for a first order system
of the elastic wave equation on the lower half-plane
with free-surface boundary conditions at y = 0, and
on the left half-plane with characteristics boundary
conditions at x = δ ≥ 0. In both cases the PML trun-
cates a boundary in the x-direction. Using a modal
analysis we prove that the lower half-plane problem
and the left half-plane problem do not support tem-
porally growing modes. A stable and high order accu-
rate discretization is developed using summation-by-
parts (SBP) operators to approximate spatial deriva-
tives and imposing boundary conditions weakly using
penalties. Numerical experiments are presented cor-
roborating the theoretical results.

Introduction

Let us assume that we want to solve the elastic
wave equation in the quarter plane x ≤ 0, y ≤ 0,
where x = 0 is a boundary introduced to limit the
computational domain. In order to absorb outgoing
waves at x = 0, we introduce the PML [1] of width
δ > 0 outside the quarter plane, that is in 0 ≤ x ≤ δ,

ρ
∂u

∂t
=
∂v

∂x
+
∂w

∂y
− σq,

∂v

∂t
= A

∂u

∂x
+ C

∂u

∂y
− σAp,

∂w

∂t
= B

∂u

∂y
+ CT

∂u

∂x
− σCTp,

∂p

∂t
=
∂u

∂x
− (σ + α) p,

∂q

∂t
=
∂v

∂x
− (σ + α) q.

(1)

Here, ρ is the density of the medium, σ (x) ≥ 0 is the
damping function, α ≥ 0 is the complex frequency
shift (CFS), and the unknowns p = (p1, p2)

T and
q = (q1, q2)

T are auxiliary variables introduced to
localize the PML in time. Inside the domain, x ≤ 0
and y ≤ 0, the damping function vanishes σ (x) ≡ 0

and we recover the elastic wave equation, with v =
(v1, v2)

T and w = (w1, w2)
T being the stresses and

u = (u1, u2)
T being the velocities. We set the free-

surface boundary condition w = 0 on the surface at
y = 0. In order to complete the statement of the
problem we set the characterics boundary condition√
Au + v = 0 at x = δ. The coefficient matrices are

given by the Lamé parameters λ, µ:

A =

(
2µ+ λ 0

0 µ

)
, B =

(
µ 0
0 2µ+ λ

)
, C =

(
0 λ
µ 0

)
.

Stability

The stability of the PML (1) is essential in order
for it to be computationally useful. For first order
hyperbolic systems in unbounded domains the tem-
poral stability of the PML is well known, see [1],
[2]. In bounded and semi-bounded domains stabil-
ity is not as straightforward. For instance, numerical
experiments [3] have shown that growth can occur
when a free-surface boundary condition is imposed.
That said, it has been shown [4] that when (1) is
written in second order form the PML is stable when
the boundary conditions are correctly chosen. Here,
we extend the analysis of [4] to the first order system
(1). We also investigate the stability of the boundary
condition at x = δ, terminating the PML.

To extend the analysis we freeze all coefficients and
split the problem into: 1) a Cauchy problem; 2) a
lower half-plane problem with the free-surface bound-
ary condition w = 0 at y = 0; 3) a left half-plane
problem with the boundary condition

√
Au + v = 0

at x = δ. Each of the three problems above can
be analyzed separately. The Cauchy problem 1)
is analyzed using standard Fourier methods as in
[1]. Since the elastic medium is isotropic, we know
from [1] that the Cauchy problem is stable. One
of the major contributions of this work is showing
stability of the half-plane problems 2) and 3) us-
ing normal mode analysis. That is we prove that
there are no non-trivial solutions of 2) and 3) on the
form Ψa = Ψ̂a(y) exp (st+ ikxx), |Ψ̂a| < ∞ and
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Ψb = Ψ̂b(x) exp (st+ ikyy), |Ψ̂b| <∞, respectively,
with <s ≥ 0.

Extending the analysis above to discrete approxi-
mations to prove numerical stability without further
simplifications is not trivial. The second major con-
tribution of this work is proving stability of the dis-
crete problem, a non-trivial task. This is done by
constructing a semi-discrete energy estimate for suf-
ficiently small damping σ > 0 which mimics the con-
tinuous estimate.

Numerical experiments

Consider a rectangular waveguide with the domain
(x, y) ∈ [−50, 50] × [0, 50]. A free-surface boundary
condition w = 0 is used at y = 50 and a character-
istics boundary condition

√
Bu −w = 0 is imposed

at y = 0. In the x-direction we introduce two ad-
ditional layers, having 50 ≤ |x| ≤ 50 + δ in which
the PML equations are solved. The PML is termi-
nated with the boundary conditions

√
Au ± v = 0

at x = ± (50 + δ). The initial data for the velocities
is u1 = u2 = exp

(
− ln (2)

(
x2 + (y − 25)2

)
/9
)
, and

zero initial data is used for the stresses and auxil-
iary variables. The damping profile is a cubic mono-

mial σ (x) = d0

(
(|x| − 50) /δ

)3
, where d0 ≥ 0 is the

damping strength; in all experiments d0 = 2 and α =
0.5. A 6th–order SBP operator is used for the spatial
discretization with all boundary conditions enforced
weakly. Temporal discretization is done with the
classical fourth order accurate Runge–Kutta scheme
using the time step k = 0.5/

√
3µ+ λh. In the first

experiment we evaluate the numerical errors , i.e., ar-
tificial reflections. We consider an aluminum waveg-
uide defined by the velocity ratio γ = cs/cp = 0.4593,
where cp, cs are the P–wave and the S–wave veloci-
ties, defined by cp =

√
2µ+ λ/ρ, cs =

√
µ/ρ. Note

that a PML for this material has also been inves-
tigated in the frequency domain [5]. To quantify
the numerical reflections we use a wide PML width,
δ = 50. We compute the solution until t = 40. We
also compute a reference solution in a larger domain
without the PML. Defining the error as the maximum
difference between the two solutions we see O(h4)
convergence as shown in table 1.

To investigate the long time stability of the PML
we use a spatial step h = 0.5, and run the simulation
to t = 5000 using a PML width δ = 10, i.e., a width
closer to what would be used in practical calculations.
Figure 1 shows the time history of the maximum en-

h error rate

1.0 2.32×10−7 –
0.5 8.81×10−9 4.72
0.25 5.05×10−10 4.12
0.125 3.10×10−11 4.03

Table 1: Numerical errors and convergence rate.

ergy for simulations with γ = 0.1, 0.2, . . . , 0.5. As
seen for all values of γ the energy decays down to
10−3, showing the stability of the PML. This is par-
ticularly noteworthy, because in [3] numerical insta-
bilities were seen to be more severe for small γ.
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Figure 1: Time history of the maximum energy for
γ = 0.1, 0.2, 0.3, 0.4, 0.5.
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Abstract

The Harmoniously Matched Layers (HML) were
introduced by Halpern et al. in 2011 [2] for general
hyperbolic operators. This method is based on an ex-
trapolation of solutions using first-order layers. For
constant coefficient problems, its numerical perfor-
mances are comparable to those of Bérenger’s PML
[1], while preserving the strong well-posedness of the
hyperbolic system. In homogeneous media, the PML
are nonreflecting and absorbing. This is no longer
true in heterogeneous media. In that case, other
methods may become more attractive. Numerical
experiments involving the propagation of 2D acous-
tic waves in an inhomogeneous medium show smaller
amplitude reflections at the interface for the HML.

Introduction

The numerical simulation of wave propagation in
unbounded media occurs in numerous industrial ap-
plications, such as radar detection or seismic imaging.
In these contexts, the use of Perfectly Matched Layer
(PML), introduced by Bérenger for the Maxwell sys-
tem, has rapidly become the state-of-the-art tech-
nique to perform such simulations [1]. The domain
of interest is surrounded with a damping layer, where
the incident waves should be absorbed without reflec-
tions for any incidence angle. The original unknowns
of the hyperbolic system related to the wave equation
are split into non-physical unknowns, and a damping
factor is introduced in the resulting equations. Years
of successful applications due to its efficiency and its
ease of implementation have followed Bérenger’s dis-
covery.

In the context of variable background coefficients,
the model can still be used, but needs some care in
the implementation and the mathematical analysis,
as the reflectivity of the layer becomes non negligi-
ble, and strong well-posedness can be lost [3]. In this
study, we are interested in a new layer method, in-
troduced by Halpern et al [2], named Harmoniously
Matched Layers (HML). This method is designed to

keep the well-posedness of the original hyperbolic
system by using a classical first-order damping layer
(named SMART layer in the sequel). The reflectivity
of the layer is controlled by an extrapolation tech-
nique which annihilates first-order reflections in the
high frequency regime. The aim of this study is to
compare PML and HML methods in the simple case
of 2D acoustic waves propagation.

PML and HML formulation for 2D acoustic
wave propagation within the subsurface

Consider the first-order velocity-stress formulation
for the 2D propagation of acoustic waves in Ω =
[0, L]2 ⊂ R2, with variable density ρ(x1, x2) and ve-
locity c(x1, x2)

1,





∂tu−
1

ρ
∇p = 0

∂tp− ρc2divu = 0,

u(x1, x2, 0) = 0,
p(x1, x2, 0) = p0(x1, x2).

(1)
Here, u = (u1, u2) is the displacement velocity vec-
tor, p is the pressure wavefield, and p0 is the initial
pressure wavefield. The PML equations associated
with system (1) are defined on Ωl = [−l;L+ l]2 ⊂ R2





∂tuj −
1

ρ
∂j(p1 + p2) + σjuj = 0

∂tpj − ρc2∂juj + σjpj = 0
(2)

where pj denote the non-physical split pressure wave-
fields, and σj(xj) are the absorbing coefficients non
zero only in Ωl\Ω. This system is weakly well posed:
for piecewise continuous velocity and impedance, en-
ergy estimates with one loss of derivatives have been
obtained in [4]. The SMART equations add to the
operator the zero order perturbation defined by the
projectors on the relevant eigenspaces in each direc-

1For convenience, we restrict our notations to the square do-
main case. Extension to rectangular domains is straightfor-
ward.
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tion.





∂tuj − 1
ρ∂jp+ 1

1+ρ2c2
Fj(u, p)

∂tp− ρc2divu+ ρc
1+ρ2c2

∑

j=1,2

Fj(u, p) = 0.

Fj(u, p) =
[
σ+j (uj + ρcp) + σ−j (uj − ρcp)

]
(3)

where σ+j = (σj)|[L;L+l], σ
−
j = (σj)|[−l;0] (see [2]

for a detailed derivation of these equations). The
SMART equations keep the strong well-posedness of
the original system (1). Denote U(σ) = (u1, u2, p)
the solution of the SMART system for an absorption
σ = (σ1, σ2). The HML strategy consists in comput-
ing an extrapolation UHML such that

UHML = U(2σ)− 2U(σ). (4)

Numerical study of reflectivity in a varying
medium

Consider Ω and Ωl such that L = l = 5. The den-
sity ρ is taken constant equal to 1. The non constant
velocity c is

c(x1, x2) = 2 + sin(3(x1 − L)). (5)

The absorption coefficients σj are the usual order
3 polynomials (exact formula are given for instance
in [4]). Homogeneous Dirichlet boundary conditions
are imposed at the boundary of Ωl. We choose
the initial condition p0 such that, for x = (x1, x2),
xC = (4.5, 2), v = (1,−1), k = 3, r = 0.8:

p0(x1, x2) = f(x1, x2)χ‖x−xC‖≤r
f(x1, x2) = cos2

(
π ‖x−xC‖

r

)
cos
(
kπ v.(x−xC)

r

)

(6)
A“beam” centered on xC propagates along the line
x = −z and hits the absorbing layer with an non-
normal incidence angle. We present on figure 1 the
resulting pressure wavefield at time t = 0.75 s and
the difference of the PML, SMART and HML solu-
tion with the exact solution. The PML layer gener-
ates a reflected wave at the interface with the interest
domain, whose infinity norm is close to 10−4. The re-
flection generated by the SMART layer reaches 10−3

in infinity norm. Conversely, the extrapolation tech-
nique used for the HML method yield a significant
decrease of the reflection, which only reaches 10−7 in
infinity norm in this case.

Figure 1. Exact pressure wavefield (top left). Differ-
ence between exact and results from SMART (top
right), PML (bottom left), HML (bottom right).

Conclusion and perspectives
This preliminary experiment demonstrates that,

for variable coefficients problems, the HML method
can yield improvements in terms of reflectivity com-
pared to the PML method. Another advantage is
that the HML formulation keeps the well-posedness
of the initial set of equations, which may yield more
robust absorbing layer formulations for the simula-
tion of wave propagating in elastic and anisotropic
medias. The mathematical analysis of these models
is undergoing.
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Dirichlet-to-Neumann boundary conditions for viscous acoustic equations
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Abstract

In this study, we are investigating the
acoustic equations which arise by perturba-
tion techniques of the compressible Navier-
Stokes equations around a stagnant uniform
fluid, with mean density ρ0, mean velocity
c0 and without heat flux on an unbounded
domain. Our goal is to derive a Dirichlet-
to-Neumann boundary condition to limit the
computation domain. We give here the way
to compute this Dirichlet-to-Neumann map
and give some properties when the viscosity
η tends to 0.

1 Formulation of the problem

Let Ω ⊂ R2 be a compact perturbation of
a flat semi-infinite waveguide of width L (see
figure 1).

outgoing
Γc

L

Ωc

supp(f) x = 0

ey

ex

Figure 1: Perturbed waveguide Ω

We consider time-harmonic acoustic veloc-
ity v and acoustic pressure p (the time regime
is exp(−iωt), ω > 0) which are described by
the coupled system in the framework of Lan-
dau and Lifshitz [1], [2]

ω2ρ0v + c20ρ0∇(divv)− iωη∆v = iωf , in Ω, (1a)

−iωp+ ρ0c
2
0 divv = 0, in Ω, (1b)

v = 0, on ∂Ω. (1c)

In the momentum equation (1a) with some
known source term f the viscous dissipation
in the momentum is not neglected. The
continuity equation (1b) relates the acous-
tic pressure linearly to the divergence of the
acoustic velocity. The system is completed
by no-slip boundary conditions (1c). Here
we assume that f = 0 on ∂Ω and f(x, y) = 0
for x > 0. The associated variational formu-

lation on the bounded domain Ωc with arti-
ficial boundary Γc defined by

Ωc = {(x, y) ∈ Ω / x < 0}
Γc = {(x, y) ∈ Ω / x = 0} (2)

is, denoting by n = ex the unit normal vector
and t = −ey the unit tangential vector of Ωc

on Γc:

−
(
ρ0c

2
0 − iηω

) ∫

Ωc

divv divϕ+ ω2ρ0

∫

Ωc

v · ϕ

−iηω

∫

Ωc

curl2D v curl2D ϕ+
(
ρ0c

2
0 − iηω

) ∫

Γc

divv(ϕ · n)

+iω

∫

Γc

ηcurl2D v(ϕ · t) = iω

∫

Ωc

f · ϕ
(3)

Our goal is to build a Dirichlet-to-Neumann
(DtN) map that links both divv and
η curl2D v to both components of v.

2 Projection on Fourier modes
We introduce wp the normalized Fourier

basis of L2(0, L):

w−j(y) =

√
2

L
sin

(
2jπy

L

)
, w0(y) =

√
1

L
, wj(y) =

√
2

L
cos

(
2jπy

L

)

and we decompose v over the Fourier basis,
using the following ansatz

v(x, y) =




∑

j>0

αj exp(λjx)wj(y) + βj exp(µjx)w−j(y)

∑

j>0

γj exp(λjx)w−j(y) + δj exp(µjx)wj(y)




(4)

with the convention β0 = γ0 = 0. We use
ansatz (4) in (1a) and get, for any j > 1:

M(λj)

(
αj
γj

)
=

(
0
0

)
(5)

M(λj)

(
βj
−δj

)
=

(
0
0

)
(6)

with matrix M(λj) that depends only on j
and the physical parameters of the problem.
Systems (5), (6) have trivial solution unless
there exists λj ∈ C with negative real part
such that

det(M(λj)) = 0 (7)

Equation (7) admits two different solutions
that correspond to two different behaviours:
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• a “fast” solution that corresponds to

ηλ2
j,f = η

(
2jπ

L

)2

− iωρ0 (8)

One can see in (8) that
√
η|λj,f | tends to

a constant as η tends to 0

• a “slow” solution that corresponds to

λ2
j,s =

(
2jπ

L

)2

−
c2

0ω
2 + i ηρ0

ω3

c4
0 + ω2 η

2

ρ2
0

(9)

One can see in (9) that λj,s tends, as η
tends to 0, to

i

√√√√ω2

c20

−
(

2jπ

L

)2

, j <
ωL

2c0π
, −

√√√√
(

2jπ

L

)2

−
ω2

c20

, j >
ωL

2c0π

For j = 0, systems (5) and (6) become degen-
erated and lead to the following equations

α0

(
ω2ρ0 + c2

0ρ0λ
2
0,s − iωηλ2

0,s

)
= 0

δ0

(
ω2ρ0 − iωηλ2

0,f

)
= 0

(10)

and have the following solutions

λ2
0,s =

−c2
0ω

2 − iηρω
3

c4
0 + ω2 η

2

ρ2
0

and λ2
0,f =

−iωρ0

η

that corresponds formally to (9) and (8) tak-
ing j = 0.

3 Building the DtN maps

According to results of the previous sec-
tion, we modify the ansatz (4) to:

v(x, y) =




α0 exp(λ0,sx)w0(y)

+
∑

j>1

αj,f exp(λj,fx)wj(y) +
∑

j>1

βj,f exp(λj,fx)w−j(y)

+
∑

j>1

αj,s exp(λj,sx)wj(y) +
∑

j>1

βj,s exp(λj,sx)w−j(y)

δ0 exp(λ0,fx)w0(y)

+
∑

j>1

δj,f exp(λj,fx)wj(y) +
∑

j>1

γj,f exp(λj,fx)w−j(y)

+
∑

j>1

δj,s exp(λj,sx)wj(y) +
∑

j>1

γj,s exp(λj,sx)w−j(y)




(11)

where (αj,i, γj,i) and (βj,i, δj,i), for i = {f, s}
are linked through (5) and (6). In addition,
we have the following

αj,f + αj,s = 〈v(x = 0) · n, wj〉
βj,f + βj,s = 〈v(x = 0) · n, w−j〉
γj,f + γj,s = −〈v(x = 0) · t, w−j〉
δj,f + δj,s = −〈v(x = 0) · t, wj〉

(12)

where 〈. · .〉 is the L2 scalar product on (0, L).
To solve the systems defining (αj,i, γj,i) and

(βj,i, δj,i), for i = {f, s} let us rewrite v in
(11) in terms of normal and tangential traces.
Finally, we build our DtN maps computing
divv(x = 0) and η curl2D v(x = 0) as func-
tions of v:

divv(x = 0) =
∑

j∈Z
D|j|,n 〈v · n, wj〉wj

−
∑

j∈Z
sgn(j)D|j|,t 〈v · t, w−j〉wj

(13)

η curl2D v(x = 0) =−
∑

j∈Z
R|j|,t 〈v · t, wj〉wj

−
∑

j∈Z
sgn(j)R|j|,n 〈v · n, w−j〉wj

(14)
with D|j|,n, D|j|,t, R|j|,n and R|j|,t depending
on λj,i and physical parameters. The bound-
ary terms of variational formulation (3) with
DtN maps (13),(14) becomes:

(
ρ0c

2
0 − iηω

) ∫

Γc

∑

j∈Z
D|j|,n

〈
v · n, wj

〉 〈
ϕ · n, wj

〉

−
(
ρ0c

2
0 − iηω

) ∫

Γc

∑

j∈Z
sgn(j)D|j|,t

〈
v · t, w−j

〉 〈
ϕ · n, wj

〉

−iω

∫

Γc

∑

j∈Z
R|j|,t

〈
v · t, wj

〉 〈
ϕ · t, wj

〉

−iω

∫

Γc

∑

j∈Z
R|j|,n

〈
v · n, w−j

〉 〈
ϕ · t, wj

〉

One can remark that the limit behaviour of
these coefficients is

lim
η→0

Dj,n = − ω2

c2
0 limη→0 λj,s

and lim
η→0

Dj,t = 0

lim
η→0

Rj,n = 0 and lim
η→0

Rj,t = 0

which is expected (we obtain formally these
DtN maps considering η = 0 in (1)).
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New transparent boundary condition for time harmonic acoustic diffraction in anisotropic
media.
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Introduction

Many industrial applications require to check the
quality of structures such as plates, for instance in
aircraft design. A common way to inspect struc-
tures is to propagate ultrasonic waves and detect
from the experimental results the presence or not
of a defect or a crack. However, in aeronautics,
structures are often complex media like anisotropic
elastic plates for which the interpretation of these
results is complicated. Therefore, efficient and ac-
curate numerical methods of simulation are required.

In our work, we want to study the diffraction of
a time harmonic wave by a bounded defect in an
anisotropic elastic plate. In order to study the
diffraction properties of the defect, we consider it in
an infinite plate. Since the defect has an arbitrary
geometry, we want to use a finite element method in
a box that surrounds the defect. On the boundary
of this artificial box, we need to find transparent
conditions to simulate an infinite domain.

To develop this method, we start with the acoustic,
dissipative and isotropic case for which we present
the construction of new transparent boundary condi-
tions that can be easily extended to the anisotropic
case. We mainly use the ideas developed in [1], [2].

1 Model problem and reformulation

Let us consider

{
∆u+ k2

εu = f in Ω

∂νu = 0 on ∂O (PΩ)

where O is a bounded obstacle, ν the exterior normal
of ∂O, Ω is defined as R2 \ O, and f is compactly
supported. We suppose that k2

ε = k2 + iε with ε > 0
so that the problem (PΩ) has a unique solution in
H1(Ω).

We intend to formulate an equivalent problem de-
fined on a bounded domain. Let surround O and
the support of f by an artificial square denoted Σaa,

centered in (0, 0) and of length 2a. We also define
a second square denoted Σbb of length 2b > 2a (see
figure 1) and denote by Ωi the domain [−b, b]2 \O.

O ⌃ab

⌃a

�a

⌃0
bb

⌃1
bb

⌃2
bb

⌃3
bb

Figure 1: Geometry and notations

To make the presentation easier, we consider that
f and O are symmetric with respect to {y = x},
{y = −x} and {x = 0}. In this case, we will see in
the following that the problem can be restricted to a
coupled system where the only unknowns are

• ui, the restriction of u in Ωi,

• ϕa, the trace of u on Σa = {x = a} × R.

First, let us remark that by definition the unknowns
verify





∆ui + k2
εui = f in Ωi

∂νui = 0 on ∂O
ϕa = ui on Σab = {x = a} × [−b, b].

(P )

Let us introduce for all ϕa ∈ H
1
2 (Σa), uH(ϕa) the

unique solution in H1(ΩH) of

{
∆uH + k2

εuH = 0 in ΩH = {x ≥ a} × R
uH = ϕa on Σa.

(PH)

This half space problem can be analytically solved
by using a Fourier transform in y and solving the
ODE in x. We can then determine analytically two
operators defined by
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• D : ϕ ∈ H 1
2 (Σa) → Dϕ ∈ H 1

2 (Γa) where Dϕ =
uH(ϕ)|Γa where Γa =]b,+∞[×{y = a},

• Λ : ϕ ∈ H 1
2 (Σa)→ Λϕ ∈ H− 1

2 (Σ0
bb) where Λϕ =

∂xuH(ϕ)|Σ0
bb

.

Using continuity of the normal trace of u on Σ0
bb, we

have ∂xui = Λϕa on Σ0
bb and by symmetry og ui with

respect to {y = x} and {y = −x}, we can deduce

∂νiui = Λϕa on Σi
bb (1)

where νi is the exterior normal of Ωi. Moreover, by
symmetry with respect to {y = x}, we have

ϕa|{y≥b} = Dϕa (2)

and by symmetry with respect to {x = 0}, we have
ϕa = Dϕa for y ≤ −b too.
The coupled system that satisfy (ui, ϕa) is then





∆ui + k2
εui = f in Ωi

∂νui = 0 on ∂O
∂νui = Λϕa on Σi

bb

ϕa = ui on Σab

ϕa|{±y≥b} = Dϕa

(P )

Let us remark that even if the thickness b > a is not
natural, we expect that it will have the same benefit
for an iterative resolution as an overlap for decompo-
sition domain methods. Using [1], we know that for
the case b = a, this problem has a unique solution.
For b > a, this is still an open question.
Contrary to the usual method for isotropic media (us-
ing Fourier series or Green function), this formula-
tion can be extended to a homogeneous anisotropic
medium since it only use Fourier transform.

2 Numerical validation

The main difficulty in discretizing (P ) is that the
operators D and Λ have an integral form.

2.1 Computation of ϕa
We first focus on the problem satisfied by ϕa which
can be reduced, using again symmetry with respect
to {x = 0}, to

{
ϕa = g on [0, b]

ϕa = Dϕa on [b,+∞[
(PΣa)

for a given g ∈ H 1
2 ([0, b]). To compute this problem,

we approximate ϕa by a piecewise P1 function, and

the Fourier integral is replaced by a quadrature
formula.

To validate this discretization, we suppose that g is
the trace of the Hankel function (ie H(kε

√
x2 + y2))

on Σab and we know that we should find ϕa as the
trace of this Hankel function on Σa. On figure 2, we
see that the reconstruction (cross line) matches with
the exact solution (continuous line).

Figure 2: Solution of (PΣa) (b = 2)

2.2 Solution of the coupled system

We use to approximate ui a classical finite element
discretization. To validate the numerical method, we
compute the solution for O a circle of radius r < a
and ∂νu = 1 on ∂O. We obtain a solution of the
coupled system (P ), represented in Figure 3, which is
as expected an approximation of the Hankel function.

Figure 3: Solution of (PΣa)
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An exact NRBC for 2D wave equation problems in unbounded domains
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Abstract

We consider some 2D wave equation problems de-
fined in an unbounded domain. For their solution,
by means of standard finite element or finite differ-
ence methods, we propose a non reflecting boundary
condition (NRBC) on the chosen artificial boundary
B, which is based on a space-time integral equation
defining a relationship between the solution of the
differential problem and its normal derivative on B.
Such a NRBC is exact, non local both in space and
time and allows the treatment of incoming and out-
coming waves. We discretize it by using a fast con-
volution quadrature in time, based on a second order
BDF rule, and a collocation method in space based
on continuous piecewise linear approximants. The
proposed NRBC has the property of being suitable
for artificial boundaries of general shapes (even of
non-convex type, and having also corners, if neces-
sary). From the computational point of view, it is
competitive with well known existing NRBCs of lo-
cal type. Furthermore, it allows the treatment of far
field sources that do not have to be necessarily in-
cluded in the finite computational domain.

Introduction

Let Ωi ⊂ R2 be an open bounded domain with a
sufficiently smooth boundary Γ; define Ωe = R2 \ Ω̄i.
We consider the following wave propagation problem
in Ωe:





ue
tt(x, t) − ∆ue(x, t) = f(x, t) in Ωe × (0, T )

u(x, t) = g(x, t) in Γ × (0, T )

ue(x, 0) = u0(x) in Ωe

ue
t (x, 0) = v0(x) in Ωe,

where the initial condition u0, the initial velocity v0

and the source term f are either trivial or have lo-
cal supports. We truncate the infinite domain Ωe by
introducing an artificial smooth boundary B. This
boundary divides Ωe into two sub-domains: a finite
computational domain Ω, which is bounded inter-
nally by Γ and externally by B, and an infinite resid-
ual domain D.

The artificial boundary is chosen in such a way
that it detects the region where one is interested in
computing the solution. This region does not nec-
essarily have to contain the supports of the source
term and of the initial data. When the support of
a datum is contained in the residual domain D, the
datum is taken into account by a corresponding term
of the artificial boundary condition.

We impose on B the integral relation that the solu-
tion u and its outward normal derivative ∂nDu have
to satisfy. This is:

1

2
u(x, t) = V∂nDu(x, t) − Ku(x, t) + Iu0 (x, t)

+Iv0(x, t) + If (x, t) x ∈ B,

Vλ(x, t) :=

∫ t

0

∫

B
G(x − y, t − τ)λ(y, τ)dBydτ,

Kϕ(x, t) =

∫ t

0

∫

B
∂nDG(x − y, t − τ)ϕ(y, τ)dBydτ,

where G(x, t) is the wave equation fundamental so-
lution in R2, Iu0, Iv0 and If are possible “volume”
terms generated by the non trivial source and the
non homogeneous initial conditions whose supports
are in D (see [1]).

1 Restriction of the model problem to the
domain of interest

Let X = {u ∈ H1(Ω), u = g on Γ} and X0 =
{u ∈ H1(Ω), u = 0on Γ}; denote by λ(x, t) =
λ(t)(x) := ∂nu(x, t), which is defined only on the
boundary B, and set u(t)(x) = u(x, t). We consider
the weak formulation: find u(t) ∈ C0([0, T ];X) ∩
C1([0, T ];L2(Ω)) and λ(t) ∈ C0([0, T ];H−1/2(B))
such that for all w ∈ X0





d2

dt2 (u(t), w)Ω + a(u(t), w) − (λ(t), w)B = (f(t), w),
1
2u(x, t) + Vλ(x, t) + Ku(x, t) = 0 on B
u(0) = u0

du
dt (0) = v0.

for t ∈ (0, T ] (here for simplicity we suppose that the
supports of u0, v0 and f are contained in Ω, so that
Iu0 = Iv0 = If = 0).
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1.1 FEM/ Lubich-collocation method coupling

To solve the problem in the finite computational
domain Ω, we discretize the space-time integral equa-
tion by combining a second order (in time) BDF con-
volution quadrature (see [2]) with a classical space
collocation method. Such a discretization is then
coupled with an unconditionally stable ODE time in-
tegrator and a FEM in space. If we use, for example,
the Crank-Nicolson ODE rule, the final global linear
system takes the following form:

(
M +

∆2
t

4
A

)
Un+1 − ∆2

t

4
QΛΛΛn+1 =

(
M − ∆2

t

4
A

)
Un

+
∆2

t

4
QΛΛΛn + ∆tMVn +

∆2
t

4

(
Fn+1 + Fn

)

(
1

2
I + K0

)
UB

n+1 + V0ΛΛΛn+1 = −
n∑

j=0

Kn+1−jU
B
j ,

−
n∑

j=0

Vn+1−jΛΛΛj .

where M , A and Q are the finite element mass,
stiffness and boundary mass matrices respectively;
Vn and Kn represent the discretizations of the sin-
gle and double layer operators in terms of the Lu-
bich/collocation technique. For each row index, the
corresponding row elements of all the matrices Vn

and Kn can be computed simultaneously by means
of the FFT algorithm. Moreover, when the bound-
ary B is that of a circle, and a uniform partition of
it is considered, then all the matrices Vj and Kj ,
j = 0, · · · , N have a Toeplitz structure. This prop-
erty reduces significantly the storage and the compu-
tational cost of this ABC. When we have to deal with
a general boundary, or with a nonuniform partition,
then the above property does not hold. Nevertheless,
the matrices Vj and Kj, j = 0, · · · , N can be approx-
imated by corresponding very sparse matrices. This
phenomenon is even more relevant in the 3D case.
Thus, also in the case of a boundary B with no spe-
cial properties, the computational cost of our NRBC
can be drastically cut down. Memory and compu-
tational cost issues of the proposed approach will be
discussed, as well as other features that can allow
a significant save of storage and computational over-
head. Its generalization to 3D domains is straightfor-
ward. We will present some results we have obtained
in the case of non trivial initial data, sources which
are away from the computational domain Ω, multi-
scattering and artificial boundaries with corners.

Figure 1: Example 1. Snapshots of the solution with a

non trivial initial datum u0, at different times.

Figure 2: Example 2. Snapshots of the solution at

different times: a non trivial initial datum with two

humps and a nut shape artificial boundary.

Figure 3: Example 3. An example of artificial

boundary with corners: comparison between the

approximate and the exact solution at the point P
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3.13 High frequency approximation and numerics
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Abstract

In this work we construct and estimate the error
in Gaussian beam superposition approximations to
solutions of the high frequency Helmholtz equation
with a localized source.

Introduction

We are interested in the accuracy of Gaussian
beam approximations to solutions of the high fre-
quency Helmholtz equation,

∆u + (iαk + k2)n2u = f, x ∈ Rd. (1)

Here k > 0 is the wave number, assumed to be large,
n(y) is the index of refraction and f(y; k) is a source
function which in general also depends on k. The
nonnegative parameter α represents absorption.

Gaussian beams constitutes a high frequency
asymptotic model for wave propagation [6], [1]. It is
closely related to geometrical optics [3] and assumes
a solution of the form

u = aeikφ, (2)

where φ is the phase, and a is the amplitude. Unlike
geometrical optics, the phase φ is complex-valued,
and there is no breakdown of this model at caus-
tics. The solution is concentrated near a single ray
of geometrical optics. The phase function is real-
valued along the ray and its imaginary part is chosen
so that the solution decays exponentially away from
the central ray, maintaining a Gaussian-shaped pro-
file. More general high frequency solutions that are
not necessarily concentrated on a single ray can be
described by superpositions of Gaussian beams.

We study the accuracy in terms of k of Gaussian
beams superpositions for (1). This would give a rig-
orous foundation for beam based numerical methods
used to solve (1) in the high frequency regime. In
the time-dependent case several such error estimates
have been derived in recent years, see e.g. [4] and ref-
erences therein. There have, however, not been any

rigorous error estimates of this type available for the
Helmholtz equation.

Direct numerical simulation of (1) becomes ex-
pensive when the wave number k is high, since a
large number of grid points is then needed to resolve
the wave oscillations. Numerical methods based on
Gaussian beam superpositions have a much weaker
cost dependence on the frequency. They go back to
the 1980’s but in the past decade there has been a
renewed interest in such methods for waves following
their successful use in seismic imaging. Development
of new beam based methods are now the subject of
intense interest in the numerical analysis community,
see e.g. [2] for a survey.

1 Construction of Gaussian beams

The construction of the phases and amplitudes for
Gaussian beams has become standard (see, for exam-
ple, [6]). For first order beams

φ(y) = S(s) + (y − x(s)) · p(s)

+
1

2
(y − x(s)) · M(s)(y − x(s)),

and
a(y) = A0(s),

where s is a function of y (see below). Each beam
concentrates on a geometrical optics ray γ = {x(s) :
s ∈ R}, which is the spatial part of the bicharacter-
istics (x(s), p(s)) defined by the ODEs,

ẋ = 2p, ṗ = −∂xn2(x). (3)

The ODEs for S,M,A0 are

Ṡ = 2n2(x(s)) Ṁ = (n2)xx(x(s)) − 2M2

Ȧ0 = −tr(M(s))A0 − αn2(x(s))A0.

With these definitions, the phase φ can be any func-
tion satisfying φ(x(s)) = S(s), φx(x(s)) = p(s) and
φxx(x(s)) = M(s). However, to write down such a
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function we need to have s as a function of y. We let
x(s(y)) be the closest point on γ to y. This is only
well-defined in a tubular neighborhood of γ. There-
fore, we also restrict the support of u to this neighbor-
hood by multiplying it with a smooth cutoff function.
Note that s(y) is constant on planes orthogonal to γ.
Higher order beams can be constructed in a similar
way.

1.1 Source

To define how the source function generates beams,
we introduce the surface Σ = {x : ρ(x) = 0} with
|∇ρ| = 1 on Σ. We construct Gaussian beams
u± centered on the forward (s > 0) and back-
ward (s < 0) portions of a ray that leaves Σ in
the normal direction when s = 0. Hence, both u+

and u− will have the form (2) but they will corre-
spond to γ traced in opposite directions. The initial
data of the corresponding bicharacteristics satsifies
x±(0) =def x0 ∈ Σ and p±(0) is normal to Σ at
x0. We next choose the two beam phases φ± so that
φ+ = φ− and ∇φ+ = −∇φ− on Σ. If their ampli-
tudes A± are chosen so that A+ = A− = A on Σ,
then uGB = u+ + u− will satisfy

∆uGB + (iαk + k2)n2uGB = (4)
[
ik

(
∂φ+

∂ν
− ∂φ−

∂ν

)
A +

∂A+

∂ν
− ∂A−

∂ν

]
eikφ+

δ(ρ)

+ fGB =def g0δ(ρ) + fGB,

where ν = ∇ρ is the unit normal to Σ. We consider
the singular part of the right hand side g0δ(ρ) as a
fundamental source term, and fGB as the error from
the Gaussian beam construction; it tends to zero with
increasing k. Note that g0 = g0(y, x0, k) where x0 is
the initial point.

1.2 Superpositions

To construct superpositions of Gaussian beams we
denote by uGB(y; z) the Gaussian beam constructed
above for starting point z ∈ Σ. Then

u(y) =

(
k

2π

) d−1
2

∫

Σ
uGB(y; z)h(z)dAz (5)

is an approximation to the exact solution for the
source

g(y, k)δ(ρ) =def

(
k

2π

) d−1
2

∫

Σ
g0(y, z, k)δ(ρ)h(z)dAz ,

(6)
where g0 is the fundamental source term in (4) and
h(z) is any smooth compactly supported function.

2 Error estimate

We now state our main result on the error for su-
perposition (5). We assume that there is a num-
ber R > 0 such that the (smooth) index of refrac-
tion satisfies n(x) ≡ 1 when |y| > R and that the
source function g(y, k) in (6) is compactly supported
in {|y| < R}. The essential additional hypothesis for
our estimate is that the index of refraction does not
lead to trapped rays, more precisely that there is an
L such that |x(L)| > 2R for all solutions of (3) with
|x(0)| < R and |p(0)| = n(x(0)). We then have

Theorem 2.1 Let uE be the exact solution to (1)
with the source in (6), and let u be the Gaussian beam
superposition defined in (5). Under the assumptions
above, we then have the following estimate

‖u − uE‖L2(|x|≤R) ≤ Ck−1/2, (7)

where C is independent of x and k, but may depend
on R.

We note that this is the same error dependence on k
that has previously been derived for time-dependent
wave equations [4]. As in that case, for higher order
beams we expect k−1/2 be replaced by k−n/2 where
n is the beam order.

In the proof the Gaussian beam solution uGB is
first modified at infinity by a version of the proce-
dure used in [5], such that it satisfies (1) exactly for
large enough |y|, but also slightly modifying fGB for
small |y|. The small change in fGB is estimated by
stationary phase arguments and techniques similar to
those in [4] are used to estimate fGB itself. Finally,
the estimates derived by Vainberg [7] for compactly
supported sources can be applied to uE − u.
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Abstract

A nonstationary model that relies on the spatial
nonlinear Schrödinger (NLS) equation with the time-
dependent refractive index describes laser beams in
photopolymers. We consider a toy problem, when
the rate of change of refractive index is proportional
to the squared amplitude of the electric field and the
spatial domain is a plane. In the present work, we de-
rive the NLS approximation from a two-dimensional
quasi-linear wave equation and rigorously justify this
model for appropriately small time intervals and
smooth initial data. Numerical simulations illustrate
the approximation result in the one-dimensional case.

1 Introduction

Mathematical models for laser beams in photo-
chemical materials used in physical literature [2] are
based on a spatial nonlinear Schrödinger (NLS) equa-
tion with a time-dependent refractive index. These
models are normally derived from Maxwell equations
using heuristic arguments and qualitative approxi-
mations (see e.g. [3]). Numerical simulations of such
models are performed by experimentalists [1], [6] for
theoretical explanations of complicated dynamics of
laser beams in photopolymers. The complexity of
the NLS equation modeling photochemical materials
is related to the fact that the spatial coordinate in the
direction of the beam propagation serves as an evolu-
tion time in the NLS equation, whereas the nonlinear
refractive index depends slowly on the temporal co-
ordinate. Physically, laser beams described by the
NLS approximation induce waveguides in polymers,
which affect the shape and dynamics of laser beams
via nonlinear refractive index. In the present work we
study how to justify a time-dependent NLS model
derived from a toy model resembling the Maxwell
equations. The toy model is written as a system of
a two-dimensional quasilinear wave equation and an
empirical relation for the change of the refractive in-
dex.

2 Model and results

A photopolymer occupies typically a half-space
z ≥ 0 and its face z = 0 is exposed to a laser beam. If
the beam is localized in the x-direction and uniform
in the y-direction, then the electric field has polar-
ization in the y-direction with the amplitude E being
y-independent, hence E (x, z, t) = (0, E (x, z, t) , 0) is
the electric field. The initial beam is assumed to
be spatially wide-spreaded, small in amplitude, and
monochromatic in time.

Neglecting polarization effects and uniform ma-
terial losses, the electric field satisfies a one-
dimensional quasilinear wave equation in the form

∂2xE + ∂2zE − n2∂2tE = 0, (1)

where n is referred to as the refractive index of the
photopolymer. The refractive index n changes in
time t because of the nonlinear effects induced by
the squared amplitude of the electric field E.

Let us write the squared refractive index in the
form n2 = 1 +m and assume that the rate of change
of m is governed by the empirical relation

∂m

∂t
= E2. (2)

The system (1)-(2) resembles approximation of a
more complicated system of governing equations in
physical literature [2]. We note that all physical con-
stants in this system are normalized to unity.

Asymptotic solution to the system is given by the
multi-scale expansion [5]

E (x, z, t) = ε
s+2
2 A(X,Z, T )eiω0(z−t) + c.c. (3)

m (x, z, t) = ε2M(X,Z, T ), (4)

where c.c. stands for complex conjugated terms, X =
εx, Z = ε2z, T = εst are slow variables and s ≥ 2.

If s = 2, the leading-order terms read as follows:

∂2XA+ 2iω0 (∂ZA+ ∂TA) + ω2
0MA = 0 (5)

and
∂TM = 2 |A|2 , (6)
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which will be the subject of our studies.

If s > 2, at the leading order, we have the spatial
NLS equation

∂2XA+ 2iω0∂ZA+ ω2
0MA = 0. (7)

Because M depends on T by means of the same
equation (6), A depends on T implicitly in the spatial
NLS equation (7). The system (6)-(7) was used in
the previous works on photochemical materials (see
review in [2]). While justification of the system (6)-
(7) still remains an open problem, we focus on the
system (5)-(6). We shall consider solutions of the
original system (1)-(2) in an unbounded domain for
(x, z) ∈ R2 supplemented by the initial conditions
at t = 0. We hence work with the scaling X = εx,
Z = ε2z, T = ε2t and represent exact solution to the
system (1)-(2) as

E(x, z, t) = ε2
(
A(X,Z, T )eiω0(z−t) + c.c.

)
+U(x, z, t)

(8)
and

m(x, z, t) = ε2M(X,Z, T ) +N(x, z, t), (9)

where U(x, z, t) and N(x, z, t) are error terms to es-
timate. Feeding (8)-(9) into (1)-(2) and assuming
validity of (5)-(6), we arrive at the system

∂2xU + ∂2zU −
(
1 + ε2M +N

)
∂2t U = −ε2R1N

− ε6R2 (10)

and

∂tN = ε4R3 + ε2R4U + U2, (11)

where R1, . . . , R4 are some functions of A and its
derivatives.
In our work [4], we establish local well-posedness of
the systems (1)-(2) and (5)-(6), formulate a crite-
rion for continuation of local solutions of (1)-(2) and
obtain a priori energy estimates from residual equa-
tions derived from (10)-(11) by suitable near-identity
transformations. As a main outcome, we have the
following justification result for initial pulses lying
in Sobolev Hilbert space Hk

(
R2
)

:= W k,2
(
R2
)

with
sufficiently high index k.
Theorem. Given initial data A0 ∈ H8

(
R2
)
, let

A, M be local solutions to the system (5)-(6) for
T ∈ [0, T∞), where T∞ > 0 is the maximal existence
time. There exist ε0 > 0 and T0 ∈ (0, T∞) such that

for every ε ∈ (0, ε0) there is a unique solution E, m
of the system (1)-(2) for t ∈

[
0, T0/ε

2
]
satisfying

sup
t∈[0,T0/ε2]

∥∥∥E − ε2
(
Aeiω0(z−t) + c.c.

)∥∥∥
H3(R2)

= O
(
ε5/2

)
,

sup
t∈[0,T0/ε2]

∥∥m− ε2M
∥∥
H2(R2)

= O
(
ε5/2

)
.

3 Discussion and further challenges

We expect justificaton analysis of the NLS model
(5)-(6) to be easily extended to the case of time evo-
lution of a pulse in R3. But, in view of conventional
experimental set-up, it would be more interesting to
reformulate a problem in a half-space setting. How-
ever, justification happens to be problematic since
the applied technique is incompatible with spaces in
which we are able to prove well-posedness of the sys-
tem (5)-(6). Moreover, in a priori energy estimates,
there are non-vanishing boundary terms arising from
integration by parts. In case of the spatial NLS model
(6)-(7) for X ∈ R, Z ∈ R+, the inapplicability of
the energy method is obvious because ‖A‖L2(R×R+)

becomes infinite due to conservation in Z of L2
X (R)-

norm of solution of the NLS equation (7).
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Abstract

In this study, it is presented a method that aims
to overcome some of the limitations of beam propa-
gation based on high- frequency ray tracing in com-
plex velocity models that contain complex interfaces.
The method is based on local smoothing of the inter-
face. With a modest increase in computational cost,
the method presented captures the wave kinematics
and dynamic that are comparable to finite-difference
wave propagation with higher fidelity while staying
within the ray-tracing framework, without requir-
ing processing or alteration to the original model.
There is presented comparison of the method with
finite-difference wave propagation in numerical sim-
ulations.

Introduction

In the paper [3] there were presented frequency-
dependent ray-tracing through rugose interfaces.
This approach is based on usage of boundary inte-
grals. Outside the boundary it is a conventional ray
tracing. And on the boundary this is way of wave
length smoothing. This smoothing depends on Fres-
nel volume that depends on frequency, ray direction
and ray length.

Gaussian beams are ray based solutions and there-
fore they have all the problems that are connected
with ray tracing through rugose interfaces. Moreover
Gaussian beams have additional dependency with re-
spect to curvature of the interface (see [2]). Therefore
Gaussian beam propagation through non flat bound-
aries has additional restrictions on the shape of the
boundaries (see [1]).

In this paper is suggested the way of Gaussian
beams propagation on the basis of frequency depen-
dent ray tracing through rugose interfaces. This way
is similar with the method presented in [3] but here
is specified for the beam propagation. Outside the
boundary it is a conventional dynamic ray tracing.
And on the boundary this is way of smoothing. This
smoothing depends on the incident Gaussian beam
itself not just on Fresnel volume like in [3]. Also this
smoothing gives beam dependent interface curvature
that is crucial thing for beam propagation.

Method

Gaussian beam propagation through smooth in-
terfaces is described in [2]. There were derived
conditions that connect dynamic parameters of
an incident beam and dynamic parameters of re-
flected/transmitted beam. These connections de-
pend on curvature of an interface. Particularly, on
an interface connecting two homogeneous layers these
conditions for the transmitted beam are:

P t = D(
1

ct cos(γi)
− 1

ci cos(γt)
)Qi +

cos(γi)

cos(γt)
P i,

Qt =
cos(γt)

cos(γi)
Qi, (1)

here Qi, P i - dynamic parameters of an incident beam
on the interface, Qt, P t - dynamic parameters of the
transmitted beam, γi - angle between interface nor-
mal and incident ray, γt - angle between interface
normal and transmitted ray, D - curvature of the
interface in the point of incidence. As one can see
the main influence on the dynamic parameters gives
high frequency Snell’s law that connects incident and
transmitted ray directions and curvature of the inter-
face. Also the main restrictions of beam propagation
are connected with high frequency Snell’s law and
interface curvature (see [2],[1]).

In the paper [3] were shown there is effective inter-
face that describes physical ray propagation through
irregular boundaries. In a similar fashion in order to
overcome some of the restrictions of Gaussian beam
propagation it is suggested to get effective interface,
effective interface normals and effective interface cur-
vature. It is proposed local smoothing of the interface
that depends on incident Gaussian beam itself:

Xeff (xi, ui
gb) =

∫ xi+ǫ

xi−ǫ
|ui

gb(x
s;xi;ω)| · xsds. (2)

The same trick is done for the interface tangent (or
normal) vector and for the interface curvature:

Keff (xi, ui
gb) =

∫ xi+ǫ

xi−ǫ
|ui

gb(x
s;xi;ω)| · k(xs)ds. (3)
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Deff (xi, ui
gb) =

∫ xi+ǫ

xi−ǫ
|ui

gb(x
s;xi;ω)| · D(xs)ds. (4)

After that we will get effective point of incidence and
effective local plane boundary. And we can apply
conventional Snell’s law with respect to this effective
local plane boundary and get effective incident angle
γi

eff and effective transmitted angle γt
eff . Finally ef-

fective curvature Deff and effective angles γi
eff , γt

eff

are used in formula (1) in order to get dynamic pa-
rameters for the effective transmitted beam.

Illustrations

We compare the Gaussian beam results obtained
using the averaging method and high frequency ap-
proximation with finite-difference modeling. For this,
we consider a velocity model that is composed of
two homogeneous mediums with an oscillating in-
terface. We choose the velocities of the upper and
lower mediums to be 1500 m/s and 4500 m/s, which
correspond to the speed of sound in water and salt,
respectively. The interface is chosen to be a sine func-
tion. In the Figure 1 are presented seismograms for
both solutions. Red one is finite-difference solution
and blue one is high frequency ray based solution.
In the Figure 2 are presented seismograms for both
solutions also. Again red one is finite-difference so-
lution and blue one is effective beam solution. In
this specific case high frequency ray and effective ray
are the same. But the widths of the high frequency
Gaussian beam and effective beam are crucially dif-
ferent. The same we can say about the beam front
curvature. Seismograms show that results obtained
by smoothing method are rather close to the results
obtained by finite-difference modeling while results
obtained by high frequency solution are rather dif-
ferent. The method has been applied on the Sigsbee
synthetic data set whose results are left for our final
presentation.

Conclusions

It is suggested and investigated solution that de-
scribes beam propagation through irregular bound-
aries. This solution gives effective interface, effec-
tive interface normal and effective interface curvature
that depends on incident beam. Also this solution
describes physical beam propagation while staying in
the framework of conventional dynamic ray tracing.
It is computationally cheap and stable with respect
to interface perturbations. Suggested solution can
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Figure 1: Seismogram of finite difference based
beam (red) and high frequency ray based beam

(blue).
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Figure 2: Seismogram of finite difference based
beam (red) and high frequency ray based beam

(blue).

improve results of beam based applications. For ex-
ample it can improve subsalt beam imaging results.
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Abstract
We develop an efficient high-order algorithm for simu-

lation of the statistical properties of quantities of interest
(QoI) in a class of stochastic acoustic wave propagation
models. In particular, the moments of the QoI play an
important role in quantifying random uncertainty in the
multiple obstacle acoustic scattering and absorption mod-
els. The stochastic nature of configurations governing the
models may include randomness in location and orien-
tations of the obstacles, their shapes, and their material
properties.

1 A model problem and QoI
Let ΩM (ω) denote a two (or three) dimensional config-

uration of M disjoint particles DI(ω) for I = 1, . . . ,M .
Dependence of ΩM (ω) on ω indicates random uncer-
tainty in the configuration that may include the location
and orientations of the particles, their shapes, and their
material properties. The nature of the randomness in the
configuration is specified through the choice of a proba-
bility space (f,F ,P) where f is a sample space, F is a
σ-algebra, and P is a probability measure on (f,F). In
particular, all of the uncertain properties of the configura-
tion are described by ω ∈ f.

We assume that the configuration is illuminated by the
incident plane wave uinc(x) = eikx·d̂ with wavenumber
k = 2π/λ where λ is the wavelength, and incident direc-
tion given by the unit vector d̂. When illuminated by the
plane wave the stochastic configuration ΩM (ω), with ω in
the probability space, induces a time-harmonic scattered
random field us(x, ω) that satisfies the n-dimensional
(n = 2, 3) exterior Helmholtz equation

4us(x, ω) + k2us(x, ω) = 0, x ∈ Rn \ ΩM (ω), (1)

and the Sommerfeld radiation condition

lim
|x|→∞

|x|(n−1)/2

(
∂us

∂|x|(x, ω)− ikus(x, ω)

)
= 0, (2)

uniformly in all directions x̂ = x/|x|. Let utot =
uinc + us be the total exterior field and let uint be field
inside those particles in DI(ω) that are penetrable. If
DI(ω) is a penetrable obstacle for some I = 1, . . . ,M ,

then the restriction of uint to DI(ω) satisfies the interior
Helmholtz equation in DI(ω) with corresponding inte-
rior wavenumber kint

I . Each particle DI(ω) in the con-
figuration is assumed to be either sound-soft, or sound-
hard, or absorbing or penetrable (in the electromagnetic
case TM-polarized dielectric), and hence the total field
utot(x) satisfies one of the following boundary conditions
for x ∈ ∂DI(ω)

utot(x) = 0 , (3)

∂utot

∂n
(x) = 0 , (4)

utot(x) + µI
∂utot

∂n
(x) = 0 , µI ∈ C, (5)

utot(x) = uint(x),
∂utot

∂n
(x) =

∂uint

∂n
(x). (6)

Thus we have mixed boundary conditions on the stochas-
tic boundary ∂ΩM (ω) and hence the induced scattered
field us(x, ω) is a random process.

In applications, typically the QoI is derived from the
far field

u∞(x̂, ω) = lim
|x|→∞

|x|(n−1)/2e−ik|x|us(x, ω), x̂ =
x

|x| .
(7)

It is useful to expand our notation for the far field to indi-
cate that the far field depends on the incident direction d̂,
thus we write u∞(x̂, d̂, ω). We denote the QoI by f(x̂, ω)
and it is typically of the form

f(x̂, ω) = (Fu∞)(x̂, ω)

where F is an appropriate operator. For example, the
scattering cross section [6] of the configuration as a func-
tion of incident direction is given by

(Fu∞)(x̂, ω) =

∫

S
|u∞(ŷ, x̂, ω)|2 ds(ŷ),

where S is the set of all unit vectors in Rn. This QoI is
important in atmospheric science applications [1],[2].

Important moments metrics of the dependence of the
QoI on ω are the expected value

E[f(x̂, ·)] =

∫

Ω
f(x̂, ω) dP(ω) (8)

319 WAVES 2013



and the variance

var[f(x̂, ·)] = E
[
f(x̂, ·)− E[f(x̂, ·)]

]
. (9)

These are measures of the mean and spread, respectively,
of the QoI.

2 A high-order algorithm for QoI
A standard tool for computing the expected value and

the variance is the Monte-Carlo method

EMC [f(x̂, ·)] =
1

N

m∑

j=1

f(x̂, zj), (10)

where zj for j = 1, . . . , N are independent samples of
the random vector z(ω). For each sample zj , the QoI
f(x̂, zj) is computed by a scattering simulation involv-
ing solving the governing equations (1)–(6) for a fixed
configuration described by zj . A disadvantage of the
Monte-Carlo method (10) is its slow 1/

√
N convergence

rate, which necessitates a very large number of simula-
tions even for a couple of digits accuracy.

In this work we reduce the number of simulations us-
ing a fully discrete version of the high-order polynomial
chaos Fourier-Galerkin projection of the QoI. The result-
ing stochastic high-order pseudospectral method (based
on approximating integrals in the coefficients of the pro-
jection by high-order quadratures) belongs to the well
known class of the generalized Polynomial Chaos (gPC)
methods [7].

Our hybrid approach is based on developing (i) ef-
ficient high-order decomposition approximations of the
QoI; (ii) high-order approximations of the forward acous-
tic model in the spatial variable (using the methods de-
veloped by the authors [3], [4], [5]); and (iii) fully dis-
crete spectrally accurate approximations of the process in
the stochastic variable. Efficient approximations for the
forward model are required because of the need to simu-
late for tens of thousands of incident waves, for each re-
alization. Consequently, we obtain substantial reductions
in both the number of simulations and efficient compu-
tations for each realizations. Figure 1 demonstrates the
efficiency of our high-order algorithm, compared to the
standard Monte Carlo based simulations.
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Abstract

We propose a numerical-asymptotic boundary ele-
ment method for problems of time-harmonic acous-
tic scattering of an incident plane wave by a sound-
soft two-dimensional (2D) screen. Standard numeri-
cal schemes have a computational cost that grows at
least linearly with respect to the frequency of the inci-
dent wave. Here, we enrich our approximation space
with oscillatory basis functions carefully designed to
capture the high frequency behaviour of the solution.
We show that in order to achieve any desired accu-
racy it is sufficient to increase the number of degrees
of freedom only in proportion to the logarithm of the
frequency, as the frequency increases, and for fixed
frequency we demonstrate exponential convergence
with respect to the number of degrees of freedom.

Introduction

There has been much recent interest (see, e.g., [1])
in the development of numerical-asymptotic bound-
ary element methods for time-harmonic scattering
problems. In these methods, knowledge of the high
frequency asymptotic behavior of the solution is in-
corporated into the approximation space, leading to
improved performance at high frequencies and, in
many cases, rigorous error estimates demonstrating
sublinear (often logarithmic) growth in the number of
degrees of freedom required to maintain accuracy as
frequency increases. Here, we apply this idea to the
problem of scattering by a 2D screen. This represents
the first application of this approach (supported by
error estimates) to any problem of scattering by sep-
arated multiple scatterers (in this case the separate
components of the screen).

1 Problem statement

We consider the 2D problem of scattering of the
time harmonic incident plane wave ui(x) = eikx·d,
where x = (x1, x2) ∈ R2, k > 0 is the wavenumber
and d is a unit direction vector, by a sound soft screen
Γ := {(x1, 0) ∈ R2 : x1 ∈ Γ̃}. Here Γ̃ ⊂ R is a union
of disjoint open intervals, i.e. Γ̃ = ∪ni

j=1(s2j−1, s2j),
where 0 = s1 < . . . < s2ni = L, with ni denoting the
number of intervals making up Γ̃ and L being the

length of the screen in the case ni = 1. We denote
the propagation domain by D := R2\Γ̄, where Γ̄ is
the closure of Γ.

The boundary value problem (BVP) we wish to
solve is: given the incident field ui, determine the
total field u ∈ C2(D) ∩H1

loc(D) such that

∆u+ k2u = 0 in D, u = 0 on Γ,

and the scattered field us := u − ui satisfies the
Sommerfeld radiation condition. The precise sense
in which u = 0 holds on Γ is explained in [2].

For the solution of the above BVP, a form of
Green’s representation theorem holds:

u(x) = ui(x) +

∫

Γ
Φk(x,y)

[
∂u

∂n

]
(y) ds(y), x ∈ D,

where Φk(x,y) = i
4H

(1)
0 (k |x− y|) is the fundamen-

tal solution of the Helmholtz equation and
[
∂u
∂n

]
is

the jump in the normal derivative ∂u
∂n across Γ. It

is shown in [2] that φ =
[
∂u
∂n

]
satisfies the boundary

integral equation

Skφ(x) = ui(x), x ∈ Γ, (1)

where Skφ(x) :=
∫

Γ Φk(x,y)φ(y) ds(y), x ∈ Γ.

2 Analyticity and regularity of solutions

Our approximation space for the solution of (1) is
adapted to the high frequency asymptotic behaviour
of the solution, which we now consider. Representing
x ∈ Γ parametrically by x(s) := (s, 0), where s ∈ Γ̃ ⊂
(0, L), the following theorem is proved in [2]:

Theorem 2.1 Let k ≥ k0 > 0. Then for any j =
1, . . . , ni there exists a constant C > 0, dependent
only on k0 and minm=1,...,2ni−1{sm+1−sm}, such that

φ (x(s))=Ψ (x(s))+v+
j (s−s2j−1)eiks+v−j (s2j−s) e−iks,

(2)
for s ∈ (s2j−1, s2j), where Ψ := 2∂ui/∂n, and the
functions v±j (s) are analytic in the right half-plane
Re [s] > 0, where they satisfy the bound

∣∣∣v±j (s)
∣∣∣ ≤ C(1 + kL)k |ks|− 1

2 .
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3 Approximation space

Using the representation (2) we can now design an
appropriate approximation space VN,k to represent

ϕ(s) :=
1

k

([
∂u

∂n

]
(x(s))−Ψ (x(s))

)
, s ∈ Γ̃.

The function ϕ, which we seek to approximate,
can be thought of as the scaled difference between
[∂u/∂n] and its “Physical Optics” approximation Ψ,
with the 1/k scaling ensuring that ϕ is nondimen-
sional. As alluded to earlier, instead of approximat-
ing ϕ directly by conventional piecewise polynomials
we instead use the representation (2) with v+

j and v−j
replaced by piecewise polynomials (of order p) sup-
ported on overlapping geometric meshes (each with n
layers) on each interval (s2j−1, s2j), graded towards
the singularities at s = s2j−1 and s = s2j respec-
tively. This leads to an identical approximation space
on each interval to that used on each side of a convex
polygon in [3]. For full details we refer to [2], where
the following best approximation result is shown.

Theorem 3.1 Let n and p satisfy n ≥ cp for some
constant c > 0 and suppose that k ≥ k0 > 0. Then
there exist constants C, τ > 0, dependent only on ni,
k0, c and minm=1,...,2ni−1{sm+1 − sm}, such that

inf
v∈VN,k

‖ϕ− v‖
H̃

− 1
2

k (Γ̃)
≤ Ck1/2L3/2e−pτ .

Whereas our estimates for classes of polygons (see,
e.g., [1], [3]) hold in L2, here we need to work in
appropriate Sobolev spaces. For a precise definition
of the k-dependent norm ‖ · ‖

H̃
− 1

2
k (Γ̃)

, we refer to [2].

4 Galerkin method

Having designed an appropriate approximation
space VN,k, we use a Galerkin method to select an
element so as to efficiently approximate ϕ. That is,
we seek ϕN ∈ VN,k such that

〈SkϕN , v〉Γ =
1

k

〈
ui − SkΨ, v

〉
Γ
, ∀v ∈ VN,k, (3)

where the duality pairings in (3) can be evaluated
simply as L2 inner products. The following error
estimate is proved in [2].

Theorem 4.1 If the assumptions of Theorem 3.1
hold, then there exist constants C, τ > 0, dependent
only on ni, k0, c and minm=1,...,2ni−1{sm+1 − sm},
such that

‖ϕ− ϕN‖H̃−1/2
k (Γ̃)

≤ CkL2e−pτ .

5 Numerical results

We now present numerical results for the solu-
tion of (3). We take d = (1/

√
2,−1/

√
2), ni = 1,

and L = 2π. We take the same number of layers
n = 2(p + 1) on each graded mesh, giving a total
number of degrees of freedom N = 4(p + 1)2. Since
N depends only on p, we write ψp(s) := ϕN (s). In
Figure 1 we plot on a logarithmic scale the relative
L1 errors ‖ψ6 − ψp‖L1(Γ̃) / ‖ψ6‖L1(Γ̃) (used for sim-

plicity of computation) against p for a range of k.
The linear plots demonstrate exponential decay as

Figure 1: Convergence results

the polynomial degree, p, increases, as we might ex-
pect from Theorem 4.1. For fixed p, the relative error
increases only very slowly as k increases. For further
numerical results, see [2], [4].
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Abstract

We consider the problem of time-harmonic scat-
tering of waves by a flat convex plate. The total
diffracted field can be expressed in terms of the so-
lution of an integral equation [1]. This does, in fact,
constitute a novel formulation of the scattering prob-
lem, not restricted to high frequency ranges. We shall
present an exploration of this integral equation for-
mulation and the advantages and disadvantages it
poses for numerical computations.

Introduction

Consider the time-harmonic scattering of scalar
spherical and plane waves, ui, by a flat convex plate,
D, subject to a Neumann boundary condition. Let-
ting us denote the scattered wave, it satisfies an equa-
tion

∆us + k2us = 0 R3\D (1)

∂us

∂n
+
∂ui

∂n
= 0 on ∂D,

in addition to a radiation condition, which ensures
that the scattered field is outgoing. Solving the PDE
as posed in (1) is one option for solving this problem.
This involves truncating the unbounded space some-
how, which is why a BEM method might be favoured,
where one solves an integral equation on ∂D [2]. This
is thus a second option for solving this problem. In
high frequency ranges, k � 0, the solution us as well
as surface fields are oscillatory, and CPU time goes
up dramatically; the number of unknown needed to
represent the solution is at leastO(k3) for PDE meth-
ods and O(k2) for BEM. In this case, asymptotics,
such as geometrical optics, GTD, UTD etc., [3], are
favoured. However, the usefulness of asymptotics is
limited in intermediate frequency ranges, since only
limited accuracy can be attained with such methods.

An alternative is hybrid methods: Combining
asymptotics and numerics has come a long way in re-
ducing the work and storage load to something closer
to O(1). An extensive review of such efforts is pre-
sented in a recent survey paper in Acta Numerica

[5]. We particularly note pp. 264–269 in [5], where a
problem of the type (1) is treated.

The topic of this work is an exploration of a third
option, which is particularly well suited for the given
problem, Eq. (1). In a recent work by the authors,
[1], it has been shown that the total diffracted field
from such a scattering setup can be expressed in
terms of an integral equation for an unknown edge
source density. However, this integral equation is of
a non-standard form, and there is potential to solve it
in efficient ways, especially for intermediate frequen-
cies. As such this formulation can be useful for bridg-
ing the gap between asymptotics and FEM/BEM.

1 Edge source integral equation

Taking the view of geometric optics, we can de-
compose the total field in terms of direct, reflected
and diffracted components,

ui + us = udir. + urefl. + udiff..

Computing the direct and reflected components is
straightforward. Note that udir. and urefl. are discon-
tinuous fields, and by the continuity of the total field
udiff. is discontinuous as well. Computing a first or-

der diffracted field, u
(1)
diff., in terms of edge diffraction

has been demonstrated in [4]. Letting xS denote the
source position, and xR the receiver position, we have

u
(1)
diff.(xR) =

∫

Γ

eik|xS−z|

|xS − z|
eik|xR−z|

|xR − z|
Ω(xR, z, xS)dsz,

(2)
where Γ denotes the edge of D. The function Ω is
a function which only depends on the sender and re-
ceiver direction, relative to an edge point z. For a
given edge point z denote by θR and θS the angle
of the directions to xR and xS from z with respect
to the plate plane, measured from a reference side.
Likewise φR and φS the angles with respect to the
edge tangent at z. Then

Ω(xR, z, xS) = − γ

2π

∑

±

cos( θS±θR2 )

γ2 − sin( θS±θR2 )
,
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where

γ =
cos(φS−φR2 )√
sinφS sinφR

.

In [1] it is shown that the sum of all higher order
diffracted components can be written in terms of a
directional monopole density q : Γ × Γ → C, which
solves the integral equation,

q(z1, z2) = q0(z1, z2)+
∫

Γ
q(z2, z)

eik|z2−z|

|z2 − z|
Ω(z1, z2, z)dsz, (3)

where now q0 represents the first order diffracted
field, and Ω is evaluated in the plane, and thus sim-
plifies,

Ω(zR, z, zS) = − 1

π

√
cosφS cosφR

cos(φS−φR2 )
.

Under an assumption that all diffraction can be ex-
pressed in terms of type (2) and higher order re-
diffractions of these, an assumption that appears to
hold in the current setting, the total diffracted field
is given as

udiff.(xR) = u1
diff.(xR) +

∫∫

Γ×Γ
q(z1, z2)

eik|z1−z2|

|z1 − z2|
eik|xR−z1|

|xR − z1|
Ω(xR, z1, z2)dsz1dsz2 . (4)

2 Numerical considerations

The numerical advantage of using this formula-
tion is two-fold. First, the integral equation (3) is
not expressed with a global operator, unlike in the
Kirchhoff-Helmholtz integral equation. In practical
terms, this means that a discretisation of (3) can be
sparse. Secondly, the unknown q is non-oscillatory
in terms of its first argument – this can be realised
by studying (3), given that q0 is non-oscillatory in
terms of its first argument. This should mean that
the number of unknowns needed to represent the so-
lution is only O(k). A disadvantage is that the fields
we are computing are discontinuous, and thus need
special numerical treatment.

Initial numerical tests confirm these observations.
Brute-force computing does show that the disconti-
nuity of the geometrical optics fields are canceled by
the diffracted field, providing a qualitatively correct
field, see Fig. 1.

Figure 1: Computed field from the scattering of a
field from a point-source at z = 3, k = 10,

impinging on an ellipse in the xy-plane with
semi-axes of length 1 and 3.
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Abstract

The computation of highly oscillatory integrals has
enjoyed renewed interest in the last years, fueled by
new applications such as high frequency scattering
problems (see [1] and references therein).

We show how to approximate efficiently such inte-
grals by combining: (a) non-linear changes of vari-
able to rewrite the oscillations in a simpler way; (b)
Filon-Clenshaw-Curtis rules for approximating these
new integrals; and (c) graded meshes for an adequate
treatment of the singularities in the integrand.

We prove that the use of these techniques gives
rise to a simple, efficient and robust method. In
fact, the rule converges very fast for non-, mildly and
highly oscillatory integrals. Furthermore, we show
that the error decreases, for fixed number of quadra-
ture nodes, as the oscillations become stronger.

1 Introduction

This work is devoted to showing an efficient way
to approximate

I
[a,b]
k (f, ψ) :=

∫ b

a
f(x) exp(ikψ(x)) dx

with ψ and f smooth except possibly at a where f
is allowed to have an integrable singularity and ψ
is allowed to have a stationary point.The methods
extend in an obvious way to the case where singular-
ities or stationary points may appear (not necessarily
at the same place) in the interior of (a, b). Without
loss of generality, we will assume that ψ′(x) > 0 for
x ∈ (a, b] and that k > 0.

Such integrals appear in many areas of numerical
analysis. For instance, we can find them in bound-
ary element methods for scattering problems where
k > 0 is the wave-number and (in 2D) f may have a
logarithmic singularity. In high frequency problems
where k � 1, the integrand becomes strongly oscil-
lating so that the use of classical quadrature rules is
prohibitively expensive.

Clearly, the phase function ψ governs greatly the
behavior of the integral. We will show first how the
problem can be reduced to a simpler one, namely

with a linear oscillator ψ(x) = x via a non-linear
change of variables. If a is stationary point, i.e. if
ψ′(a) = 0, this change of variables adds a new singu-
larity to the non-oscillatory part of the transformed
integrand. One of the contributions of this paper is
a characterization of this singularity.

For the linear oscillator we present a modified
Clenshaw-Curtis rule for which we derive conver-
gence rates in terms of k, the number of nodes N
and the regularity of f . For smooth functions f the
rule is robust, converges superalgebraically respect
N and both the absolute and relative error decrease,
for fixed N , as k → ∞. If f is singular at a, either
because so was the original function or due to the
existence of a stationary point in the phase function
ψ, we must consider instead compound rules which
give in this context better results. Thus, we show
how to construct graded meshes to restore the very
good convergence properties fulfilled in the smooth
case.

2 General oscillator

Clearly, in the notation introduced before,

I
[a,b]
k (f, ψ) = I

[ψ(a),ψ(b)]
k (g, x)

where g := (f ◦ ψ−1)
(
ψ′ ◦ ψ−1

)−1
. Obviously if

ψ′(a) 6= 0, then f and g enjoy the same regularity
properties. Otherwise, if a is a stationary point of
order n, i.e. ψ(j)(a) = 0 for j = 0, . . . , n, we face a
very different situation.

To explore properly the smoothness of the new
function g we introduce for β ∈ (−1, 1)\{0} and
m ≥ 1, the Banach space Cmβ [a, b] endowed with the
norm,

‖f‖m,β,[a,b] := max
{∥∥∥ (x− a)−β

1 + (x− a)−β
f
∥∥∥
L∞
(a,b)

,

‖(x− a)j−βf (j)‖L∞
(a,b)

, j = 1, . . . ,m
}
.(1)

Clearly, if f ∈ Cβ[a, b], then when β < 0, f can blow
up at a whereas for β > 0, its derivatives may blow
up. The definition can be extended in an obvious
way to allow log singularities for β = 0 [3].
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Theorem 1 ([3]) Under the notations and hypothe-
ses stated above, if a is a stationary point of order
n and f ∈ Cm[a, b] then g ∈ Cmβ [ψ(a), ψ(b)] with
β = −1/(n+ 1).

The computation of g is feasible in practice, since
ψ−1 could be efficiently computed by using secant-
type solvers as the Dekker’s method.

3 Linear oscillator

In view of the previous result, we can concentrate
our attention to the case of linear oscillators

I
[a,b]
k (f) := I

[a,b]
k (f, x) =

∫ b

a
f(x) exp(ikx) dx.

3.1 Simple Clenshaw-Curtis rules

For N ≥ 0, we define the “product” or “modified
Clenshaw-Curtis” quadrature rule

I
[a,b]
k,N (f) :=

∫ b

a
QNf(x) exp(ikx) dx

where

PN 3 QNf s.t. QNf(sj) = f(sj), j = 0, . . . , N,

with sj := (a+b)/2+((b−a)/2) cos(jπ/N). That is,
QNf interpolates f at Chebyshev nodes. Implemen-
tation of this rule requires the integration of exp(ikx)
against a suitable polynomial basis - this can be done
efficiently and stably for all N and k [2].

Theorem 2 ([3]) Let r ∈ [0, 2] and 0 ≤ m ≤ N + 1.
There exists constants σm,N independent of f so that

|I [a,b]k (f)− I [a,b]k,N (f)|
≤ σm,Nk−rN−m+ρ(r)(b− a)m+1−r‖f (m)‖L∞(a,b)

where ρ(r) = r, if r ∈ [0, 1] and ρ(r) = 7r/2− 5/2.

It turns out that σm,N → Cm < ∞ for fixed m as
N → ∞, and so this result implies superalgebraic
convergence with respect to N . Actually, for fixed
N , both, the absolute and relative error (the integral
can be proved to be O(k−1)), decrease as k →∞. If
the rule is going to be applied in a composite manner,
the key point is the power (b − a) appearing in the
estimate. This is exploited in next section.

3.2 Compound rules for singular functions f

For M a positive integer we will consider the mesh
{xj}Mj=0 := {a+ (j/M)q(b− a)}Mj=0. In these meshes,
first proposed in [4], the parameter q > 1 controls
the refinement of the grid at a. For fixed N ≥ 2,
consider then the composite rule

I
[a,b]
k,M,N (f) := Ĩ

[a,x1]
k (f) +

M−1∑

j=1

I
[xj ,xj+1]
k,N (f) ,

where Ĩ
[a,x1]
k (f) = 0 for β ∈ (−1, 0), and Ĩ

[a,x1]
k (f) =

I
[a,x1]
k,2 (f), a two-point rule, for β ∈ (0, 1).

Theorem 3 ([3]) Let f ∈ CN+1
β [a, b] with β ∈

(−1, 1) \ {0}. Then for r ∈ [0, 1 + β), and q >
(N+1−r)/(β+1−r) there exists C > 0 independent
of f so that

|I [a,b]k,M,N (f)−I [a,b]k (f)| ≤ Ck−rM−N−1+r‖f‖N+1,β,[a,b].

Remark 4 As mentioned above, functions with loga-
rithmic singularities can be accommodated as the case
β = 0, with an appropriate definition of CN+1,0,[a,b].
In this case we can show that for r ∈ [0, 1) and
q > (N + 1− r)/(1− r)

|I [a,b]k,M,N (f)− I [a,b]k (f)|
≤ C(k−1 log k)rM−N−1+r(logM) ‖f‖N+1,0,[a,b].
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Abstract

We consider time-harmonic scattering by penetra-
ble convex polygons. Standard numerical methods
for such problems become prohibitively expensive in
the high frequency regime. High frequency asymp-
totic methods, on the other hand, are non-convergent
and may be insufficiently accurate at low to medium
frequencies. Here, we describe a beam tracing al-
gorithm that calculates the leading order high fre-
quency asymptotics and we present an ansatz for
the oscillatory remaining terms which represent the
diffracted field. We demonstrate that including os-
cillatory basis functions in the approximation space
enables an accurate approximation of the solution on
the boundary of the scatterer with a cost independent
of frequency.

Introduction

We consider the two-dimensional problem of scat-
tering of a time-harmonic wave by a penetrable con-
vex polygon, Ω. We wish to determine the total field
u1 in the exterior domain D and the total field u2
within the polygon such that

∆u1 + k21u1 = 0, in D, (1)

∆u2 + k22u2 = 0, in Ω, (2)

u1 = u2 and
∂u1
∂n

=
∂u2
∂n

on ∂Ω, (3)

where k1, k2 are the exterior and interior wavenum-
bers, respectively. An example solution for Ω an equi-
lateral triangle is shown in Figure 1.

This problem arises in numerous areas of physi-
cal interest in which the relative size of the particle
to the wavelength can vary between one and thou-
sands. Conventional numerical methods using piece-
wise polynomial approximation spaces suffer from the
limitation that a fixed number of degrees of freedom
is required per wavelength in order to represent the
oscillatory solution. This leads to prohibitive com-
putational expense when the size of the scatterer is
large relative to the wavelength.

Much work has been done on developing Hybrid
Numerical-Asymptotic (HNA) methods (see [1] and

Figure 1: Scattering by a highly absorbing
penetrable equilateral triangle.

the references therein) which overcome this limita-
tion by approximating the solution, u, in a Boundary
Element Method (BEM) framework using an ansatz
of the form

u(x, k) ≈ ugo(x, k)+

M∑

m=1

vm(x, k) exp(ikψm(x)), x ∈ ∂Ω.

(4)
In this representation, ugo is the known leading order
high frequency asymptotics, namely the Geometrical
Optics (GO), the phases ψm are chosen a priori using
knowledge of the high frequency asymptotics and the
amplitudes vm are approximated numerically. The
expectation is that if ugo is calculated correctly and
ψm are chosen wisely, the amplitudes vm will be much
less oscillatory than u and so can be efficiently ap-
proximated by piecewise polynomials.

To date, the HNA approach has been applied solely
to problems of scattering by impenetrable scatter-
ers. The main difficulty in the generalisation of the
HNA method to the penetrable case is that the high
frequency asymptotic behaviour is much more com-
plicated than in the impenetrable case. In particu-
lar, the diffracted waves are reflected infinitely many
times within the scatterer, so there are infinitely
many phases ψm in (4). This complicates the de-
velopment of our ansatz because, to create a viable
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method, we must choose a finite number of these
phases.

In this paper, we briefly describe a Beam Trac-
ing Algorithm (BTA) for determining ugo and then
go on to make a sensible choice of ψm in the ansatz
(4). This involves truncating the infinite series of
diffracted terms. To do this, we begin by examining
highly absorbing scatterers for which relatively few
terms are required and then investigate how to in-
clude additional terms as the absorption is reduced.

Beam Tracing Algorithm

The GO term, ugo, in (4) is calculated using a
BTA. Consider the hexagon in Figure 2 illuminated
from the top left by a plane wave ui. This wave
strikes 3 sides, from each side part of the wave is re-
flected and part is transmitted into the hexagon, as
depicted in Figures 2a, 2b, 2c, obeying Snell’s laws
of reflection and refraction and the Fresnel formulae.
The transmitted portions or ‘beams’ go on to strike
further interfaces giving rise to more beams as shown
in Figures 2d, 2e, 2f. This process continues indefin-
tely, however we terminate it when the amplitudes or
the beams reflected back into the shape are smaller
than a user defined tolerance.

(a) Beams arising
from ui.

(b) Beams arising
from ui.

(c) Beams arising
from ui.

(d) Beams arising
from transmitted
beam in (a).

(e) Beams arising
from transmitted
beam in (b).

(f) Beams arising
from transmitted
beam in (c).

Figure 2: Beam tracing in a hexagon

Ansatz for highly absorbing scatterers

For large absorption we anticipate that the influ-
ence of diffraction on each side is only due to adjacent
corners, so a sensible ansatz for the solution on one
side is

u ≈ ugo+v+1 eik1s+v+2 eik2s+v−1 e−ik1s+v−2 e−ik2s, (5)

where v+1 , v
+
2 , v

−
1 , v

−
2 are slowly varying amplitudes

to be approximated using piecewise polynomials on
overlapping graded meshes as shown in Figure 3. In

v+1 eik1s, v+2 eik2s

v−1 e−ik1s, v−2 e−ik2s
P1P2

s

Figure 3: Approximate v+1 , v
+
2 , v

−
1 , v

−
2 by

piecewise polynomials on overlapping meshes,
graded towards the corners.

order to demonstrate the suitability of this ansatz,
we perform a least squares fit of (5) to a reference
solution, u, obtained using a standard BEM. This is
done at varying frequencies and the error examined.
Table 1 shows how the error in the best fit U com-
pares to the error in using the GO alone. We see a
significant improvement over GO using a small, fixed
number (168) of degrees of freedom.

k
||u−ugo||
||u||

||u−U ||
||u||

5 1.88× 10−1 1.66× 10−2

10 1.37× 10−1 1.03× 10−2

20 1.00× 10−1 8.41× 10−4

40 7.25× 10−2 2.23× 10−4

80 5.19× 10−2 2.58× 10−4

160 3.69× 10−2 2.31× 10−4

Table 1: Best fit and GO errors for a highly absorbing
triangle.

Reducing absorption

Reducing the scatterer’s absorption causes the in-
fluence of diffraction from non-adjacent corners to be-
come significant so we add terms of the form eik1rj to
the ansatz (5), where rj is the distance from the non-
adjacent corner Pj . With these additions, we show
that an accuracy similar to that in Table 1 can be
achieved for absorptions down to 0.0125i. In fact, in
the far-field, better than 1% accuracy can be achieved
for all levels of absorption.
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Equivalent source modelling of small heterogeneities in the context of 3D time-domain wave
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Abstract

In the context of time harmonic wave equation, we
are interested in the computation of the scattered
field by a small obstacle. The result of a high per-
formance direct numerical simulation is compared to
an approximate solution derived by the method of
matched asymptotic expansions.

Introduction

In the context of acoustic imaging, it is rather dif-
ficult to observe heterogeneities with characteristic
length smaller than the wave length emitted by the
scanner. However, it is possible to detect small het-
erogeneities in homogeneous media by using high per-
formance computing. In this work, we will propose a
way to compute the field scattered by a small obstacle
with low computation burden based on the matched
asymptotic expansions.

1 The considered problem

1.1 Domain definition

Let us consider a small obstacle Bε equipped with
Dirichlet boundary conditions :

Bε = εB̂ =
{
(x, y, z) :

(x

ε
,
y

ε
,
z

ε

)
∈ B̂

}
, (1)

with B̂ a reference shape and ∂Bε = ε∂B̂ its bound-
ary. The propagation domain Ωε consists of the ex-
terior to the obstacle Bε :

Ωε = R3\Bε. (2)

1.2 The system of partial differential equations

We denote by f ∈ D
(
R3 × R+

)
a source term satis-

fying : there exists ε0 > 0 such that

f(x, t) = 0, for ‖x‖ < ε0 and t ≥ 0. (3)

Let us consider the solution of the 3D time-domain
wave equation :

∂2uε

∂t2
(x, t) − ∆uε(x, t) = f(x, t), x ∈ Ωε, t ≥ 0,

equipped with the Dirichlet boundary condition :

uε(x, t) = 0, x ∈ ∂Ωε, t > 0 (4)

and homogeneous initial conditions :

uε(x, 0) = 0, ∂tuε(x, 0) = 0. (5)

Remark. For the sake of simplicity we have assumed
that the wave speed is equal to 1.

2 Matching of asymptotic expansions

The matching of asymptotic expansions [1] is an
asymptotic domain decomposition method with over-
lapping. It consists in representing the solution with
a far-field expansion far away from the obstacle and
a near-field expansion near the obstacle. These two
expansions are matched in a transition zone with the
so-called Van Dyke matching conditions. This ap-
proach is equivalent [3] to the corrector method [2].

2.1 The far-field expansion

The far-field expansion is defined on the far-field do-
main Ω∗ = R3 \ {0} consisting of the limit of Ωε for
ε varying to 0. It takes the form of a Taylor series :

uε,I (x, t) =

I∑

i=0

ui(x, t)εi. (6)

The first term of this expansion u0 : R3 −→ R is the
limit of uε for ε varying to 0. It is a regular solution
over all R3 of the time-domain wave equation :

∂2u0

∂t2
(x, t) − ∆u0(x, t) = f(x, t), x ∈ R3, t > 0,

equipped with the initial conditions :

u0(x, 0) = 0, ∂tu0(x, 0) = 0, x ∈ R3. (7)

The next coefficients ui : Ω∗ −→ R of this expansion
are solutions of the homogeneous time-domain wave
equation :




∂2ui

∂t2
(x, t) − ∆ui(x, t) = 0, x ∈ Ω∗, t > 0,

ui(x, 0) = 0, ∂tui(x, 0) = 0, x ∈ Ω∗,
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which are singular in the neighbourhood of x = 0.
This power series aims at approximating the solution
uε at fixed x 6= 0 :

uε(x, t) − uε,I (x, t) = O
ε→0

(εI+1). (8)

2.2 The near-field expansion

The near-field domain Ω̂ consists in the normalization
of the original domain Ωε :

Ω̂ =
Ωε

ε
=

{
(X,Y,Z) ∈ R3 : εX, εY, εZ ∈ Ωε

}
(9)

The near-field expansion takes the form :

+∞∑

i=0

Ui(X, t)εi, (10)

which aims at approximating Uε(X, t) = uε(εX, t)
at fixed X ∈ Ω̂. The coefficients of the near field
expansion satisfy the hierarchical Laplace equation :

∆Ui(X, t) = ∂2
t Ui−2(X, t), X ∈ Ω̂, t > 0, (11)

equipped with the Dirichlet boundary condition :

Ui(X, t) = 0, X ∈ ∂Ω̂, (12)

where we have used the convention Ui ≡ 0 for i < 0.

2.3 The second order far-field expansion

In the case of a spherical obstacle, Bε ={
X ∈ R3 : ‖X‖ ≤ ε

}
, the second order far-field ex-

pansion is given by :

uε,2(x, t) = u0(x, t)−ε
u0(0, t − t0)

R
−ε2

(
∂tu0(0, t − t0)

R

)
,

where t0 = R
c and R =

√
x2 + y2 + z2.

3 Results

In this section, we present the results of a numerical
experiment. Let us first describe the context of this
experiment.

We are in 3D, our computational domain is B ={
X ∈ R3 : ‖X‖ ≤ 1

}
and the obstacle is Bε with ε =

0.05. For the direct numerical simulation, the domain
is B\Bε whereas for the computation of the far-field
expansion, the domain is the whole sphere B. The
source term consists in a Rickert localized at point
S = (0, 0.3, 0.3).

We compare the second order far-field expansion
given in section (2.3) to a direct numerical approxi-
mation of uε achieved with an Interior Penalty Dis-
continuous Galerkin Method (IPDG) associated to
a second order BGT absorbing boundary condition
and to a local space-time mesh refinement [4]. Nu-
merically, we observe that at point A = (0, 0.5, 0),
the relative error defined by :

eε
rel =

∣∣∣∣∣∣
uε(A, t) − uε,2(A, t)

max
t

|uε(A, t)|

∣∣∣∣∣∣
(13)

is lower than 6%.

Figure 1: Comparison between the direct
numerical computation of uε (left) and its far-field

expansion (right)
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Abstract

The transmission eigenvalue problem is a new class
of eigenvalue problems that have recently appeared
in inverse scattering theory for inhomogeneous me-
dia. Such eigenvalues provide information about ma-
terial properties of the scattering media [3] and can
be determined from scattering data [2]. Hence they
can play an important role in a variety of inverse
problems in target identification and nondestructive
testing. The transmission eigenvalue problem is non-
selfadjoint and nonlinear, which makes its mathe-
matical investigation interesting and challenging. In
this work we investigate how transmission eigenval-
ues corresponding to a given inhomogeneous medium
are perturbed if small volume inhomogeneities are in-
troduced in this medium. Our analysis is based on
the asymptotic techniques developed in in [1] and
[4], here applied to a fourth order inhomogeneous bi-
Laplacian type equation.

Formulation of the problem

We consider an inhomogeneous medium with sup-
port D ⊂ Rd, d = 2, 3, which is a bounded connected
region with smooth boundary ∂D and outward unit
normal ν. Let n0(x) ∈ C2(D) be the refractive
index of this medium such that n0(x) ≥ n0 > 0.
Furthermore we assume that inside D there are m
small subregions εBi ⊂ D, i = 1 . . .m where each
Bi ⊂ Rd is a bounded connected reference domain
which is a smooth deformation of a ball centered at
zi ∈ D, and ε > 0 is a small parameter. We de-
note Wε :=

⋃m
i=1 εBi. In each small subregion we

consider a real valued function ni, i = 1 . . .m where
again ni ∈ C2(εBi) is such that ni(x) ≥ ni > 0 and
ni(x) 6= n0(x) for x ∈ εBi. The refractive index of
the medium with inhomogeneities is nε where

nε(x) :=

{
n0(x) x ∈ D \Wε

ni(x) x ∈ εBi.

Figure 1: Dark red regions indicate small

inhomogeneities Bi inside the square medium D.

The transmission eigenvalues associated with the
scattering by the medium D with small inhomo-
geneities Wε situated in a homogeneous background
with refractive index n = 1 are the values of k for
which the interior transmission problem

∆v + k2v = 0 in D (1)

∆w + k2nε(x)w = 0 in D (2)

w = v on ∂D (3)

∂w

∂ν
=
∂v

∂ν
on ∂D (4)

has a nontrivial solution v ∈ L2(D), w ∈ L2(D) such
that w−v ∈ H2(D). It is well-known that an infinite
set of real transmission eigenvalues exist provided
that either nε(x)−1 ≥ α > 0 or 0 < β ≤ 1−nε(x) < 1
[3]. Since the transmission eigenvalue problem is non-
selfadjoint, complex eigenvalues may exist, but their
existence to date has been proven only for the spher-
ically stratified media. Note that transmission eigen-
values are related to non-scattering wave numbers
associated with the medium nε(x). It is known that
(1)-(4) is equivalent to the eigenvalue problem for
u = w− v ∈ H2

0 (D) satisfying the fourth order equa-
tion (

∆ + k2nε
) 1

nε − 1

(
∆ + k2

)
u = 0 (5)

which in variational form, after integration by parts,
is formulated as finding a function u ∈ H2

0 (D) such
that for all v ∈ H2

0 (D)

∫

D

1

nε − 1
(∆u+ k2u)(∆v + k2nεv) dx = 0.

Setting k2 := τ , the latter can be written in the op-
erator form

Aεu+ τBεu+ τ2Cεu = 0

where Aε,Bε,Cε : H2
0 (D) → H2

0 (D) are defined by
mean of the Riesz representation theorem

(Aεu, v)H2(D) =

∫

D

1

nε − 1
∆u∆v dx,
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(Bεu, v)H2(D) =

∫

D

1

nε − 1
(∆u v + nεu∆v) dx,

(Cεu, v)H2(D) =

∫

D

nε
nε − 1

u v dx.

The above quadratic eigenvalue problem can be
rewritten as an eigenvalue problem for the non-
selfadjoint compact operator Kε : H2

0 (D)×H2
0 (D)→

H2
0 (D)×H2

0 (D) given by

Kε :=

(
−A−1

ε Bε −A−1
ε C1/2

ε

C1/2
ε 0

)
.

Our main goal is to show that as ε→ 0 the spectrum
of the operator Kε (i.e. transmission eigenvalues and
eigenvectors corresponding to the medium with small
inhomogeneities) converges to the spectrum of K0

(i.e. to the transmission eigenvalues corresponding
to the reference medium without inhomogeneity, i.e.
with refractive index n0). Furthermore we provide
explicit formulas for the main term in the related
asymptotic expansion and in particular for the trans-
mission eigenvalues which can potentially be used to
obtain information about small inhomogeneities.

1 Convergence analysis and asymptotical
formulas

First, analyzing each term of the matrix valued
operator Kε and K0, we show that

Kε → K0, as ε→ 0

in the operator norm. Furthermore, assuming for
simplicity of presentation that n0 and ni are con-
stants, we obtain the following asymptotic formulas:
if u, φ ∈ H2

0 (D)
⋂
C2(D) then

((Bε − B0)u, φ) =

N∑

j=1

εd|Bj |
[(

1

nj − 1
− 1

n0 − 1

)
∆u(zj)φ(zj)

+

(
nj

nj − 1
− n0
n0 − 1

)
u(zj)∆φ(zj)

]
+ o(εd),

((Cε − C0)u, φ) =

N∑

j=1

εd|Bj |
(

nj
nj − 1

− n0
n0 − 1

)
u(zj)φ(zj) + o(εd),

and if wε = A−1
ε u and w0 = A−1

0 u,

(wε − w0, φ) =
N∑

j=1

εd
(

1− n0 − 1

nj − 1

)
mj∆w0(zj)∆φ(zj)

+o(εd) where

mj = |Bj |+
(

1

n0 − 1
− 1

nj − 1

)∫

∂Bj

∂vBj

∂νy
dσy

acts in place of what was a polarization tensor in the
case of small volume conductivity inhomogeneities
[1], [4]. Note that here we no longer have a tensor,
but we have a scalar mj with a form similar to the
polarization tensor. Finally, combining all the above
and applying an important theorem by Osborn in
[5], we obtain asymptotic formulas for transmission
eigenvalues. In particular, for a simple real transmis-
sion eigenvalue this formula takes the form:

1

τε
− 1

τ0
=

N∑

j=1

εd|Bj |
(

1 + n0
n0 − 1

− 1 + nj
nj − 1

)
∆u(zj)u(zj)

+
1

τ0

N∑

j=1

εd
(

1

n0 − 1
− 1

nj − 1

)
mj |∆u(zj)|2+o(εd),

where u is the eigenfunction corresponding to τ0.
Similar expressions can be obtained for multiple
eigenvalues as well as complex eigenvalues.
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Introduction

This research is developed in the context of the nu-
merical modelling of non-destructive testing experi-
ments by ultrasounds. Some slowly varying back-
ground media may be disturbed by small hetero-
geneities presenting a strong contrast of physical pa-
rameters (for instance gravels inside concrete). Sim-
ulating the propagation of waves inside such medium
is challenging for classical numerical tools, due to
the small size of the heterogeneities. In figure 1, we
present a result of a numerical simulation obtained
with a full discretization including the use of local
mesh refinement and local time stepping around each
small heterogeneity. To reduce complexity and com-
putational cost, we aim at proposing an approximate
model ’easier’ to solve than the original one.

Figure 1: Snapshot of an acoustic plane wave
scattered by many small obstacles.

1 A model problem

We consider the diffraction of an acoustic wave by
a small inclusion in Rd, d ≤ 3, Bδ := δB where B is
a reference domain of diameter 1 and δ > 0 is small.
For simplicity, we will only consider a variation of
the density ρ > 0 ∈ L∞(R) of the reference medium:
find uδ : t→ uδ(t) ∈ U := H1(Rd) such that

(Pδ)





ρδ ∂2t u
δ −∆uδ = f, x ∈ Rd, t ∈ R+,

uδ(x, 0) = ∂tu
δ(x, 0) = 0, x ∈ Rd,

where ρδ = ρ (1 + aχδ), a 6= 0, a > −1, (so that
ρδ > 0) and χδ is the indicator function of Bδ.

Remark. It would not be difficult to generalize what
follows to a fixed (maybe large) number of inclusions,
namely if

ρδ = ρ (1 +
J∑

j=1

ajχ
δ
j).

2 A numerical approach

Our approach is inspired by the Born approxima-
tion method which consists in seeing the ”medium”
ρδ as a perturbation of the medium ρ and rewriting:

ρ ∂2t u
δ −∆uδ = f − a ρχδ ∂2t uδ.

In the spirit of [2], we reintroduce the second source
term as an additional unknown : vδ = λ χδ uδ where
λ 6= 0 is a real parameter whose interest will appear
later, and to rewrite (Pδ) as a system:

Find (u, v) : t→ (u(t), v(t)) ∈ U × Vδ such that

(P̃δ)





ρ ∂2t u
δ −∆uδ +

ρa

λ
∂2t v

δ = f, x ∈ Rd, t ∈ R+,

ρ vδ = λ χδ ρ uδ, x ∈ Bδ, t ∈ R+,

uδ(x, 0) = ∂tu
δ(x, 0) = 0, x ∈ Rd.

with variational formulation

(V F )





d2

dt2
m(uδ, ũ) + a(uδ, ũ) +

a

λ

d2

dt2
b(vδ, ũ) = L(ũ)

mδ(vδ, ṽδ) = λ b(ṽδ, uδ)

for all (ũ, ṽδ) ∈ U × Vδ. The bilinear forms are given
by (we omit the obvious definition of L(·))




m(u, ũ) =

∫

Rd
ρ u ũ dx, ∀(u, ũ) ∈ U2,

a(u, ũ) =

∫

Rd
∇u · ∇ũ dx, ∀(u, ũ) ∈ U2,

mδ(vδ, ṽδ) =

∫

Bδ

ρ vδ ṽδ dx, ∀ (vδ, ṽδ) ∈ V 2
δ ,

b(vδ, u) =

∫

Bδ

ρ vδ u dx, ∀ (vδ, u) ∈ Vδ × U.
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To simplify the problem, the idea is that, when δ
is small, vδ should be accurately represented by re-
placing the space Vδ by a finite dimensional subspace
(still denoted Vδ for simplicity):

Vδ = span
j=1,...,N

[
wj(·/δ) ], with wj : B −→ R

This relies on an asymptotic analysis which more-
over provides a characterization of the wj ’s. Doing
so we get a family of approximate problem where the
unknown vδ is ”finite-dimensional”. An important
point is the stability in δ of these approximate prob-
lems. We get it by an energy approach that will lead
us to fix λ. Choosing ũ = d

dtu
δ =: u̇δ in the first

equation of (V F ) leads to

1

2

d

dt

(
m(u̇δ, u̇δ) + a(uδ, uδ)

)
+
a

λ
b(v̈δ, u̇δ) = 0. (1)

Next, we differentiate once in time the second equa-
tion of (V F ) and choose ṽ = v̈δ to get

1

2

d

dt
mδ(v̇δ, v̇δ)− λ b(v̈δ, u̇δ) = 0. (2)

Adding (1) and (2) leads to

1

2

d

dt

(
m(u̇δ, u̇δ) +mδ(v̇δ, v̇δ) + a(uδ, uδ)

)

+
(a
λ
− λ
)
b(v̈δ, u̇δ) = 0.

(3)

Finally, we differentiate twice in time the second
equation of (V F ) and choose ṽ = v̇δ to obtain

λ b(v̇δ, üδ) =
1

2

d

dt
m(v̇δ, v̇δ) = λ b(v̈δ, u̇δ), by (2).

Therefore, (2) gives
d

dt

(
Eδc +

1

2
a(uδ, uδ)

)
= 0 where

Eδc = 1
2

(
m(u̇δ, u̇δ) +mδ(v̇δ, v̇δ) +

(
a
λ − λ

)
b(v̇δ, u̇δ)

)

=
1

2

∫

Rd
ρ
(
|∂tuδ|2 + |∂tvδ|2 +

(a
λ
− λ
)
∂tu

δ ∂tv
δ
)

Choosing λ such that a/λ− λ = 2 (which is possible
since a ≥ −1) gives Eδc = 1

2

∫
Rd ρ |∂tuδ + ∂tv

δ|2. This
provides uniform estimates with respect to δ of uδ.

For space discretization, we simply approximate the
space U with classical finite elements. We then get
an algebraic problem of the form





Mh
d2Uδ

h

dt2
+ AhU

δ
h +

a

λ
Bδ
h

d2Vδ
h

dt2
= Fh

MδVδ
h = λ tBδ

h Uδ
h

which appears as a coupling of a standard finite el-
ement approximation of the propagation in the ref-
erence medium coupled with a finite number of ordi-
nary differential equations.

3 Construction of Vδ via asymptotic analysis

The choice of the space Vδ is guided by the asymp-
totic expansion of uδ inside Bδ:

uδ(x) =

N∑

j=0

uδj(t)wj(
x

δ
) + εN (δ)

with εj(δ)→ 0, when δ → 0 and εjk+1(δ) = o
(
εjk(δ)

)

for some sequence jk → +∞.

There are many methods for analysing the asymp-
totic behaviour of uδ, particularly for time harmonic
problems (see for instance [1]). There are much fewer
results for time dependent problems [3]. In this work,
we use the method of matched asymptotic expan-
sions, which lead to characterize the profile functions
wj as the restriction to B of solutions of elliptic trans-
mission problems between B and Rd \B.

The d+ 1 first terms do not depend on B

w0(x) = 1, wj(x) = xj , 1 ≤ j ≤ d

ε0(δ) = δ and εd+1(δ) = δ2. The higher order terms
require to be determined numerically (except, for in-
stance, when B is a ball).

At the conference, we shall present various numeri-
cal simulations to illustrate the accuracy and the ef-
ficiency of our approximate model. Moreover, some
insights about the error analysis will be given.
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Abstract

Industrial and technical applications involve very
small or thin structures, often much smaller than a
whole device at least in one dimension. Examples are
thin sheets of a particular material, or layers with a
microscopic structure. To overcome the difficulty to
generate a mesh and to compute with many small
cells for the thin and possibly microscopic structures
one applies transmission conditions which approxi-
mate the solution outside the thin sheets directly and
via post-processing inside. Using boundary element
methods for the transmission problems the problem
reduces further to only a discretisation of an inter-
face. We propose and analyse a boundary element
method for thin conducting sheets in the eddy cur-
rent model [1].

Introduction

Let Γ be the smooth midline of a thin sheet of con-
stant thickness d > 0. Let xΓ(t) the parametrisations
of Γ (dashed line in Fig. 1), where the sheet can be
parametrised as x(t, s) = xΓ(t) + sn(t) with n the
normal vector. The traces and the normal-derivates
from the two sides of Γ are defined by

(γ±0 U)(t) := lim
s→+0

U(x(t,±s)),

(γ±1 U)(t) := lim
s→+0

∇U(x(t,±s)) · n,

F = −iωµ0j0

d

s

0

t

Ωext

Ωint

Figure 1: Geometrical setting with thin
conducting sheet and current carrying wires.

and we use the notation [·] for the jump and {·} for
the mean of γ±` , ` = 0, 1, which are given by

[γ`U ] (t) := (γ+
` U)(t)− (γ−` U)(t),

{γ`U} (t) := 1
2

(
(γ+
` U)(t) + (γ−` U)(t)

)
.

In this study we investigate the transmission problem

−∆U = F in R2\Γ, (1a)

[γ1U ]− β {γ0U} = 0 on Γ, (1b)

[γ0U ] = 0 on Γ, (1c)

which arise for example by different asymptotic ex-
pansions of the eddy current problem (TM mode)
with a thin conducting sheet [2], [3]. The approxi-
mated eddy current problem is given with ξ2 = iωεµσ

−∆E(x)− ξ2(x)E(x) = F (x), in R2, (2)

where ω is the angular frequency, ε, µ and σ the per-
meability, permittivity and conductivity of the thin
conducting sheet and ξ = 0 outside the sheet. The
thin conducting sheet acts as a shielding of electro-
magnetic sources F = −iωµ0j0 due to currents j0 in
live wires. See Fig. 2 for an illustration of the shield-
ing phenomena. Three of the eight studied transmis-
sion conditions in [3], that are ITC-1-0, ITC-1-1 and
ITC-2-0, are of the form (1) which differ only by the

Figure 2: Magnetic field for a thin conducting
sheet shielding two live wires.
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constant β:

βITC-1-0 = ξ2d, βITC-1-1 = ξ2d
(
1 + 1

6ξ
2d2
)
,

βITC-2-0 =
2 ξ sinh

(
ξ d2
)

cosh
(
ξ d2
)
− ξ d2 sinh

(
ξ d2
) .

Boundary integral formulation

The solution of (1) can be written with the repre-
sentation formula [4, Thm. 3.1.8]

U = −S [γ1U ] +D [γ0U ] +N F in R2 \ Γ,

where S and D are the single and double layer poten-
tials and N the Newton potential. Taking the mean
trace on Γ and using (1b) and (1c) we can write for
the new unknown φ = [γ1U ] the boundary integral
equation (BIE) of second kind

(Id+ βV )φ = βγ0NF, (3)

where V is the usual one-sided single layer opera-
tor [4]. We can state (3) in variational form: Seek
φ ∈ L2(Γ) such that for all φ′ ∈ L2(Γ)

〈
φ, φ′

〉
+ β

〈
V φ, φ′

〉
= β

〈
γ0NF, φ

′〉 . (4)

Theorem 1 (Existence and uniqueness). Let
β 6∈ −R+, F ∈ H−1

comp(R2). Then (4) provides a
unique solution φ ∈ L2(Γ).

For the three transmission conditions ITC-1-0,
ITC-1-1 and ITC-2-0 the condition is fulfilled as β
has an imaginary part.

Boundary element method

We construct a mesh Γh of (curved) panels Kj ,
j = 1, . . . , Nh by partitioning of the midline Γ. The
length of the largest panel is denoted by h. We call
the space of piecewise constant functions as S−1

0 (Γh)
and that of piecewise linear, continuous functions
as S0

1(Γh). Replacing L2(Γ) in (4) by the finite-
dimensional subspaces S−1

0 (Γh) or S0
1(Γh) we obtain

Figure 3: Mesh Γh of the interface Γ.
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2
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)

S0
−1(Γh)

S1
0(Γh)

Figure 4: Convergence of the BEM.

linear systems of equations for the approximate solu-
tion φh.

Theorem 2. Let β 6∈ −R+, F ∈ H−1
comp(R2).

Then (3) with L2(Γ) replaced by a subspace S(Γh)
provides a unique solution φh ∈ S(Γh). Furthermore,
we have for S(Γh) = S−1

0 (Γh)

‖φ− φh‖L2(Γ) ≤ C h
and for S(Γh) = S0

1(Γh)

‖φ− φh‖L2(Γ) ≤ C h2.

In the implemenation of the method we approx-
imate all integrals by replacing the curved by pla-
nar panels which will not influence the order of the
method essentially (see [4, Chap. 8]).

Numerical experiments for an elliptic sheet justify
the convergence orders of Theorem 2, see Fig. 4. The
reference solution has been computed by high-order
FEM with the numerical C++ library Concepts
(see www.concepts.math.ethz.ch).
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Introduction

This research is developed in the framework of the
numerical modeling of non-destructive testing exper-
iments by ultrasounds. Some media involve thin
layers (for instance of resin), which are difficult to
handle in numerical computations due to the very
small element size required for meshing them. Anal-
ogous problems arise for the treatment of thin coat-
ings (see [2] and [3]). To overcome this issue, one
idea consists in using effective transmission condi-
tions (ETCs) across the two interfaces bounding the
layer. This work aims at establishing such ETCs by
means of a formal asymptotic analysis with respect
to the (small) layer thickness, in the spirit of [1] for
Maxwell’s equations.

1 Problem Setting

We consider the case of a thin layer of an isotropic
elastic material, the strip Ωi

η = R × [−η
2 ,

η
2 ], let Ω+

η

(resp. Ω−
η ) be the upper domain (resp. lower do-

main) of the thin layer. We call ∂Ω+
η and ∂Ω+

η the
upper and lower boundaries of the layer connected to
each outside domain. We assume that the layer mate-
rial is isotropic and homogeneous, with mass density
ρi and Lamé coefficients λi, µi. We denote by ρ, λ,
and µ the (possibly heterogeneous) coefficients of the
material in Ω±.

-x

Ω+

Ωη

Ω−

∂Ω+

∂Ω−

6
y

0 −η
2

+
η

2
6

6

n

n

The displacement field uiη in Ωi
η, as well as the dis-

placement fields u±
η inside Ω±

η satisfy the elastody-
namics equations:

ρi
∂2uiη
∂t2

− div σi(uiη) = 0, in Ωi
η, (1)

ρ
∂2u±

η

∂t2
− div σ(u±

η ) = 0, in Ω±
η . (2)

where σ(u) and σi(u) respectively denote the stress
tensor in the surrounding and layer material, respec-
tively, given by Hooke’s law applied to a given dis-
placement u. Equations (1) and (2) are coupled with
transmission conditions on the interfaces ∂Ω± (we
omit the time variable t for simplicity):





u±
η

(
x,±η

2

)
= uiη

(
x,±η

2

)

t(u±
η )
(
x,±η

2

)
= ti(uiη)

(
x,±η

2

)
,

(3)

where t(u) :=σ(u)n and ti(u) :=σi(u)n are the trac-
tion vectors relative to Ω± and Ωη and n is the nor-
mal vector to ∂Ω± (see the figure above).

Eliminating formally uiη, we can write a transmission
problem for uη := (u+

η ,u
−
η ). For any function f :

R2 → Rd, if we use the notation:

{f}η =
(
[f ]η, 〈f〉η

)
: R→ R2d

[f ]η(x) := f(x, η/2)− f(x, η/2),

〈f〉η(x) :=
(
f(x, η/2) + f(x, η/2)

)
/2

this transmission condition can be written in the form

{t(uη)}η + Tη{uη}η = 0

where Tη is a (nonlocal) DtN transmission operator
that can easily be defined implicitly from the solu-
tion of the interior Dirichlet problem in the strip Ωi

η.
The next idea is that, when η tends to 0, Tη be-
comes local and that one can get explicit analytical
approximations of it.

2 Principle of construction of ETC’s

This construction is based on an ansatz for the
interior solution uiη of the form

uiη(x, y) = U0
(
x,
y

η

)
+ ηU1

(
x,
y

η

)
+ η2 U2

(
x,
y

η

)
+ ...

(4)
where U0 : Ωi

1 → R2. This implies in particular an
analogous expansion for the traces

uiη(x,±
η

2
) = u0

±(x) + η u1
±(x) + η2 u2

±(x) + ... (5)
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Substituting (4) into (1) allows us to compute explic-
itly the Uk from the uk± by induction on k: these are
polynomial functions in y. These expressions lead us
to introduce a family of differential operators of order
`, A`(∂x, ∂t), ` ≥ 0, such that

A0(∂x, ∂t){u0} = 0 (6)

and

ti(uiη)
(
x,±η

2

)
= t0

±(x)+η t1
±(x)+η2 t2

±(x)+... (7)

where {tk} =
k+1∑

j=0

Ak+1−j(∂x, ∂t){uj} (8)

and where we have defined

{tk} =
(

[tk], 〈tk〉
)
, [tk] = tk+ − tk−, 〈tk〉 =

tk+ + tk−
2

and the same for {uk}. Note that from (5) and (7)




{uiη}η = {u0}+ η {u1}+ η2 {u2}+ ...

{ti(uiη)}η = {t0}+ η {t1}+ η2 {t2}+ ...
(9)

We rewrite the transmission conditions (3) as

{t(uη)}η = {ti(uiη)}η, {uη}η = {uiη}η

so that, using (9) and (8), we get

η {t(uη)}η =
∑

k≥0

ηk+1
( k+1∑

j=0

Ak+1−j(∂x, ∂t){uj}
)

which, thanks to (6), can be rearranged as

η {t(uη)}η =
( ∑

`

η`A`(∂x, ∂t)
)( ∑

j

ηj{uj}
)

=
( k∑

`=0

η`A`(∂x, ∂t)
)
{uη}+O(ηk+1)

The transmission condition of order k + 1 is then
obtained formally by dropping the O(ηk+1) term.

3 A third order transmission condition

Applying the above method with k = 2 leads to
the following transmission conditions





A[uη]η = η 〈t(uη)〉η − η BJ 〈∂xuη〉η,

[t(uη)]η = η ρ 〈∂2
t u

η〉η − η JAJ 〈∂2
xu

η〉η
− JB [∂xu

η]η,

(10)

where A, B and J are the following 2× 2 matrices:

A =

(
µi 0
0 λi+2µi

)
, B =

(
µi 0
0 λi

)
, J =

(
0 1
1 0

)
. (11)

A fundamental point is the well-posedness and uni-
form stability in η of the transmission problem (2,
10). This is in fact a consequence of an energy con-
servation result: any smooth enough solution of (2,
10) satisfies:

d

dt

(
Eη + E iη

)
= 0 (12)

where

Eη =
ρ

2

∫

Ωη

|∂tuη|2 dx+
1

2

∫

Ωη

σ(uη) : ε(uη) dx

E iη =
η ρ

2

∫

R
|〈∂tuη〉|2 dx+

η

2

∫

R
Q
(
∂xu

η,
[uη]

η

)
dx

and Q(x,y) : R2 × R2 → R is the symmetric
quadratic form (JT = J and (BJ)T = JB):

Q(x,y) := xTJAJ x + 2 xTJB y + yTAy (13)

The well-posedness and stability result is then a con-
sequence of the:

Theorem. The quadratic form Q(x,y) is positive.

At the conference, we shall present various numer-
ical simulations to illustrate the accuracy and the ef-
ficiency of our approximate model. Moreover, some
insights about the error analysis will be given.

References

[1] S. Chun, H. Haddar and J.S. Hesthaven, High-
order accurate thin layer approximations for
time-domain electromagnetics, Part II: Trans-
mission layers, in J. Comp. Appl. Math., 8
(2010), pp. 2587–2608.

[2] H. Haddar and P. Joly Stability of thin layer ap-
proximation of electromagnetic waves scattering
by linear and non linear coatings, in Nonlinear
Partial Differential Equations and their Appli-
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Introduction

In this study we are investigating the acoustic
equations as a perturbation of the Navier-Stokes
equations around a stagnant uniform fluid, with
mean density ρ0 and without heat flux. For gases
the (dynamic) viscosity η is very small and leads to
viscosity boundary layers close to walls. To resolve
the boundary layers with (quasi-)uniform meshes the
mesh size has to be at the same order which leads to
very large linear systems to be solved. This is es-
pecially the case for the very small boundary layers
of acoustic waves. We propose effective impedance
boundary conditions for curved boundaries by a mul-
tiscale analysis, which separate velocity and pressure
into far field and correcting near field [1].

Formulation of the problem

Let Ω ⊂ R2 be a bounded domain with smooth
boundary ∂Ω. We consider dimensionless time-
harmonic acoustic velocity v and acoustic pressure
p (the time regime is e−iωt, ω ∈ R+) which are de-
scribed by the coupled system in the framework of
Landau and Lifshitz [2]

−iωv +∇p−R−1∆ηv = f , in Ω, (1a)

−iωp+ divv = 0, in Ω, (1b)

v = 0, on ∂Ω. (1c)

In the momentum equation (1a) with some known
source term f the viscous dissipation in the momen-
tum is not neglected as we consider near wall regions.
Here, R−1 = η/(ρ0cL) � 1 is a dimensionless num-
ber, c the sound velocity, L the characteristic length
of the domain, and ∆η := ∆ + (1

3 + ζ/η)∇ div with
ζ ≥ 0 the second (volume) viscosity. The continuity
equation (1b) relates the acoustic pressure linearly to
the divergence of the acoustic velocity. The system is
completed by no-slip boundary conditions (1c). Here
we assume that f = 0 on ∂Ω, more general results can
be found in [1].

Asymptotic expansion

The acoustic equations (1) show a viscosity bound-
ary layer of thickness O(

√
R−1) for the tangential

component of the velocity. Introducing the small
parameter ε =

√
R−1 and curvilinear coordinates

(t, s) close to the boundary where t is the tangen-
tial variable and s the normal one, we write the solu-
tion of (1) inspired by the framework of Vishik and
Lyusternik [3] as

v=

∞∑

j=0

εj
(
vj + ε curl2D φ

j
)

; p=

∞∑

j=0

εjpj , (2)

where vj(x, y) and pj(x, y) are terms of the far field
expansion, the near field terms φj(t, sε) represent the
boundary layer close to the wall, and curl2D =
(∂y,−∂x)>.

The method of multiscale expansion separates the
far and near field terms. The far field velocity terms
vj satisfy the partial differential equation (PDE)

∇ divvj + ω2vj = iωf · δj=0 + iω∆ηv
j−2, (3a)

vj(t, 0) · n = ∂tφ
j−1(t, 0), (3b)

where φ−j ≡ 0 for j < 0, δj=0 the Kronecker symbol
which is 1 if j = 0 and 0 otherwise, and n the outer
normal vector. The far field pressure terms follow as

pj = − i

ω
divvj . (4)

The near field terms φj(t, S) for S ∈ [0,∞) are de-
fined by the ordinary differential equation (ODE)

iωφj + ∂2
Sφ

j = κ
(
3 iωS + 3S∂2

S + ∂S
)
φj−1 − ∂2

t φ
j−2

+
(
− 3 iωκ2S2 − 3κ2S2∂2

S − 2κ2S∂S
)
φj−2

+
(
iωκ3S3 + κ3S3∂2

S + κ3S2∂S + κS∂2
t − κ′S∂t

)
φj−3,

with the boundary condition

∂Sφ
j(t, 0) = vj(t, 0) · n⊥,

and decay condition for S → ∞. Here, n⊥ =
(n2,−n1)> and κ are tangential vector and curvature
on ∂Ω.

The far field velocity term v0 has only a vanishing
normal component, and the tangential component
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gets zero only if ε curl2D φ
0(t, sε) is added, see (1c),

where the zeroth order near field function for S = s
ε

φ0
(
t,
s

ε

)
=

1− i√
2ω

exp

(
−(1 + i)√

2

√
ωs

ε

)
v0(t, 0) · n⊥

decays exponentially away from the boundary. The
sum v0 + ε curl2D φ

0(t, sε) has a non-zero, but small
normal component and is therefore corrected by εv1.

Order 0 Order 1 Order 2 exact

Figure 1: Comparison of pressure.

Impedance boundary conditions

Outside aO(ε)-neighbourhood of the boundary the
far field velocity vε,N :=

∑N
j=0 ε

jvj and pε,N :=∑N
j=0 ε

jpj serve as accurate approximation to v and
p, where the error is the smaller the higher N . Ap-
proximations vappr,N ≈ vε,N and pappr,N ≈ pε,N shall
be defined by a single PDE, respectively, using again
R−

1
2 instead of ε. In this way we can define PDEs

with impedance boundary conditions for the pres-
sure only, which can be directly computed and not
in post-processing like for the exact model.

Impedance boundary conditions for the pressure.
The approximative models are for N = 0

∆pappr,0 + ω2pappr,0 = div f ,

∇pappr,0 · n = 0,

for N = 1

∆pappr,1 + ω2pappr,1 = div f ,

∇pappr,1 · n + 1+i√
2ωR

∂2
t pappr,1 = 0,

and for N = 2
(

1− (4
3 + ζ

η ) iω
R

)
∆pappr,2 + ω2pappr,2 = div f ,

∇pappr,2 · n + 1+i√
2ωR

∂2
t pappr,2 + i

2ωR∂t(κ∂tpappr,2) = 0.

Error estimate

Lemma If ω2 is not a Neumann eigenvalue of −∆,
then, there exist a constant C such that for N =
0, 1, 2

‖p− pappr,N‖H1(Ω) ≤ CR−
N+1

2 .

For a rectangular domain with omitted disk we
have performed numerical simulations for the ex-
act model (1) and the approximative pressure mod-
els, see Fig. 1. We have used high-order finite ele-
ments within the numerical C++ library Concepts
(www.concepts.math.ethz.ch) to push the discreti-
sation error below the modelling error. Figure 2
shows the modelling error in dependance of the vis-
cosity.
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Figure 2: The modelling error, N = 0, 1, 2.

References

[1] Schmidt, K. and Thöns-Zueva, A. Asymptotic
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Abstract

The interior transmission eigenvalues play an im-
portant role in the area of inverse scattering problems
for inhomogeneous media. These eigenvalues can ac-
tually be determined from multi-static far field data,
thus, they could be used in non destructive testing
and others areas of applications. Here, we focus on
the case where the obstacle is a perfectly conducting
body coated by a thin layer of dielectric material. We
derive and justify the asymptotic expansion of the
first interior transmission eigenvalue with respect to
the thickness of the coating for the TM electromag-
netic polarization. This expansion provides interest-
ing qualitative information about the behavior of the
first interior transmission eigenvalue and also gives
an explicit formula to compute the thickness of the
coating.

Introduction

A new eigenvalue problem, the so-called interior
transmission eigenvalue problem (ITEP), appeared
in the nineteen eighties in the context of inverse scat-
tering problems (see [5]). More precisely, the interior
transmission eigenvalues are related to non scatter-
ing frequencies, which means that when such eigen-
value exists, it corresponds to a frequency for which
there exists an incident wave that almost does not
scatters. Moreover, recently, it has been noticed that
these eigenvalues may be computed from multi static
far field data (see [2]) and therefore they can be used
for non destructive testing of materials (see [1]). For
a survey on the ITEP we refer to [4].

We focus here on the ITEP related to the scatter-
ing by an inhomogeneity which is a perfectly conduct-
ing body coated by a thin dielectric layer of thickness
δ. Existence of such eigenvalues for the TM electro-
magnetic polarization has been proven in [3] for small
index of refraction of the coating (see Theorem 1.2).
We go further in understanding the problem by pro-
viding a rigorous asymptotic development of the first
transmission eigenvalue with respect to δ up to the
second order.

1 The interior transmission eigenvalue prob-
lem

Let Ω be a bounded domain of R2 simply con-
nected and denote Γ its boundary of class C∞. For
δ > 0 we denote by Uδ = {x ∈ Ω such that d(x,Γ) <
δ} a thin layer of interior boundary Γδ = {x ∈
Ω such that d(x,Γ) = δ} that defines a bounded and
simply connected domain Ωδ (see Figure 1). Here
d(x,Γ) stands for the distance function to the sur-
face Γ. The interior transmission eigenvalue problem

ν

δ

Uδ

Γ
Γδ

Ωδ

Figure 1: Thin layer geometry.

then writes: find kδ > 0 such that there exists a
non trivial solution (wδ, vδ) to the following coupled
problem





∆wδ + k2
δnwδ = 0 in Uδ,

∆vδ + k2
δvδ = 0 in Ω,

∂vδ
∂ν

=
∂wδ
∂ν

, vδ = wδ on Γ,

wδ = 0 on Γδ

(1)

where n ∈ L∞(Uδ) denotes the refractive index of the
layer and ν denotes the outward unit normal to Ω.

Definition 1.1 The values k2
δ > 0 for which (2)

has a non trivial solution (wδ, vδ) are called interior
transmission eigenvalues; the functions wδ and vδ are
the associated eigenvectors.

There is no guaranty of the existence of such eigen-
values for any n, nevertheless we have the following
theorem (see [3]).
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Theorem 1.2 Assume that 0 < n∗ < n(x) < n∗ <
1. There exist an infinite discrete set of transmission
eigenvalues with +∞ the only accumulation point.

In the following, we assume that n is a constant such
that 0 < n < 1.

2 Asymptotic development of the first eigen-
value

Let λδ1 be the first interior transmission eigenvalue.
First of all, by using the Max-Min principle we obtain

λ1
D(Ω) ≤ λ1

δ ≤ λ1
D(Ωδ)

where for any Lipschitz bounded domain D, λ1
D(D)

stands for the first Dirichlet eigenvalue of −∆ in D.
Hence we obtain a first asymptotic development for
λ1
δ :

λ1
δ = λ1

D(Ω) +O(δ).

where O : R→ R is a regular function such that

|O(x)| ≤ C|x|

for all x ∈ R and some constant C > 0.

To go further in the asymptotic development, we
first compute a formal asymptotic development of λ1

δ

and its associated eigenvectors (v1
δ , w

1
δ ). In a second

step, we justify these developments recursively by
using a regularity result for elliptic equations which
does not depend on the parameter δ, and the Max-
Min principle for the first eigenvalues. The regularity
estimates allows us to apply some convergence results
for the −∆ operator with Dirichlet boundary con-
ditions to justify the expansion of the eigenvectors,
whereas the Max-Min principle provides the conver-
gence of the eigenvalues’ expansion. Finally, we are
able to prove the following result.

Theorem 2.1 The following expansion for the first
transmission eigenvalue holds:

λ1
δ = λ1

D(Ω) + δλ1 + δ2λ2 +O(δ3)

where

λ1 :=

∫

Γ

∣∣∣∣
∂v0

∂ν

∣∣∣∣
2

ds,

λ2 := −
∫

Γ

(
κ

2

∂v0

∂ν
− ∂v1

∂ν

)
∂v0

∂ν
ds.

Here κ is the curvature of Γ, v0 is the Dirichlet eigen-
vector associated with λ1

D(Ω) and v1 is the unique

solution in H1(Ω) of




∆v1 + λ0v1 = −λ1v0 in Ω,

v1 =
∂v0

∂ν
on Γ,∫

Ω
v0v1dx = 0.

This Theorem provides a formula to compute the
thickness δ of the layer from the knowledge of the
first interior transmission eigenvalue λ1

δ and the ge-
ometry Γ.

Remark 2.2 One may observe that λ1 and λ2 are
in fact the first and second order shape derivative of
λ1
D(Ω) in the direction −ν. Hence

λ1
δ = λ1

D(Ωδ) +O(δ3).

3 An equivalent eigenvalue problem

From the asymptotic obtained in Theorem 2.1 one
can build an equivalent eigenvalue problem: find
λimp
δ > 0 such that there exists a non trivial solu-

tion vimp
δ ∈ H1(Ω) to




∆vimp
δ + λimp

δ vimp
δ = 0 in Ω,

∂vimp
δ

∂ν
− 1

δ
vimp
δ = 0 on Γ.

(2)

And then, for the first positive λimp
δ (which exists)

we have
λ1
δ = λimp

δ +O(δ2).
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Abstract

We present Equivalent Conditions (ECs) for the
diffraction problem of elasto-acoustic waves in a solid
medium surrounded by a thin region of fluid medium.
This problem is well suited for the notion of ECs :
since the thickness of the layer is small with respect
to the wavelength, the effect of the fluid on the solid
is as a first approximation local. These conditions
approximate the acoustic waves which propagate in
the fluid region. We present numerical results to il-
lustrate the accuracy of ECs.

1 Introduction

Equivalent Conditions (ECs) are usually used in
the modeling of wave propagation phenomena to re-
duce the domain of interest. The main idea con-
sists to replace an “exact” model inside a part of the
domain by an approximate condition. This idea is
pertinent when the EC can be readily handled for
numerical computations.

The coupling of elastic and acoustic waves equa-
tions is essential to reproduce geophysical phenom-
ena such as an earthquake on the Earth’s surface. We
can thus take into account the effects of the ocean on
the propagation of seismic waves. In the context of
this application, we consider that the medium con-
sists of land areas surrounded by fluid zones whose
thickness ε is very small. This raises the difficulty of
applying a FEM on a mesh that combines fine cells in
the fluid and much larger cells in the solid. To over-
come this difficulty we use an asymptotic method to
replace the fluid part by an EC. This condition is
then coupled with the elastic equation and a FEM
can be applied to solve the resulting boundary value
problem.

We first introduce the mathematical model. Then,
we present ECs up to the second order, stability and
convergence results for the elastic displacement. Nu-
merical results illustrate the accuracy of ECs.

The Mathematical Model

We consider an elasto-acoustic waves transmission
problem in time-harmonic regime





∆pε + κ2pε = 0 in Ωε
f

∇ · σ(uε) + ω2ρuε = 0 in Ωs

∂npε = ρfω
2uε · n− ∂npi on Γ

T(uε) = −pεn− pin on Γ

pε = 0 on Γε ,

(1)

set in a smooth bounded simply connected domain
Ωε ⊂ R2 made of a smooth connected subdomain Ωs

embedded in a subdomain Ωε
f . The domain Ωε

f is a
thin layer of uniform thickness ε. We denote by n the
unit normal to Γ oriented from Ωs to Ωε

f ; Γε := ∂Ωε

and Γ := ∂Ωε
f ∩∂Ωs. In the system (1), the unknowns

are the elastic displacement uε and the acoustic pres-
sure pε. The time-harmonic wave field with angular
frequency ω is characterized by using the Helmholtz
equation for pε, and by using an anisotropic discon-
tinuous linear elasticity system for uε. The physical
constants are the acoustic wave number κ = ω/c, the
speed of the sound c, the density of the solid ρ, and
the density of the fluid ρf .

In the elastic equation, ∇· is the divergence oper-
ator for tensors and σ(u) is the stress tensor given
by Hooke’s law σ(u) = C ε(u). Here ε(u) = (∇u +

∇uT )/2 is the strain tensor, ∇ denotes the gradient
operator for tensors, and C = C(x) is the elastic-
ity tensor, where x ∈ R3 are the cartesian coordi-
nates. The components of C are the elasticity mod-
uli Cijkl ∈ R : C = (Cijkl(x)). The traction operator
T is a surfacic differential operator defined on Γ as
T(u) = σ(u)n. The right-hand side pi represents an
incident wave with support on Γ.

In the framework above we address the issue of ECs
for uε as ε→ 0. This issue is linked with the issue of
ε-uniform estimates for the displacement uε and the
pressure pε solutions of (1) since it is a main ingredi-
ent in the justification of ECs. To answer these ques-
tions, we work under usual assumptions (symmetry
and positiveness) on the tensor C. Some resonant fre-
quencies may appear in the solid domain. However,
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we prove uniform estimates for the elasto-acoustic
field (uε, pε) as well as ECs for uε when ε→ 0 under
a spectral assumption :

Assumption 1.1 The angular frequency ω is not an
eigenfrequency of the problem

{
∇ · σ(u) + ω2ρu = 0 in Ωs

T(u) = 0 on Γ .

2 Statement of Equivalent Conditions

We derive a hierarchy of ECs for uε set on Γ and
satisfied by ukε for all k ∈ {0, 1, 2}, i.e. ukε solves
{
∇ · σ(ukε) + ω2ρukε = 0 in Ωs

T(ukε) + Bk,ε(u
k
ε · n)n = hk,εn on Γ .

(2)

Here Bk,ε is a surfacic differential operator acting on
functions defined on Γ, and hk,ε is a data which de-
pends on the source term pi and ε. ECs write

k = 0 : T(u0) = −pin on Γ , (u0 = u0
ε)

k = 1 : T(u1
ε)− εω2ρfu

1
ε · nn = −pin− ε∂npin ,

k = 2 : T(u2
ε)−εω2ρf

(
1− ε

2
c(t)
)
u2
ε·nn = h2,εn .

Here, t is an arc-length coordinate on the curve Γ, and
c(t) denotes the scalar curvature of Γ in x(t). These
conditions show the successive corrections brought
when increasing the order. For k = 0 the effect of the
thin layer is completely neglected. The effect of the
fluid part appears at the order 1 with the fluid density
ρf . The influence of the geometry of Γ appears at the
order 2 with its scalar curvature.

Stability and Convergence results

The validation of ECs consist to prove estimates
for uε − ukε , where ukε is the solution of the approxi-
mate model (2), and uε solves the problem (1).

Theorem 2.1 Under Assumption 1.1, for all k ∈
{0, 1, 2} there exists constants εk, Ck > 0 such that
for all ε ∈ (0, εk), the problem (2) with data hk,ε ∈
L2(Γ) has a unique solution ukε ∈ H1(Ωs) and

‖uε − ukε‖1,Ωs 6 Ckε
k+1 . (3)

The well-posedness result for the problem (2) is
proved in [2]. To estimate the difference uε − ukε , we
use a multiscale expansion for uε in power series of ε
and introduce truncates series uk,ε up to the order εk

as intermediate quantities. The error analysis is split
into two steps. We first prove uniform estimates for
the difference uε − uk,ε [2, Thm 5.2]. Then we prove
uniform estimates for the difference uk,ε−ukε [2, §6.2].

3 Numerical Results.

In the numerical experiments, the computational
domain for the solid Ωs is an aluminum disk with
a radius R = 0.01m embedded in water [1]. The
source term is an incident wave defined as pi(x) =
exp(iωx · d) with d = (1, 0). The angular frequency
is ω = 1.5×106Hz. In the domain Ωs, we consider the
Lamé system : µ∆u+(λ+µ)∇ div u+ω2ρu = 0, with
the coefficients µ ' 26.32× 109 and λ ' 51.08× 109.
The physical constants are c = 1500 m.s−1, ρf = 1000
kg.m−3, and ρs = 2700 kg.m−3.

We use a Discontinuous Galerkin Method
(IPDGM) and curved P3-finite elements available in
the Finite Element Library Hou10ni. We compute
the L2-errors between the analytical solution of the
problem (1) and each analytical solution associated
with an EC of order k ∈ {0, 1, 2}. We also compute
the L2-errors for each numerical solution associated
with an EC, see Fig. 1. We observe that the numer-
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Figure 1: L2-errors ‖uε− ukε‖0,Ωs with respect to ε.

ical convergence rate coincides with the theory since
the L2 error is of order εk.
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Abstract

The Ultra Weak Variational Formulation (UWVF)
is a new generation finite element method for approx-
imating time harmonic acoustic and electromagnetic
wave propagation. We use the UWVF to solve the
Helmholtz equation in two dimensions. Often a plane
wave basis is used; here we implement a Hankel ba-
sis, allowing greater flexibility in terms of direction
and curvature of the basis set. We augment this ba-
sis type using ray tracing techniques for the case of
a smooth, convex scatterer. Some initial results are
presented, demonstrating the reduction in the com-
putational size of the problem for a given level of
accuracy when ray tracing techniques are used.

Introduction

Acoustic wave propagation is currently an area of
intensive study. With seismic, defence, and medical
applications, accurate numerical methods for sim-
ulating how waves interact with structures are re-
quired by many. The Ultra Weak Variational For-
mulation is a form of discontinuous Galerkin method
which assumes wave like behaviour on each element,
but otherwise allows flexibility in the approximation
space. Here we exploit this flexibility by combining
the numerical method with ray tracing solutions, in
order to find accurate solutions at a lower computa-
tional cost than the standard UWVF.

Time harmonic acoustic wave scattering is mod-
elled in 2D by the Helmholtz problem

∇ ·
(

1

ρ
∇u
)

+
κ2

ρ
u = 0, in Ω, (1)

(
1

ρ

∂u

∂ν
− iσu

)
= Q

(
−1

ρ

∂u

∂ν
− iσu

)
+ g, on Γ,

(2)
where Ω is a polygonal domain with boundary Γ.
The wavenumber κ is complex with =(κ) ≥ 0 and
<(κ) > 0, the density ρ and impedance parameter σ
are real and positive, the source term is g, and Q is
complex with |Q| ≤ 1.

1 The UWVF with a Hankel Basis

In the implementation of the UWVF, the domain
Ω is discretised into triangular finite elements Ωk, k =
1, . . . ,K, upon which local solutions are found, with
κ and ρ assumed constant over each element. The ap-
proximation takes the form of a linear combination of
basis functions φk,l, l = 1, . . . , pk, each of which is re-
quired to solve the homogeneous Helmholtz equation,
so incorporating the oscillatory behaviour of the solu-
tion. Much current literature uses an equally spaced
plane wave basis on each element, see [1], [2], with a
Bessel function basis used in [3].

As an alternative, we instead use a Hankel basis.
The basis functions are defined as

φk,l(x) =

{
H1

0 (κk|x− yk,l|), in Ωk,
0, elsewhere,

(3)

where κ is taken to be piecewise constant with κk ≡
κ|Ωk

. These are cylindrical waves originating from
source points yk,l /∈ Ωk. The choice of yk,l allows
flexibility in both the direction and the level of cur-
vature of the basis function over the element.

2 Ray Tracing

At high frequencies a ray model gives a good un-
derstanding of the direction of propagation of a wave.
We use the ideas of ray tracing to find a good a-priori
choice of basis function.

Consider a domain Ω enclosing a smooth, convex
scatterer with no straight edges, the boundary of
which we denote by Γ1, and call the exterior bound-
ary Γ2. Let the incident field ui be a plane wave and
the wavenumber be constant in Ω: ray directions per-
pendicular to the wavefronts are parallel, until they
reach the scatterer, reflect, and continue in a straight
line. For any given point in the illuminated region
x ∈ Ω, by tracing the ray through this point back,
we can find the point of interaction z ∈ Γ1 where
the incident ray hits the scatterer, and the angle of
reflection θ = θi = θr.

For points inside an element Ωk, we consider the
local scattered field to be originating from a single
centre of curvature, which we can find by considering
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the intersection of rays from points which are close to
one another. Let a second point x0 ∈ Ω be reached by
a ray that reflects at an angle of reflection θ0, at point
of interaction z0 ∈ Γ1. If we extend the rays that
travel through x and x0 back through the scatterer,
they will cross at some point P either within or on
the opposite side of the scatterer. Taking the limit as
x→ x0, we take this intersection point as the centre
of curvature xC. This is illustrated for a circular
scatterer in Figure 1.

Figure 1: Centre of curvature of rays at x is
xC := limx→x0 P .

3 The Ray Enhanced UWVF Method

For Dirichlet boundary conditions on the surface
of the scatterer Γ1 we take Q = −1 and we take the
source term g = 0. On the outer boundary of the
domain Γ2 we take Q = 0, for impedance boundary
conditions, and we take source term g = ∂u

∂n − iκu,
where u is the exact solution (allowing us to focus
attention on the value of the ray tracing augmenta-
tion).

The UWVF can be extended to incorporate the
ray traced directions and centres of curvature into
the Hankel basis, using just two basis functions per
element: one a single plane wave representing the in-
cident field and the other a point source centred at
xC, found by the ray tracing algorithm of §2, repre-
senting the scattered field. The remainder of the ba-
sis functions on the element are taken as plane waves
in equally spaced directions.

We begin our numerical examples by using just
the two ray traced basis functions per element for a
circular scatterer. For κ = 80, we get an L2 relative
error of under 9% using K = 482 and 0.4 degrees
of freedom per wavelength. If only a more general
idea of the wave interaction is needed rather than

high accuracy, perhaps as an initial guess of state,
then this approach suggests potential computational
savings compared to more standard methods.

To achieve higher accuracy we require more ba-
sis functions per element. In addition to including
the ray traced basis representing the incident field
direction, we also include a further pk − 2 directions,
equally spaced around a circle of radius R >> 1
(thus simulating plane waves), together with a final
point source centred at the centre of curvature xC

given by our ray tracing algorithm. Figure 2 com-
pares these results to those achieved using an equally
spaced plane wave basis, for κ = 10. Including just
these two Hankel functions in the basis, with loca-
tions determined by ray tracing, leads to a reduction
in the overall number of degrees of freedom required
to achieve a given level of accuracy.

Figure 2: L2 Relative Error over the domain for
scattering by a circle, κ = 10. Approximation by an

equally spaced plane wave basis and an equally
spaced plane wave basis enhanced with ray tracing.
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Abstract

Hybrid resonance is a physical mechanism for the
heating of a magnetic plasma. In our context it is
a solution of the time harmonic Maxwell’s equations
with smooth coefficients, where the permittivity ten-
sor is a non diagonal hermitian matrix. This presen-
tation is dedicated to the description and numerical
approximation of a mathematical solution of the hy-
brid resonance with the limit absorption principle.
The corresponding analysis is to be found in [1], as
well as in [2], and shows that the mathematical solu-
tion is singular. As a consequence, it is difficult to
approximate it by any numerical method.

Both a simple one dimensional model and the full
two dimensional system will be approximated.

Introduction

Starting from Maxwell’s equations, we want to fo-
cus on the so-called eXtraordinary propagation mode
(X-mode) with a limit absorption principle to han-
dle the anisotropic permittivity tensor’s singularity.
The regularization parameter will be denoted µ.

−−→
curl(curl E)− (ε⊥ + iµI)E = 0. (1)

Considering coefficients that do not depend on the
y variable, we can perform a one dimension reduction
by taking the Fourier transform with respect to y. As
a result, the system modelling the propagation of X-
mode waves in plasmas described in [1] is





W +iθU −V ′ = 0,
iθW −(α(x) + iµ)U −iγ(x)V = 0,
−W ′ +iγ(x)U −(α(x) + iµ)V = 0,

where (U, V ) represents (Ex, Ey) and W represents
curl E. Here the notation ′ denotes the derivative
with respect to the x variable. The domain is

Ω =
{

(x, y) ∈ R2, −L ≤ x, y ∈ R, L > 0
}
,

the coefficient γ can be a positive constant and
α(x) = x around zero and constant for x higher than
a threshold H. The singularity stems from the fact

that around zero the non-diagonal part of ε⊥ takes
the lead over its diagonal part.

A convenient choice is then to consider the ordi-
nary differential system

d

dx

(
V θ,µ

W θ,µ

)
= Aθ,µ(x)

(
V θ,µ

W θ,µ

)
(2)

with

Aθ,µ(x) =

(
θγ(x)
α(x)+iµ 1− θ2

α(x)+iµ
γ(x)2

α(x)+iµ − α(x)− iµ − θγ(x)
α(x)+iµ

)
.

(3)
Then U θ,µ can be deduced from the equation

iθW θ,µ − (α+ iµ)U θ,µ − iγ(x)V θ,µ = 0. (4)

We would like to present the numerical validation
of some features of the theoretical analysis of the sys-
tem (2). For a given µ, the matrix (3) is well defined
and smooth, so that the system can be solved with an
ODE solver, as long as it is adapted to stiff problems.

A high order numerical method for the X-mode
system, based on adapted basis functions, and gener-
alizing the Ultra-Weak Variational Formulation will
also be introduced. The design of these basis func-
tions will be developed.

1 The first basis function

1.1 Definition and behavior at infinity

The first basis function

Uθ,µ
1 =

(
U θ,µ1 , V θ,µ

1 ,W θ,µ
1

)
∈ Xθ,µ (5)

is the natural one which is smooth at the origin:
U θ,µ1 (0) = 0.

Remark that this solution blows up at large scales,
and that it is uniformly bounded on (−L,H), H > 0.

1.2 Numerical approximation

Starting from the initial boundary condition at x =
0, the first basis function can be computed for x ≤ 0
and x ≥ 0. See figure 1.
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Figure 1: First basis function and zoom on x = 0,
with θ = 1 and µ = 10−2.

2 The second basis function

2.1 Definition

We would like to get a second basis function that
would be exponentially decreasing at large scales,
and linearly dependent of the first basis function re-
gardless the value of µ. Consequently, instead of con-
sidering an initial condition at x = 0, the idea is to
study the behavior of the solution on (H,∞). Since
the coefficients are constant there, the general solu-
tion is known explicitly as a linear combination of
two exponentials

U(x) = c+R+e
λθ,µx + c−R−e−λ

θ,µx, H ≤ x,
where (R+, R−) ∈ (C3)2, Re(λθ,µ) > 0 and ±λθ,µ
are the eigenvalues of Aθ,µ. Then the second basis
function is built with two requirements.

• It is exponentially decreasing at infinity, that is
∃ c− ∈ C, s.t.Uθ,µ

2 (x) = c−R−e−λ
θ,µx, H ≤ x.

• Its value at the origin is normalized with the re-
quirement iµU θ,µ2 (0) = 1.

Note that the limit solution is singular, constituted
of a Dirac mass at the origin plus a principle value
and a smooth square integrable function.

2.2 Numerical approximation

Starting from the exact boundary condition at D
satisfied by U3, the third basis function is computed.
It is then normalized to get U2. The singularity ex-
pected, namely 1/(−x+ iµ), appears on figure 2.

The convergence µ→ 0 can be observed as long as
the competition with the limit x→ 0 is captured by
a small enough discretization step.

The choice of a positive or negative regularization
parameter µ give different solutions. The relation

U θ,+2 (x)− U θ,−2 (x) =
−2iπ

α′(0)
U θ1 (x) x < 0. (6)

Figure 2: Second basis function and zoom on
x = 0, with θ = 1 and µ = 10−2.

Figure 3: Left and Right hand side of equation (6).

is also satisfied by the numerical solutions (fig. 3).

3 Numerical method for X-mode equations

The UWVF is based on basis functions that are ex-
act solution of the equation. No exact solutions for
(1) are known for generic coefficients α and γ, even
if the local qualitative features are provided by the
previous analysis. In order to adapt the UWVF in
this case, the idea is to design basis functions that are
approximated solutions, in the following sense: since

div(ε⊥E) = 0, there is ϕ such that E =
−−→
curlϕ. Look-

ing for ϕ as eP , with P ∈ C[X,Y ], and inspired by
the classical plane wave basis functions, the idea is to
design the polynomial function P in order to ensure

that
(
curl

(
ε−1⊥
−−→
curlϕ

)
− ϕ

)
/ϕ ≈ 0, using Taylor ex-

pansions.
We will explain precisely the design process and il-

lustrate some simulation results, which may be com-
pared to the 1D solutions described previously.
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Abstract

The discontinuous enrichment method (DEM) of-
fers superior performance to the classical FEM for a
number of constant wavenumber Helmholtz problems
and compares very favorably to competing meth-
ods that also use plane waves. Here the method
is developed for the first time for a smoothly vari-
able wavenumber Helmholtz equation. Plane waves
based on a piecewise constant approximation of the
wavenumber are considered alone, as well as in
a combination with discontinuous polynomial basis
functions. A new basis based on solutions of the
Helmholtz equation with a linearly changing square
of the wavenumber, the so-called Airy waves, is also
developed. The new elements are shown to outper-
form their continuous polynomial FEM counterparts
by a substantial degree on a benchmark problem.

Introduction

Methods employing plane waves in the discretiza-
tion of the Helmholtz equation have been shown to
alleviate the pollution effect and improve the unsat-
isfactory pre-asymptotic convergence of the classical
FEM in the medium frequency regime. Such meth-
ods include the ultra-weak variational formulation
(UWVF), the partition of unity method, the discon-
tinuous Galerkin method, the least squares method,
and the method considered here - DEM [1]. In this
method, the standard FE polynomial field is enriched
within each element by free-space solutions of the ho-
mogeneous PDE to be solved. Such enrichment func-
tions can be seen as the fine scales of the solution and
are typically discontinuous across element interfaces.
Lagrange multipliers are introduced there to enforce
a weak continuity of the solution. The method has
been shown to outperform the classical FEM in ap-
plications that include wave propagation, structural
vibration, and advection-diffusion.

While solutions of a homogeneous, free-space
Helmholtz equation with a constant wavenumber are
easy to find, such solutions are not readily available
for this equation with a spatially variable wavenum-

ber, which is encountered, e.g., in underwater acous-
tics in large domains. This opens the question of
how the above methods can be generalized to the
variable coefficient scenario. Some progress for the
case of a smoothly variable wavenumber has been re-
ported [2] in 1D for the UWVF by using exponentials
of polynomials. Here, three types of DEM elements
are proposed and tested.

1 Discontinuous enrichment method for the
variable wavenumber Helmholtz equation

The following boundary value problem for the
Helmholtz equation is considered:

−∆u − κ2u = 0 in Ω
∂u
∂ν = gN on ∂ΩN

∂u
∂ν − iκu = gR on ∂ΩR,

(1)

where ν denotes the normal derivative on the do-
main boundary ∂Ω = ∂ΩN ∪ ∂ΩR, ∂ΩN ∩ ∂ΩR = ∅,
and gN and gR are prescribed Neumann and Robin
data. DEM relies on a partitioning of the domain
Ω into nel elements such that Ω = ∪nel

j=1Ωj and
Ωj ∩ Ωk = ∅, k 6= j. Let Γj = ∂Ωj and the edges
between elements be denoted by Γjk = Γj ∩ Γk.
Let U = {v ∈ L2(∪nel

j=1Ωj) : v|Ωj ∈ H1(Ωj)}, be
the space of functions representing the solution and
W =

∏nel
j=1

∏nel
k=1,j<k H−1/2(Γjk). the space of func-

tions for the dual unknowns, the Lagrange multipliers
(LMs). The hybrid variational formulation of DEM
can be written as [1]: Find (u, λ) ∈ U × W such that

a(u, v) + b(λ, v) = r(v) ∀v ∈ U ,
b(µ, u) = 0 ∀µ ∈ W,

(2)

where a and b are bilinear forms and r is a linear
form. For BVP (1), these are defined by

a(u, v) =
∫
Ω(∇u · ∇v − κ2uv)dΩ −

∫
∂ΩR

iκuvdΓ,

b(µ, v) =
∑nel

k=1

∑nel
j=1,j<k

∫
Γjk

µ(vj − vk) dΓ, (3)

r(v) =
∫
∂ΩN

vgN dΓ +
∫
∂ΩR

vgR dΓ.

In discretization, the spaces U and W are replaced
by suitably chosen finite dimensional subspaces. For
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a spatially constant wavenumber, the enrichment
space in the original DEM was selected as a super-
position of plane waves of the form eiκd·x, where d is
a unit vector of the direction of the wave. The plane
waves solve the constant wavenumber, homogeneous,
free-space Helmholtz equation. Since free-space so-
lutions to the Helmholtz equation with a spatially
variable wavenumber are in general not available,
three approximate choices based on a local element-
by-element approximation are considered (and only
briefly summarized here due to lack of space):

• A family of elements Q-enw-enλ, where nw is
the number of uniformly distributed plane waves
with the wavenumber locally frozen within the
element. The Lagrange multipliers numbering
nλ per edge are similar to the complex expo-
nential LMs in the constant wavenumber case
[3], but they are based on the wavenumber that
now varies along the edge.

• A family of elements Q-enw,px-enλ derived from
Q-enw-enλ by adding an element to element dis-
continuous polynomial field. The discontinuous
field can be condensed out on the element level
and does not add to the global number of vari-
ables that is given by the number of LMs.

• A family of elements Q-anw-anλ based on solu-
tions of the Helmholtz equation with a linearly
changing square of the wavenumber are consid-
ered. These involve the Airy functions and they
are constructed in the form resembling plane
waves. Corresponding LMs are also derived.

2 Numerical experiment

A problem modeling sound-hard scattering by a
disk submerged in an acoustic fluid with a variable
speed of sound is considered. The total pressure
is computed by solving the BVP (1) with gN = 0,
on the scatterer boundary ΓN formed by a circle of
r = 0.5, and gR = iκ(ν · d − 1.0)eiκd·x that imposes
an incident plane wave on the absorbing boundary
ΓR, a circle of R = 1.5. The wavenumber varies lin-
early in the radial direction from 120 near the scat-
terer to 40. Relative l2 errors are computed for solu-
tions on meshes of different resolutions discretized
by the bi-polynomial elements Qp, and the three
families of DEM elements outlined above. Figure 1
shows that high order convergence of the element Q-
e16-e4 is limited by the degree of approximation of
the wavenumber, but the other new DEM elements

achieve the same accuracy as the bi-quartic element
with 4 times fewer dofs. Figure 2 illustrates a similar
improvement by DEM elements with Airy waves over
elements bi-polynomial elements Qp.
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Figure 1: Convergence comparison of Q4,
Q-e16-e4, Q-e16,p3-e4, and Q-a16-a4
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Figure 2: Convergence comparison of Qp and
DEM elements with Airy waves Q-anw-anλ
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Abstract

The proposed approach supplements existing plane
wave-based methods to facilitate solution of wave
problems in the high-frequency regime. The ap-
proach is developed to maintain a low number of ba-
sis functions which are systematically rotated to best
match the direction of field propagation. In this man-
ner, a better approximation of the field is anticipated
and numerical instabilities associated with high dis-
cretization and large basis sets are mitigated. Deter-
mination of the direction of propagation of the scat-
tered field is formulated as a minimization problem,
solved by the Newton method with Jacobians and
Hessians evaluations yielding the requisite Fréchet
derivatives of the field. To assess performance, the
field scattered by a prototypical disk-shaped, sound-
hard object is approximated with comparisons made
to both the analytical solution and the solution ob-
tained by the Least-Squares Method (LSM). Results
illustrate that a significant reduction in system size is
achievable by this proposed wave-tracking approach
as taken with respect to LSM.

Introduction

It has long been recognized that the discretiza-
tion required to attain a given level of accuracy
for Helmholtz’s problems, is greater than linearly
proportional to the frequency of the field. While
the oscillatory nature of plane wave basis function
model allow good numerical field approximation
and a multitude of plane wave-based approaches
have been proposed [1], mid- and high-frequency
fields require a significantly higher level of dis-
cretization and/or an increased number of basis
functions to achieve a given level of accuracy. Both
approaches, unfortunately, can create numerical
instabilities. To circumvent the above issues, we
developed an iterative algorithm that can allow a
small basis set to locally rotate in each element to
best align one function with the direction of field
propagation. Termed Wave-Tracking (WT) for this

study, the principle was recently demonstrated [2]
to improve the approximation for a rectangular
wave guide problem by a factor of 108 when used
in conjunction with LSM [3]. Here, the WT ap-
proach is extended to systematically approximate
fields that possess multiple directions of propagation.

The Approach

The considered scattering problem can be ex-
pressed as the following boundary value problem,

∆u+ k2u = 0 in Ω,

∂nu = −∂neik~x·~d on Γ,

∂nu = iku on Σ,

(1)

where Ω is a two-dimensional computational domain,
n is the unitary outward normal vector to the inner
and outer boundaries, Γ and Σ respectively, k is a
positive number representing the wavenumber, and
~d is a unit vector representing the direction of the
incident plane wave. The computational domain, Ω,
is partitioned into a regular triangulation τh of Nh

quadrilateral-shaped elements, K, and solution of the
Helmholtz equation, by plane-wave-based finite ele-
ment methods, can proceed by minimization of a cost
function J ,

J(uh) = inf
v∈Xh

J(v), (2)

with the global subspace Xh ⊂ L2(Ω) defined as,

Xh =



v ∈ L

2(Ω);∀K ∈ Th, v|K =

nK∑

j=1

ξKj φ
K
j



 ,

(3)
with element K ∈ Th possessing nK basis functions.
The set of basis functions in each element can be
realigned through use of rotational matrices, and this
accommodation can be expressed in an expanded cost
function:

J(uh(θ)) = inf
α∈Dh

inf
v∈Xh(α)

J(v) (4)
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with Dh as the space corresponding to all possible
directions of propagation of the field in the domain
Ω:

Dh =
{
α ∈ L2(Ω); ∀K ∈ Th, α|K = αK ∈ [0, 2π)

}
.

(5)
The field is thus represented at the element level by
basis functions and expansion coefficients that pos-
sess an angular dependence:

uh(αK)|K =

nb∑

j=1

ξKj (αK) eik
~dj(α

K)·~r. (6)

For simplicity, the second minimization in (4) can be
expressed as a collapsed cost function, L,

J(uh(θ̂)) = inf
α̂∈Dh

L(α̂) (7)

Extremum values of L can be determined by seeking
roots of the Jacobian, ~L′(α̂). To solve this non-linear
system, the Newton method was employed in this
study, for a given iteration m:

L′′(α̂(m))δα̂(m) = −~L′(α̂(m)) (8)

with L′′(α̂) as the Hessian, and δα̂ as the angular up-
date. For each iteration, m, the update was applied
to the set of basis functions,

α̂(m+1) = α̂(m) + δα̂(m). (9)

Illustrative Results

To apply the WT approach, we consider the sys-
tem represented by Eq. 1, with the boundaries Γ
and Σ defined as circular to enable analytical calcu-
lation of the exact solution, used as a reference for
the numerical results. To enhance efficiency, radially
adjacent elements in the computational domain were
grouped, with basis functions in each element of the
group locked to a common value. Initially, the field
was numerically approximated by LSM with errors
obtained by comparison to analytical values [2]. Sub-
sequently, the above (WT) iterative algorithm was
applied to allow each elemental basis set to rotate.
Evolution of the optimal basis set orientations within
a given radial group, shown in Figs. 1a and 2a, al-
lows a precipitous decline in the relative error of the
resultant fields, Figs. 1b and 2b . Comparison of the
H1-norm relative error [2], demonstrates the appli-
cability of the proposed method to achieve a sizable
reduction in computational costs. In order to achieve
an error of 10% for frequency ka=5, the WT strategy
reduced system size by a factor of 300 over LSM.

a) Basis set orientation b) Pointwise relative error

Figure 1: Scattered field as computed by LSM,
ka = 1, h−1=6, with a four plane waves basis set.

H1 relative error = 22%.

a) Basis set evolution b) Pointwise relative error

Figure 2: Scattered field of the system defined in
Fig. 1 after 3 successive WT iterations.

H1 relative error = 10%
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Abstract

We present a reduced formulation for the elasto-
acoustic scattering problem. The modeling is based
on the On Surface Radiation Condition method. It
leads to a discrete system which solution is assessed
when using Discontinuous Finite Elements.

Introduction

The numerical reconstruction of the shape of a
solid immersed into a fluid is an interesting issue
both from a mathematical and a practical point of
view. Indeed, if engineers have solved this problem
from a while in relatively simple configurations, it
continues to deserve attention because its solution
requires to invert a sparse linear system composed of
two discretized Helmholtz equations which are known
to be very sensitive to the values of the frequency [1].
The computational costs are then very high and be-
come quickly prohibitive in particular in 3D. Solution
methodologies that are able to decrease the computa-
tional burden are thus welcome. Obviously, they can
be minimized by choosing suitable finite elements [2],
[3]. In this work, we propose to investigate a differ-
ent approach by using a reduced problem that can be
solved with lower computational costs. For the con-
struction of the reduced problem, we propose to play
with the boundary condition that is used to limit the
fluid domain. This is an absorbing boundary condi-
tion that is set on a surface which can be more or
less far from the solid. Now in the simplest case of
a sound-soft or hard obstacle, Kriegsmann et al. [4],
have shown that it is possible to compute an approx-
imate solution by setting the ABC directly on the
surface of the scatterer. The corresponding reduced
problem is then given by an equation called On Sur-
face Radiation Condition (OSRC) that is set on the
boundary of the scatterer and that requires less com-
putations than the initial problem. The interest of
OSRC methodology has been demonstrated later for
solving the scattering problem of a penetrable object
immersed into a fluid [5] and to the best of our knowl-
edge, it has not been investigated in the case of an
elasto-acoustic problem. The accuracy of the OSRC

method depends on the geometry of the scatterer and
on the frequency regime and it can not provide an ac-
curate solution in all the situations. Nevertheless, it
can certainly quickly deliver a solution that could be
used as an initial guess for the solution of the inverse
problem.

1 Problem setting

Let Ωs be a bounded domain representing the solid
and let Γ be the boundary of Ωs. We denote by n the
normal vector defined on Γ and outwardly directed
to Ωs. The solid is immersed into a fluid Ωf which
is limited by a surface Σ that has been introduced
for numerical reasons. We then consider the mixed
boundary value problem:

∇ · σ(u) + ω2ρs u = 0 in Ωs (1)

∆p+ (ω2/c2
f ) p = 0 in Ωf (2)

ω2ρfu · n = ∂np+ ∂np
inc on Γ (3)

σ(u)n = −pn− pincn on Γ (4)

∂np+ αp− β∆Σp = 0 on Σ (5)

to model the behavior of the pair (u, p) representing
the displacement u into the solid and the pressure p
in the fluid. ρf and ρs are the density moduli of the
fluid and the solid, cf is the propagation velocity in
the fluid and the positive constant ω is the pulsation.
In the following, we set kf = ω/cf . The stress tensor
σ(u) is defined by σ(u) = Cε(u) = 1

2C
(
∇u+∇tu

)
,

where C is the elasticity tensor. The solid S is
illuminated by the incident wave pinc propagating
into the fluid and impinging the surface Γ accord-
ing to the transmission conditions. Now let x be a
generic point in IR2 and γδ be the level set defined
by γδ = {x := τ + δn} where τ := τ(s) denotes the
orthogonal projection of x onto γδ and s is the curvi-
linear abscissa. We then have γ0 = Γ and we choose
Σ = γR for a given R > 0. By this way, Γ and Σ are
parallel and the parameter δ measures the distance
between the two surfaces. The boundary condition
on Σ is an ABC which involves the Laplace-Beltrami
operator ∆Σ and the coefficient α incorporates the
geometry of Γ and depends on δ. For instance, fol-
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lowing the same ideas than in [6], we get :

α = (ξ − κδ/2 + ikf )−1(ξ(κδ + ikf )− k2
f ) (6)

where κδ denotes the curvature of Σ defined by:

κδ =
κ

1 + δκ

with κ the curvature of Γ. Regarding β, we have:

β = (ξ − κδ + ikf )−1. (7)

In the above definitions, ξ is a positive parameter
which is determined empirically.

2 Reduced problem

The construction of a reduced formulation begins
with assuming that γ and Σ are close enough to be
merged. It is well-known that if p and ∂np can be
computed on Γ, it is possible to reconstruct the pres-
sure field p in the fluid by using an integral represen-
tation. Based on this remark, we propose to replace
∂np on Γ in the transmission condition (3) by using
the ABC (5). By this way, we get the reduced prob-
lem composed of Eq.(1) combined with a modified
version of (3) given by

ω2ρfu · n = −αp+ β∆Γp+ ∂np
inc, (8)

and Eq.(4). The solution to the reduced problem is
then given by the pair (u, p|Γ) and the computation
are performed in Ωs only.

To compute the solution to the elasto-acoustic
scattering problem, we thus propose to solve a dis-
crete system related to Eq. (1) set in the bounded do-
main Ωs combined with the boundary conditions (8)
and (4) at first. The pressure field can next be recon-
structed by computing ∂np|Γ thanks to (5) set on Γ,
which enables to get the expression of p in Ωf thanks
to the Kirchhoff integral formulation. While (4) is
included in the variational formulation of (1), Con-
dition (8) is weakly taken into account by a surfacic
variational formulation on Γ.

To get an approximate solution of this problem,
we propose to use an Interior Penalty Discontinuous
Galerkin (IPDG) method. We denote by Ωh (resp.
Γh) a triangulation of Ω (resp. Γ) and we consider
the spaces

Vh =
{
u ∈ L2(Ω) |u|T ∈ P r(T ), ∀T ∈ Ωh

}
and

Wh =
{
u ∈ L2(Γ) | p|Σ ∈ P r(Σ), ∀Σ ∈ Γh

}
,

where P r(T ) denotes the space of polynomials of de-
gree r on T . We denote by Φ = (φi)i=1..Ns (resp.
Ψ = (ψi)i=1..Nf

) a basis of Vh (resp. Wh). It is worth
noting that Nf is very small compared to Ns since we
only compute an approximation of p on the boundary
Γ. The linear system to be solved reads as

(Ms +Ks)U + BsfP = F1,
BfsU + (Mf +Kf )P = F2,

(9)

where U and P are two vectors of size Ns and Nf

containing the components of the approximation of
u and p in the basis Φ and Ψ. Ms and Mf are block-
diagonal mass matrices of size Ns×Ns and Nf ×Nf

defined by

(Ms)i,j =

∫

Ω
φi · φjdΩ and (Mf )i,j =

∫

Γ
αψi ψjdΓ.

Ks and Kf are stiffness matrices of size Ns×Ns and
Nf ×Nf defined by

(Ks)i,j = a(φi , φj) and (Kf )i,j = b(ψi , ψj),

where a(., .) and b(., .) are the bilinear forms obtained
by the IPDG discretization of the operators ∇ · σ(u)
and −β∆Γ. Finally, Bsf and Bfs are two coupling
matrices of size Ns ×Nf and Nf ×Ns defined by

(Bsf )i,j =−
∫

Γ
φi ·ψjndΓ and (Bfs)i,j = ω2ρf (Bsf )j,i.

We present numerical results that illustrate the per-
formance of the reduced model. We also assess the
impact of parameter δ on the accuracy of the solu-
tion.
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Abstract

Trefftz schemes are FEMs whose trial functions are
piecewise solution of the considered PDE. They are
becoming increasingly popular for medium-frequency
acoustic, electromagnetic and elastic problems. We
consider the hp-version of a Trefftz-discontinuous
Galerkin method based on plane/circular waves and
the approximation estimates necessary for its expo-
nential convergence in term of the number of DOFs.

1 Trefftz methods in time-harmonic regime

The propagation and the interaction of acoustic,
electromagnetic and elastic linear waves in time-har-
monic regime, with wavenumber k > 0, are modelled
by Helmholtz (1), Maxwell (2) and Navier (3) equa-
tions, respectively:

−∆u − k2u = 0, (1)

∇ × (∇ × E) − k2E = 0, (2)

(λ + 2µ)∇(∇ · u) − µ∇ × (∇ × u) + k2ρu = 0. (3)

The finite element method (FEM), in its numerous
variations, is a widely used tool for the discretisation
of these PDEs. However, as soon as the wavelength
λ = 2π/k becomes small compared to the diameter
L of the domain, simulations become very expensive,
indeed infeasible for larger values of L/λ. This is due
to the highly oscillatory structure of the solutions in
the high frequency regime and to the accumulation of
phase error, called numerical dispersion, that affects
any local discretisation via the FEM.

To cope with these fundamental difficulties, several
recent methods incorporate information about the
equations in the design of the trial space. This can
be achieved by choosing basis functions defined from
plane waves (functions x 7→ exp(ikxd), with prop-
agation direction d), or from circular, spherical and
angular waves, fundamental solutions or more exotic
solutions of the underlying PDEs. Prominent exam-
ples of such methods are the ultra weak variational
formulation (UWVF) of Cessenat and Després [2];
the partition of unity finite element method (PUM

or PUFEM) of Babuška and Melenk; the discontinu-
ous enrichment method (DEM/DGM) of Farhat and
co-workers; the variational theory of complex rays
(VTCR) of Ladevéze; and the wave based method
(WBM) of Desmet. The UWVF, the DEM, the
VTCR and the WBM are Trefftz methods, i.e., test
and trial functions are piecewise solutions of the un-
derlying PDE. For a more extensive discussion of Tr-
efftz schemes and for more references, see [10, §1.2].

1.1 The TDG method

We focus on a family of Trefftz-discontinuous
Galerkin (TDG) schemes, firstly introduced in [3],
that include the UWVF as a special case. In the
case of the Helmholtz equation, a priori error esti-
mates for the h- and the p-convergence were proved
in [3] and [4], respectively. The proof of these
bounds is made possible by the special DG frame-
work used, which ensures unconditional stability and
quasi-optimality (i.e., control of the error for any
value of the wavenumber and the meshsize), and by
the use of new approximation estimates (from [11])
for plane, circular and spherical waves, which ensure
high order convergence. The method was then gener-
alised to the Maxwell equations in [5]; for the Navier
equation we refer to the UWVF scheme of [8].

In [1], it was demonstrated that it is possible to
improve the TDG by estimating the dominant propa-
gation directions of the BVP solution and using them
to define the (modulated) plane waves spanning the
trial space; the extension to problems with varying
speed of sound was also considered.

2 The hp-version of the TDG

Considerations about numerical dispersion suggest
that the h-versions of FEMs are not effective for
medium and high frequency problems. In the case
of complicated geometries or scatterers with sharp
corners, p-methods are also not viable. Thus an hp-
version that combines the strengths of both strate-
gies is advisable. Indeed, a priori hp-FEM for the
Helmholtz equation saw an increased interest in the
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last years; but the analyses to date are limited to
polynomial-based schemes

In the case of the TDG, a special choice of the nu-
merical flux parameters allows to prove a priori error
estimates in L2-norm for meshes that are locally re-
fined, for example near the corners of a scatterer,
[6]. These can be combined with the local approxi-
mation estimates of [11] to achieve convergence esti-
mates that, in every element K, are explicit the local
meshwidth hK , the number pK of degrees of freedom
(DOFs) and the solution regularity sK , which can all
vary across the domain (see [6, §5] for the 2D case).

However, in order to obtain better results in terms
of the number of DOFs in quite general meshes, the
approximation bounds can still be improved.

2.1 Harmonic polynomial approximation estimates

The approximation estimates [11] for Helmholtz
Trefftz spaces rely on bounds for the approximation
of harmonic functions by harmonic polynomials; in
2D they where obtained by Melenk in [9]. They are
based on analogous complex variable results, proved
with the use of Hermite’s representation formula for
the interpolation error applied with special interpo-
lation points and integration contours which are, in
turn, defined through conformal mappings.

The position of these level lines can be estimated
in greater detail for a wide class of domains, namely
those that are star-shaped with respect to an open
set. In [7] we have proved the following result.

Theorem 1. Let D ⊂ R2 be an open domain with
diameter 1, containing the ball Bρ and star-shaped
with respect to Bρ0, 0 < ρ0 < ρ ≤ 1/2. Let u be a
harmonic function in the neighbourhood Dδ = D +
Bδ, with δ > 0. Then, there exists a sequence of
harmonic polynomials {Qp}p≥1 of degree p, such that

‖u − Qp‖L∞(D) ≤ C e−bp ‖u‖W 1,∞(Dδ).

The positive constants C and b are made explicit and
depend only on ρ, ρ0 and δ.

2.2 Exponential convergence of Trefftz hp-dGFEM

These result can be immediately used to prove ex-
ponential convergence of a Trefftz hp-DG method
based on harmonic polynomials, for Laplace BVPs.
In particular, on a graded mesh, we have proved in
[7] that the error (in DG energy norm) decays as
exp(−b

√
N), N being the number of degrees of free-

dom and b > 0; this is an improvement over standard
schemes which achieve only exp(−b 3

√
N).

The extension of this result to the Helmholtz case
and plane/circular wave spaces, relying on Vekua’s
theory [10, Ch. 2], is currently under way.
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Abstract

We study the discrete dispersion (cf.[1]) of the low-
est order DPG method for acoustics proposed in [2],
in terms of a modified ε-scaling in one of the com-
ponents of the test norm. Theoretically, we are able
to show that the scaled norm acts as a stabilizer of
the method when ε → 0+. Our numerical approach
only considers the traces and fluxes variables, which
in the lowest order case (p = 1 for traces and p = 0
for fluxes) leads to a 21-point stencil analysis.

Introduction

In acoustics and other wave propagation prob-
lems, numerical methods of the FEM-type have long
sufered from dispersion errors: Computed and ex-
act waves are increasingly out of phase as frequency
grows. An overview of the subject can be found in
the book of Ihlenburg [1].

Plane waves, ψ(~x) ≡ ei
~k·~x, are exact solutions of

the Helmholtz equation with zero sources (and are
often used to represent other solutions). Here the
wave vector ~k is of the form ~k = ω(cos(θ), sin(θ)) for
some 0 ≤ θ < 2π representing the direction of prop-
agation. The objective of a dispersion analysis is to
find similar solutions of a discrete (Helmholtz) homo-
geneous system. Accordingly, the regular assumption
is that the discrete solution is interpolating a plane
wave of the type

ψh(~x) = a(~x)ei
~kh·~x, (1)

where ~kh = ωh(cos(θ), sin(θ)) and a(~x) is an ampli-
tude function. Within the context and framework
of the DPG method proposed in [2], we would like
to find such discrete wavenumbers ωh as a function
of the exact wavenumber ω, the direction of prop-
agation θ and some of the discretization and stabi-
lization parameters. The idea is to compare how far
is ωh with the exact wavenumber ω. For our DPG
approach, ωh is a complex number. Its real part in-
dicates the discrete phase, while its imaginary part
indicates a diffusive behavior.

1 Theoretical Background

Here we describe the basic setting we use for the
DPG method. Let V (Ω) = H(div,Ω) × H1(Ω) and
(the wave operator) A : V (Ω) 7−→ L2(Ω)N × L2(Ω)
be defined for v = (~v, η) by

Av := (iω~v + ∇η, iωη + ~∇ · ~v).

Let Ωh be a disjoint partitioning of Ω into open ele-
ments K. such that Ω = ∪K∈Ωh

K. Let

V (Ωh) :=
{
(~v, η) : (~v, η)|K ∈ H(div,K) ×H1(K)

}
.

The operator Ah : V (Ωh) 7−→ L2(Ω)N × L2(Ω) will
be defined in the same way as A, except that deriva-
tives are taken element-wise. For global v = (~v, η) ∈
V (Ωh) and global w = (~w,ψ) ∈ V (Ω), an important
(element-wise) integration by parts formula is:

(Aw, v) = −(w,Ahv)+ < w, v >h, (2)

where (·, ·) denotes the usual inner product on
L2(Ω)N × L2(Ω) and < ·, · >h denotes the bound-
ary contribution:

< w, v >h:=
∑

K∈Ωh

∫

∂K
(~w · ~n)η + ψ(~v · ~n) dσ. (3)

We introduce some notation for such traces. Define

trh : V (Ω) 7→
∏

K

H−1/2(∂K) ×H1/2(∂K)

as follows: for any w = (~w,ψ) ∈ V (Ω), the restric-
tion of trh(w) on the boundary of any mesh element
∂K takes the form (~w · ~n|∂K , ψ|∂K) ∈ H−1/2(∂K) ×
H1/2(∂K).

1.1 An ultraweak formulation

To derive the DPG method for the Helmholtz prob-
lem to find u = (~u, φ) such that

Au = = f, on Ω, (4a)

φ = 0, over ∂Ω, (4b)
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we use the integration by parts formula (2) to get

−(u,Ahv)+ < trh(u), v >h= (f, v)

for all v = (~v, η) ∈ V (Ωh). Now we let the
trace trh(u) be an independent unknown û ∈ Q =
trh(H(div,Ω) × H1

0 (Ω)). Defining the bilinear form
b((u, û), v) = −(u,Ahv)+ < û, v >h, we obtain the
ultraweak formulation of [2]: Find u ∈ L2(Ω)N ×
L2(Ω) and û ∈ Q satisfying

b((u, û), v) = (f, v), ∀v ∈ V (Ωh). (5)

The wellposedness of this formulation follows from
[2] (except for a countable set of wavenumers ω).

1.2 The ideal DPG method

Let Uh ⊂ U := L2(Ω)N × L2(Ω) × Q be a finite
dimensional trial space. The standard DPG method
finds uh ∈ Uh satisfying

b(uh, vh) = (f, vh), (6)

for all vh in the test space Vh, defined by

Vh = TUh, (7)

where T : U 7→ V is defined by

(Tw, v)V = b(w, v), ∀v ∈ V, (8)

and the V -inner product (·, ·)V is the inner product
generated by the ε-scaled norm

‖v‖2
V = ‖Ahv‖2 + ε2‖v‖2. (9)

Here ε ∈ (0, 1] is an arbitrary scaling parameter. The
case of ε = 1 was treated in [2].

Theorem 1 The DPG solution uh admits the fol-
lowing quasioptimal error estimate:

‖u− uh‖U ≤ (1 + εC(ω)) inf
wh∈Uh

‖u− wh‖U .

�
The lowest order case assumes piecewise constants

for field variables and numerical fluxes, while us-
ing globally continuous piecewise linear functions for
traces. Field variables can be condensed out, letting
to a 8×8 element stiffness matrix for numerical traces
and fluxes. We follow the approach proposed in [3]
to compute the discrete wavenumber.

2 Numerical Result

We fix the angular frequency to be ω = 1 and the
element size to be h = 2π/4 (four elements per wave-
length). Figure 1 shows the dependence of ℜ(~kh) in
terms of the propagation angle θ, for several values
of the ε parameter. The exact wavevector is given
by the solid circle while the discrete wavevectors are
in dashed lines. We observe that as ε decreases, the
dashed curves approach the solid line, which indi-
cates control of dispersion when ε → 0+, as predicted
in Theorem 1.
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Figure 1: Dependence of ℜ(~kh) on ε and θ.
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Introduction

In this work, we consider an elastic waveguide with
one infinite direction and we focus on the study of
wave scattering phenomena by an arbitrary localized
defect. It is typically a situation for which standard
PML techniques cannot work because of the presence
of backward propagating modes. However, other ap-
proaches can be used to bound the computational
domain surrounding the defect :

• absorbing layers (constituted of viscoelastic ma-
terials) which lead to solve a sparse but large
linear system;

• transparent boundary conditions (involving
modal expansion) developped in [1] giving rise
to a small but partially dense linear system.

The idea is to gather advantages of these two ap-
proaches (inversion of a sparse and small matrix). To
achieve this purpose, a decomposition domain (DD)
method is proposed. The principle is to split the
domain in two parts, a bounded one containing the
defect, where finite elements are used to handle wave
scattering, and an infinite regular one, where a modal
decomposition is used to propagate the diffracted
elastodynamic field. Moreover an overlapping is in-
troduced between these two domains in order to get
advantages for the iterative resolution as in usual DD
methods.
Even if this approach may not converge for all fre-
quencies, it has the features to design an efficient
preconditioned GMRES solver.

1 DD method for elastic waveguides

We consider an isotropic elastic waveguide of geom-
etry Ω decomposed in two subdomains Ω1 and Ω2

(figure 1). Let u = (ux, uy) be the displacement field
which verifies :

{
−divσ(u)− ω2ρu = f in Ω,

σ(u).ν = 0 on ∂Ω,
(1)

where σ(u) is the stress tensor, ω > 0 the pulsa-
tion, ρ the density, f a compactly supported source

⌦

�1⌦1

⌦2�2

Figure 1: Decomposition of the waveguide Ω in
two subdomains Ω1 and Ω2

and x the propagation axis. To formulate the iter-
ative algorithm, we need to set conditions on artifi-
cial boundaries Γ1 and Γ2. Since we want to use a
modal expansion of the solution in Ω2, we impose a
condition on Γ2, expressed in terms of mixed vectors
originally introduced in [2]

X =

(
ux
ty

)
or Y =

(
uy
tx

)
(2)

where ti (i = x or y) equals (σ.ν)i = σix and ν is the
outgoing normal on Γ2. Imposing X or Y on Γ2 is
suitable for decoupling guided elastic modes.
In practice, we use a Robin condition (a linear
combination of u and t with a complex coefficient)
on Γ1 to ensure well-posedness of the problem in Ω1.

However, for the convergence analysis, let us
consider a separable geometry (Ω1 is rectangular)
and an appropriate condition on Γ1 which enables
us to make analytical calculations (ie use a modal
decomposition also in Ω1) :





divσ(un+1
1 ) + ω2ρun+1

1 = −f in Ω1,

σ(un+1
1 )ν = 0 on ∂Ω ∩ ∂Ω1,

Xn+1
1 = Xn+1

2 on Γ1,

(3)





divσ(un+1
2 ) + ω2ρun+1

2 = 0 in Ω2,

σ(un+1
2 )ν = 0 on ∂Ω ∩ ∂Ω2,

Y n+1
2 = Y n

1 on Γ2.

(4)
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The eigenvalues of the operator A which links un+1
1

and un1 are given by

λk =
(eiβka + e−iβka)eiβkl

eiβk(l+a) − e−iβk(l+a) (5)

where l is the distance between Γ1 and Γ2, and
(βk, uk) is the family of right going modes. Let
us remind that there are only a finite number of
propagative modes (whose βk are real) and an
infinite set of (possibly oscillating) evanescent modes
such that βk ∈ C and Im(βk) tends to +∞.

The convergence is obtained if |λk| < 1 ∀k.
In the case of no overlapping (l = 0), the above
expression becomes λk = −i/tan(βka). Therefore
λk ∼ −1 when k goes to +∞ and the method does
not converge. In the case of overlapping (l > 0),
λk ∼ e−2Im(βk)l, so |λk| tends to 0 when k tends to
+∞ for all l > 0.
Figure 2 represents the location of λk in the vicinity
of the unit disk at a given frequency F = ω/2π, for
different values of l/h ( h denotes the thikness of
the regular waveguide). The overlap l can be chosen

Figure 2: λk for l/h = 1, 2, 3 - F.h = 350 kHz.mm.

to have all λk in the unit disk for this particular
frequency.
But, it seems that this ”naive” iterative algorithm
will not converge at any frequency, even if we add
an overlap: see figure 3 where the frequency is
fixed and we represent maxk|λk| with respect to l.
However, we observe that only a finite number of
eigenvalues are far from 0, which is a good property
for a preconditioned GMRES algorithm. Let us
remark that we can show the same property for
general geometries using the fact that thanks to the
overlap, the operator A is compact (and then λk
tends to 0 when k tends to +∞).

2 Numerical experiments using a precondi-
tioned GMRES algorithm

We use now a GMRES algorithm to solve our scatter-
ing problem for which we only need to invert a sparse
matrix (corresponding to the Finite Element discreti-
sation of problem in Ω1) and to make a matrix-vector

Figure 3: max
k>0

(|λk|) vs l/h (F.h = 420 kHz.mm.)

product (corresponding to the modal decomposition
in Ω2).
In order to validate this approach, we have computed
a mode of the guide. We represent the numerical so-
lution on figure 4 and the relative error is lower than
0.1%.
Finally, we show in the following table the gain ob-

Figure 4: Real part of ux and uy
F.h = 1020 kHz.mm.

tained by the overlapping on the convergence rate.

Overlap l/h 0 0.3 0.5 1 3 5 7

Number of iterations 113 16 17 16 9 8 8
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Abstract

The scattering of time-harmonic acoustic waves in
a flat ocean can be modelled by the Helmholtz equa-
tion, however, reasonable models for sound propa-
gation over large distances imperatively require a
depth-dependent background sound speed. Lech-
leiter and Nguyen present in [1] a spectral volumet-
ric integral equation method to compute sound fields
in a homogeneous ocean with constant background
sound speed. Inspired by [1], we introduce funda-
mentals ingredients for the numerical analysis of a
spectral volumetric integral equation method applied
to ocean acoustics with depth-dependent background
sound speed.

1 Sound Waves in a Flat Ocean

First, we introduce some model assumptions. The
domain of interest is a waveguide Ω = R2 × (0, h),
where h > 0 is the constant depth of the ocean. The
propagation of time-harmonic waves in an inhomoge-
neous ocean is modelled by the Helmholtz equation

∆u + k2n2u = 0 in Ω, (1)

where
k(x3) =

ω

c0(x3)
, x3 ∈ (0, h),

is the real-valued depth-dependent wave number, ω
is the frequency and c0 is the speed of sound depend-
ing on the depth of the ocean. Furthermore, n is the
refractive index and we assume that n = 1 outside
some bounded and open set D. Hence, n models a lo-
cal perturbation inside an inhomogeneous waveguide
Ω. Next, we define the contrast by

q(x) := n2(x) − 1 for x ∈ Ω.

Second, we model the free surface of the ocean by a
sound soft boundary

u = 0 on Γ0 := {x ∈ R3 : x3 = 0},
and the seabed of the ocean by a sound hard bound-
ary

∂u

∂x3
= 0 on Γh := {x ∈ R3 : x3 = h}.

Third, we formally expand u in (1) by separation
of variables into horizontal and vertical coordinates.
To this end, we establish for a point x in the wave
guide Ω the notation x = (x1, x2, x3)

T = (x̃, x3)
T .

Then

u(x̃, x3) =
∑

m∈N+

wm(x̃)um(x3), (2)

for |x| large enough. Consequently, we deduce from
the Helmholtz equation (1) that

∂2um

∂x2
3

+ k2(x3)um = λmum, in (0, h),m ∈ N+, (3)

and

∆x̃wm + λmwm = 0 in R2. (4)

We investigate equation (3) with corresponding
boundary conditions on Γ0 and Γh, um(0) = 0 and
∂um
∂x3

(h) = 0. It is well known that for k2 ∈ L∞(0, h)
the eigenvalues λm ∈ R and corresponding eigenvec-
tors um ∈ H2(0, h) exist, since the eigenvalue prob-
lem is selfadjoint.

To obtain a radiating solution u in (2), the func-
tions wm need to satisfy a radiation condition for
the wave number

√
λm(= i

√
|λm|, if λm < 0). Since

λm → −∞ for m → ∞, only finitely many square
roots

√
λm are real, and for those m we prescribe

Sommerfeld’s radiation condition

lim
|x̃|→∞

√
x̃
(∂wm

∂|x̃| − iλmwm

)
= 0, uniformly in

x̃

|x̃| .
(5)

If λm < 0, we prescribe that um must be a bounded
solution to (4), yielding an evanescent mode.

Finally, we introduce the Green’s function

G(x, y) =
i

4

∑

m∈N+

φm(x3)φm(y3)H
(1)
0 (

√
λm|x̃ − ỹ|),

where x̃ 6= ỹ, H
(1)
0 denotes the Hankelfunction of the

first kind of order zero, φm is the eigenfunction and
λm is the corresponding eigenvalue solving (3).
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2 Integral Equation

The aim is to derive a volumetric integral equation
of the second kind, the so called Lippmann-Schwinger
equation, that is equivalent to the scattering problem
(1), the given boundary conditions and the radiation
condition. Xu states in [2, Lem.3.4] that the volu-
metric integral equation Vf , formally defined for a
function f : D → C by

Vf =

∫

D
G(·, y)f(y)dy for f ∈ L2(Ω),

is a bounded operator from L2(D) into H2
loc(Ω).

Roughly speaking, for constant wave number k it is
possible to separate the volumetric integral operator
V into one bounded part defined via the free-space
Green’s function and a second, compact part that
corrects the boundary conditions on Γ0 and Γh. For
a wave number depending on the x3-coordinate, how-
ever, this is more challenging. We present an alter-
native proof.

For analytic aspects we restrict ourselves to the
domain Λρ := {x ∈ Ω : |x̃|∞ < ρ}, where ρ > 0 and
introduce Λ̃ρ := {x ∈ R2 : |x̃|∞ < ρ}.

Lemma 2.1 Consider the operator Vm defined by

Vm : L2(Λ̃ρ) → L2(Λ̃ρ),

f 7→
∫

Λ̃ρ

H
(1)
0 (

√
|λm||x̃ − ỹ|)f(ỹ)dỹ, m ∈ N+.

Then Vm is a bounded operator from L2(Λ̃ρ) into
H1(Λ̃ρ), and

‖Vmf‖2
H1(Λ̃ρ)

≤ C

m
‖f‖2

L2(Λ̃ρ)
. (6)

For a fixed m, boundedness of Vm follows directly
from the weak singularity of the kernel. The estimate
(6) requires slightly more careful arguments to get
an explicit dependence on m. By Fourier theory we
obtain the representation

L2(Λρ) =
{
f : Λρ → C, f(x) =

∑

m∈N+

f̂m(x̃)φm(x3),

∑

m∈N+

∫

Λ̃ρ

|f̂m(x̃)|2dx̃ = ‖f‖2
L2(Λρ) < ∞

}
,

and a corresponding representation as a direct sum,

L2(Λρ) =

∞⊕

m=1

L2(Λ̃ρ).

Consequently, we find

‖Vf‖2
L2(Λρ) =

∑

m∈N+

‖Vmf̂m(ỹ)‖2
L2(Λ̃ρ)

≤ C‖f‖2
L2(Λρ).

(7)
Similarly to this idea we use a representation by
Fourier theory to deduce

H1(Λρ) =
{
f(x) =

∑

m∈N+

f̂m(x̃)φm(x3),

∑

m∈N+

(1 + m2)‖f̂m(ỹ)‖2
L2(Λ̃ρ)

+
∑

i=1,2

∑

m∈N+

‖ ∂

∂xi
f̂m(ỹ)‖2

L2(Λ̃ρ)
< ∞

}
.

This permits like in (7) to show boundedness of
V from L2(Λρ) into H1(Λρ). Furthermore, for ev-
ery f ∈ L2(Ω), with compact support, the function
Vf ∈ H2

loc(Ω) solves ∆Vf + k2Vf = −f . When an
incident wave solving (1) for n2 ≡ 1, scatters from
the inhomogeneity D, it creates a scattered field us

such that the total field

u(x) = ui(x) + us(x), x ∈ Ω,

solves the Helmholtz equation (3) and the boundary
conditions.

This scattering problem can equivalently be de-
scribed by the Lippmann-Schwinger integral equa-
tion

us − V(k2qus)|D = V(k2qui)|D.

in L2(D), where we note again that the function k2

is x3-dependent.
This integral equation can now be employed to

introduce a periodic Lippmann-Schwinger equation
and to do numerical calculations using a combined
spectral/multipole method.
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K. L. Nguyen1,∗, F. Treyssède1, A.-S. Bonnet-BenDhia2, C. Hazard2

1 IFSTTAR, Centre de Nantes, Route de Bouaye, 44344 Bouguenais Cedex, France.
2 ENSTA ParisTech, 828, Boulevard des Maréchaux, 91762 Palaiseau Cedex, France.
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Abstract

Elastic guided waves are of interest for inspecting
structures due to their ability to propagate over long
distances. When the guiding structure is embedded
into a solid matrix, waveguides are open and waves
can be trapped or leaky. With numerical methods,
one of the difficulty is that leaky modes attenuate
along the axis (complex wavenumber) and exponen-
tially grow along the transverse direction. The goal of
this work is to propose a numerical approach for com-
puting modes in open elastic waveguides combining
the so-called semi-analytical finite element method
(SAFE) and a perfectly matched layer (PML) tech-
nique.

Introduction

The simulation of open waveguides can be done
through a simple numerical method which consists
in using absorbing layers of artificially growing vis-
coelasticity [1]. To circumvent the transverse expo-
nential growth of leaky modes, an alternative ap-
proach is to use a PML method instead of absorbing
layers. Such a technique has already been applied
to the scalar wave equation [2], [3]. In the present
work, a SAFE-PML approach is applied to the equa-
tion of elastodynamics (non-scalar) in order to com-
pute leaky modes in three-dimensional waveguides of
arbitrary cross-section.

1 SAFE-PML formulations

1.1 Cartesian PML

One assumes a linearly elastic material in a domain
Ω = {S, z}. The time harmonic dependence is chosen
as e−iωt. z is the waveguide axis, S is the transverse
section of the waveguide. S = (x, y) in Cartesian co-
ordinates or (r, θ) in cylindrical coordinates. Acous-
tic sources and external forces are suppressed for the
purpose of studying propagation modes.

The 3D variational formulation governing elasto-
dynamics is given by:

∫

Ω
δε̃T σ̃dΩ̃− ω2

∫

Ω
ρ̃δũT ũdΩ̃ = 0 (1)

where dΩ̃ = dx̃dỹdz = r̃dr̃dθdz (the tilde notation
will be explained later). The variational formulation
holds for any kinematically admissible trial displace-
ment field δu. δε̃ denotes the virtual strain vector
and σ̃ is the stress vector. The superscript T denotes
the matrix transpose. ρ̃ is the material density.

The stress-strain relationship is σ̃ = C̃ε̃, where C̃
is the matrix of material properties.

With a Cartesian PML in the x, y direction, the
formulation (1) can be interpreted as the analytical
continuation of the equilibrium equations into the
complex spatial coordinate x̃, ỹ, with:

x̃ =

∫ x

0
γx(ξ)dξ, ỹ =

∫ y

0
γy(ξ)dξ (2)

γx is a complex-valued function of x, satisfying
γx(x)=1 for |x| ≤ dx; Im{γx(x)} > 0 for |x| > dx.
The definition of γy is analogous. dx, dy are the in-
terfaces between the PML and physical domains.
From Eq. (2), the change of variables x̃ 7→ x yields
for any function f̃ :

∂f̃

∂x̃
=

1

γx

∂f

∂x
,
∂f̃

∂ỹ
=

1

γy

∂f

∂y
, dx̃ = γxdx, dỹ = γydy

(3)
where f̃(x̃(x), ỹ(y)) = f(x, y).
In addition to the PML technique, the SAFE method
is applied, which consists in assuming an eikz depen-
dence, where k is the axial wavenumber. Combining
SAFE and PML approach, the strain-displacement
relation can be written as follows by separating trans-
verse from axial derivatives:

ε = (Lx̃ỹ + ikLz) u (4)

where Lx̃ỹ is the operator containing derivatives with
respect to transverse direction (x̃, ỹ).

Lx̃ỹ =




1
γx

∂
∂x 0 0

0 1
γy

∂
∂y 0

0 0 0
1
γy

∂
∂y

1
γx

∂
∂x 0

0 0 1
γx

∂
∂x

0 0 1
γy

∂
∂y




, Lz =




0 0 0
0 0 0
0 0 1
0 0 0
1 0 0
0 1 0



.

(5)
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Finally, the FE discretization of the variation formu-
lation (1) along the transverse directions x, y yields:

{K1 − ω2M + ik(K2 −KT
2 ) + k2K3}U = 0 (6)

with the following elementary matrices:

Ke
1 =

∫
SeN

eTLTx̃ỹCLx̃ỹN
eγxγydxdy

Ke
2 =

∫
SeN

eTLTx̃ỹCLzN
eγxγydxdy

Ke
3 =

∫
SeN

eTLTzCLzN
eγxγydxdy

Me =
∫
Se ρN

eTN eγxγydxdy

where the column vector U contains nodal displace-
ments and Ne is a matrix of nodal interpolating func-
tions of displacement on the element.
Given ω and finding k, the eigenproblem (6) is
quadratic. The linearization of this eigensystem is
detailed in [4] for instance.

1.2 Cylindrical PML

The cylindrical PML defines the complex radial
coordinate r̃ :

r̃ =

∫ r

0
γ(ξ)dξ (7)

where γ(r)=1 for r ≤ dr; Im{γ(r)} > 0 for r > dr.
By using the change of variable r̃ → r and a SAFE
method, the strain-displacement relation becomes:

ε = (Lr̃θ + ikLz) u (8)

Before FE discretization, the formulation (1) and
Eq. (8) are rewritten in Cartesian coordinates. For
paper conciseness, the operator matrix Lr̃θ in Carte-
sian coordinates is not presented here.
Finally, it can be shown that the FE discretization
of the variation formulation (1) along the transverse
section yields the same equation as Eq.(6) with the
elementary matrices obtained by replacing Lx̃ỹ with
Lr̃θ and γxγy with r̃γ/r.

2 Results

A numerical test is taken from the literature [1],
consisting of a steel bar buried in a concrete infi-
nite domain. The continuity of displacements and
stresses is enforced at each interface, i.e. between
the core and semi-infinite layers. Following the sug-
gestion of [2], [3], the PML layer is close to the core in
order to reduce the effects of the exponential growth
of leaky modes on the numerical results. A Dirichlet
condition is chosen at the exterior boundary of trun-
cated domain. Finite elements are triangles with six

nodes. γx, γy, γ in Eqs. (2) and (7) should be chosen
as smooth as possible to minimize numerical reflec-
tion [5]. They are parabolic functions in this work.

A difficulty is that the method will not only pro-
vide trapped and leaky modes but also non-intrinsic
modes corresponding to continua of radiation modes
which are mainly resonating in the artificial layers
and depend on the characteristics of these layers. A
modal filtering step consists in identifying and sep-
arating physical modes from unwanted modes. The
filtering criterion used for our tests is the ratio of
kinetic energy in the PML region over the kinetic
energy in the whole domain. Physical modes are
then identified if this criterion is smaller than a user-
defined value.

Numerical results will be shown during the confer-
ence to validate the SAFE-PML methods.

Further work will consist in extending the pro-
posed approach to twisted waveguides in order to
simulate helical structures buried in infinite solid me-
dia.
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Abstract

The problem of determining the trapped modes
present in various waveguides of slowly-varying cross
section is discussed. By ‘trapped mode’, we refer
to eigenmodes of the waveguide featuring a finite
region of oscillatory energy, with exponential decay
elsewhere.

The waveguide cross section changes over a length-
scale Lx which is much larger than the characteristic
cross section width, Lyz. Thus ε = Lyz/Lx � 1 is
a small parameter which can be exploited to develop
an asymptotic scheme for determining the eigenfre-
quencies. The method is introduced by considering
first the case of an acoustic waveguide with slowly-
varying cross section, and is shown to be accurate to
leading order, whilst computationally advantageous
compared to a numerical scheme. It is then adapted
to the problem of approximating solutions to the elas-
todynamic wave equation in similarly perturbed elas-
tic plates, and we highlight the similarities and dif-
ferences between the two cases.

Introduction

Motivated by prior research in, e.g., [2], we em-
ploy an asymptotic approach to first approximate the
trapped mode solutions in the case of acoustic propa-
gation in a smooth three-dimensional waveguide with
a simply connected, but otherwise arbitrary cross sec-
tion, with a slowly varying localised bulge, symmetric
around the centre of its longitudinal axis, as in [1].

Comparing the eigenvalues obtained via this
asymptotic analysis with those obtained numeri-
cally from a three-dimensional spectral collocation
method, we find them to be in excellent agreement.
Interestingly, we find that the relative error remains
favourably small when the ‘small’ parameter is in-
creased to unity.

Finally, we apply an analogue of this method to
the problem of elastic propagation in a semi-infinite
elastic plate, with a similarly slowly varying pertur-
bation, symmetric around one longitudinal coordi-
nate and constant in the other.

1 Acoustic waveguide

Orienting a three-dimensional waveguide along
the x-axis, we take its cross section to be some
simply connected domain D(εx) ⊂ R2, which de-
pends smoothly on x. The waveguide is slowly-
varying in the sense that ε = Lyz/Lx � 1, where
the waveguide cross section changes over a length
scale Lx and Lyz is the characteristic waveguide
width. In non-dimensional coordinates (ξ, η, ζ) =
(x/Lx, y/Lyz, z/Lyz), the governing Helmholtz equa-
tion is

ε2φξξ + φηη + φζζ + k2φ = 0,

in which k is the non-dimensional wavenumber, to be
solved subject to either Dirichlet (φ = 0) or Neumann
(φν = 0) conditions on the waveguide boundary.

We apply a WKBJ-type ansatz of the form

φ = (A0 + εA1 + . . .) exp
(
ε−1P−1 + εP1 . . .

)
(1)

and equate coefficients of ε to find, to leading order,
that the solutions are given by

φn(ξ, η, ζ) = An|f ′n|−1/2En exp
{
ε−1fn

}
+O(ε),

where

fn(ξ) =





±i
∫ ξ√

k2 − λ2n(ξ̄) dξ̄ for k ≥ λn(ξ),

±
∫ ξ√

λ2n(ξ̄)− k2 dξ̄ for k ≤ λn(ξ),

for constants An and where {λn(ξ), En(ξ; η, ζ)} is the
n-th eigensolution over the waveguide cross section
D = D(ξ).

We hence see that the either oscillatory or decaying
nature of the solution is determined by the relative
magnitudes of the wavenumber, k, and the eigenval-
ues of the duct cross section at ξ, from which we can
determine the region of trapping.

Since the symmetry of the waveguide tells us that
D(ξ) = D(−ξ), we may restrict our attention to the
region ξ ∈ [0,∞). At the turning point, ξ = ξ∗n > 0,
defined as the solution of k = λn(ξ∗n), the solution
breaks down, and a local analysis shows that there is
a nonuniform region surrounding this point of width
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O(ε2/3). The solution within this region is readily
determined, and its form motivates the derivation of
the uniform approximation.

We hence take a new ansatz, expanding in a ba-
sis of Airy functions, and generate a uniformly valid
leading order solution, valid for ξ ∈ [0,∞),

φn = Bn|g′0;n|−1/2En Ai
(
ε−2/3g0;n

)
+O(ε2/3), (2)

where Bn are constants and

g0;n =





−
(

3
2

∫ ξ∗n

ξ

√
k2 − λ2n(ξ̄) dξ̄

)2/3

for ξ ≤ ξ∗n,
(

3
2

∫ ξ

ξ∗n

√
λ2n(ξ̄)− k2 dξ̄

)2/3

for ξ ≥ ξ∗n.

(3)
Given (2)–(3), we may solve the trapping problem
for symmetric or antisymmetric modes, by imposing
the additional conditions φ → 0 as ξ → ±∞ and
φξ(0, η, ζ) = 0 or φ(0, η, ζ) = 0, respectively.
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Figure 1: Asymptotic (lines) and numerical
(circles) wavenumbers for the duct described by√
η2 + ζ2 ≡ h(ξ) = 1 + 0.5 sech ξ, for varying small

parameter ε ∈ [0.01, 1].

Figure 1 shows a comparison between the first
eight wavenumbers obtained with this asymptotic
scheme against a spectral collocation method for
a sample waveguide with circular cross section, in
which we see an excellent level of accuracy, even as
the ‘small’ parameter, ε, approaches unity.

2 Elastic waveguide

The method described above is then applied to
the different problem of the trapping of elastic waves
within an elastic plate with slow perturbation along
x, described by z ≡ ±h±(εx) and constant in y. Be-
cause of plane strain on the plate, we assume no dis-
placement in y and express the displacement vector

as u = (u, 0, w), so that we may essentially treat the
problem as two-dimensional. Then, by decomposing
the displacement into dilational and rotational com-
ponents,

u = ∇φ+∇×ψ
where ψ = (0, ψ, 0), we may write the displacement
vector as u = (φx − ψz, 0, φz + ψx), where φ(x, z)
and ψ(x, z) satisfy

(
∇2 + k2d

)
φ = 0,

(
∇2 + k2s

)
ψ = 0

individually, for the dilational and shear wavenum-
bers kd,s = ω/cd,s. Thus the shear and dilational
waves propagate independently inside the waveguide,
but assuming clamped boundary conditions

∓h′±u+ w = 0, u± h′±w = 0

on z = ±h±, we find that the wave types are coupled
on the boundary of the plate.

After non-dimensionalising the problem by map-
ping it onto a flat plate with the transformations

ξ = εx, η = −1 +
2 (z + h−)

h+ + h−

the method described above for the acoustic case can
be followed. In particular, expanding each of φ and ψ
in the WKBJ-type ansatz as in (1), we find to leading
order the compressionally symmetric solution

φ ∼ α0 cosh (νdη) exp
(
ε−1f

)
,

ψ ∼ iwf ′ cosh νd
2νs cosh νs

α0 sinh (νsη) exp
(
ε−1f

)

where w(ξ) denotes the plate width. The phase, f(ξ),
and transverse eigenvalues, νs(ξ) and νd(ξ), satisfy
the Rayleigh-Lamb frequency equation

(wf ′)2

4νdνs
=

tanh νd
tanh νs

,

and α0(ξ) is determined at next order. Further re-
sults will be discussed in the presentation.
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Abstract

A recent study shows that the classical theory
concerning accuracy and points per wavelenghth is
not valid for surface waves in almost incompress-
ible elastic materials. The gridsize must instead be
proportional to (µ

λ )(1/p) to achieve a certain accu-
racy. Here p is the order of the scheme and µ and
λ are the Lame parameters. This accuracy require-
ment becomes very restrictive close to the incom-
pressible limit where µ

λ ≪ 1, especially for low or-
der methods. We present results concerning how to
choose the number of gridpoints for 6th and 8th order
summation-by-parts finite difference schemes. The
result is applied to Lambs problem in an almost in-
compressible material.

Introduction

Consider the half - plane problem for the two -
dimensional elastic wave equation in a homogeneous
isotropic material. With time scaled to give unit den-
sity the displacement field (u, v)T is governed by

utt = µ∆u + (λ + µ)(ux + vy)x,
vtt = µ∆v + (λ + µ)(ux + vy)y,
(x, y) ∈ (−∞,∞) × [0,∞), t ≥ 0.

(1)

Initial data for (u, v)T and (ut, vt)
T is given at t = 0.

On the boundary y = 0 we consider normal stress
boundary conditions,

vy + λ
λ+2µux = g(x, t),

uy + vx = 0.
(2)

It is well known that (1) - (2) admits compressional
and shear waves as well as Rayleigh surface waves
([1]). For a fixed temporal frequency the wave length
of the compressional and shear waves are propor-
tional to

√
λ + 2µ respective

√
µ. The wavelength of

the Rayleigh waves are proportional to cR
√

µ where
cR depends on µ and λ and 0 < cR < 1 . The classi-
cal theory ([2]) states that when using a finite differ-
ence scheme an accurate solution is guaranteed if the
shortest wavelength is not smaller than a constant
number of grid sizes, where the constant depends
on the order of accuracy of the method. For the

Rayleigh waves this corresponds to using a grid size
proportional to cR

√
µ. However, in [3] H-O.Kreiss

and N.A.Petersson show that to accurately simulate
Rayleigh surface waves, the grid size should be pro-

portional to
(µ

λ

)(1/p)
. Here p is the order of accuracy

of the method. The implications of this accuracy re-
quirement become evident in almost incompressible
media (λ ≫ µ). Then a larger than predicted num-
ber of grid points per Rayleigh wavelength is needed
for an accurate solution.

Higher order methods

In [3] a 4th order method is used to illustrate the
theory by comparing results obtained with a 2nd or-
der method. We continue along this line and use
the 6th and 8th order schemes of [4] to illustrate the
benefits of using higher order methods to simulate
Rayleigh surface waves. We use an analytic expres-
sion for a periodic train of Rayleigh surface waves
to measure the relative max error obtained with a
pth order method, ep. The error is measured when
the waves have propagated 10 periods. The num-
ber of points per wavelength,P , is increased until an
relative max error of at most 5% is obtained. An ex-
ample of results from this experiment with µ

λ = 10−3

is shown in Table 1. Here the superiority of methods
of order higher than 4 becomes apparent. In fact, the
4th order scheme uses about 4 times as many points
per wavelength predicted by the classical theory for
an accuracy of 5%. These results are then used in
the next section to predict the number of grid points
needed to accurately solve Lambs problem [5] in an
almost incompressible material.

P e4 e6 e8

13 5.7 × 100 6.6 × 10−1 7.5 × 10−2

25 9.4 × 10−1 2.7 × 10−2 4.3 × 10−3

49 8.8 × 10−2 - -

97 6.3 × 10−3 - -
Table 1: Relative max error, ep at time T = 33.104,
with λ = 1, µ = 10−3
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Application: Lambs problem in almost incom-
pressible media

We solve a version of Lambs problem ([5]) in which
the surface of a half - space is subjected to a peri-
odic array of line sources with loading normal to the
surface. Under these conditions compressional, shear
and Rayleigh waves are generated. The normal stress
forcing of (2) is then

g(x, y) = f(t)δ(x − kM),M > 0, k = 0,±1, . . . ,

where M is the distance between the sources and δ
the Dirac delta function. We let f be the wavelet
given by

f(t) =

{
sin(2πωt) − 1

2 sin(4πωt), 0 ≤ t ≤ 1
ω

0, else.

f is shown as an inset in Fig 1(a) with ω = 1.
With λ = 1, µ = 10−3 the Rayleigh wave speed

(a) Numerical solution (b) Relative error

Figure 1: The numerical solution (a) and the
relative error (b) at time t = 3.2

becomes cR
√

µ = 0.0302. The highest significant
frequency with ω = 1 in the time function f is
2. The corresponding shortest wavelength is then

Lmin =
cR

√
µ

2 = 0.0151. We choose the domain
[−2Lmin, 2Lmin] × [0, 6Lmin], M = 4Lmin and solve
numerically until time t = 3.2. Figure 1(a) shows the
magnitude of the displacement field. Periodic bound-
ary conditions are applied at the vertical boundaries
and the domain is truncated above with a perfectly
matched layer ([6]). To estimate the required num-
ber of points per wavelength to achieve an relative
max error of at most 5% with a 6th order method

we consult Table 1 to conclude that 25 points per
wavelength should suffice. To ascertain this claim a
reference solution with 200 points per shortest wave-
length is constructed. As a comparison a solution
using 10 points per shortest wavelength, a quantity
predicted by the classical theory to yield a relative
error lower than 5%, is also computed. The results
presented in Table 2 verifies the claim for this appli-
cation. Figure (1(b)) shows the relative error in the
magnitude of the displacement field. It is interesting
to see that the main bulk of the error is seen to be
located in the vicinity of the surface. Which is in ac-
cordance with the theory in [3], which predicts that
the Rayleigh waves are much more sensitive to dis-
cretization errors than the shear and preassure waves.

P e6

10 7.5 × 10−1

25 2.7 × 10−2

Table 2: Points per shortest wavelength and corre-
sponding relative max error.
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Abstract

In this paper, we study a wave equation with index
of refraction depending on the variable Z, such that
n2(Z) has a C1 discontinuity at Z = 0. For the
simple case n2(Z) = n2(0)1z<0 +n2(0)(1 +λZ)1Z>0,
we exhibit an exact solution which is incoming from
−∞, which reflects on Z = 0 and we calculate the
reflection operator on the interface Z = 0.

Introduction and statement of the physical
problem

The notion of reflection coefficient is standard for
waves propagating in a medium with a discontinu-
ity along a planar interface. For a jump in the
wave speed, or in the index of refraction, the Fres-
nel equations predict the amplitudes of the reflected
and transmitted waves as a function of the angle of
incidence. The Zoeppritz equations achieve the same
result, and also predict mode conversion, in the case
of discontinuous density and elastic Lamé parame-
ters.

It is much less well known how to deal with other
kinds of singularities in the medium properties, such
as square root or ramp singularities. It was argued
on physical grounds that reflection about a fractional
interface should be the result of a fractional integra-
tor of the same order on the incident wave, see for
instance [3],[4]. Recognizing the fine structure of a
reflector from the particular shape of the oscillations
of the recorded waves in a seismic trace is an impor-
tant method of interpretation in lithology, though
one that has not been properly justified yet.
One may hope that the “fractional integrator”
heuristic can be made precise by characterizing the
reflection coefficient as a pseudodifferential operator
of fractional order. We concentrate in this presen-
tation to the case of a ramp, that is the model case
described in the Abstract, before treating the general
case (see [2]).
After partial Fourier transform in transverse vari-
ables and in time, and by choosing the adequate scal-
ing of the variable z, one is left to:
”find the unique solution of d2

dz2
u+ω2(1−η2+λz)u =

0 which coincides to the incoming wave from −∞
equal to u(z) = e−iω(1−η

2)
1
2 z for z < 0. and find the

transmission and reflection coefficient on respectively
outgoing at +∞ and outgoing at −∞ waves”.
This will need precise definitions of incoming and
outgoing waves both at −∞ and +∞ and of the
unique representant of each of these waves, which
is the aim of the next section.
Note that the time dependency chosen in this set-up

is eiωt, with ω > 0, which accounts to e−iω(1−η
2)

1
2 z

being an incoming wave from −∞ (with wave front

t = (1 − η2)
1
2 z), and an outgoing wave to −∞ is,

similarly, eiω(1−η
2)

1
2 z. This classification is obvious

in a constant coefficients medium, but needs to be
clarified in a general medium (see next section).

1 Outgoing and incoming waves: definitions
and properties

We deal with solutions of

d2

dz2
u(z, η, ω) + ω2(1− η2 + λz)u(z, η, ω) = 0 (1)

Definition 1 A outgoing solution to +∞ of (1) is
u(z, η, ω0), ω0 > 0, such that, for ω = ω0(1 + iσ),
σ < 0, the limit of u(z, η, ω) at z → +∞ is zero and
the limit of u(z, η, ω) when σ → 0− is u(z, η, ω0).

Definition 2 An incoming solution from +∞ of (1)
is u(z, η, ω0) such that, for ω = ω0(1+iσ), σ > 0, the
limit of u(z, η, ω) at z → +∞ is zero and the limit of
u(z, η, ω) when σ → 0+ is u(z, η, ω0).

A problem is to define the base solution in the space
of incoming or outgoing solutions, because the above
definitions do define vectorial spaces of dimension 1.
In [2], we adopt a definition linked with the behavior
at +∞, because we do not know the values at z = 0.
However, in the model case of this paper, we consider
that the base outgoing solution (as well as the base
incoming solution) is equal to 1 at z = 0. It is pos-
sible and straightforward thanks to properties of the
Airy functions.
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2 Exact solution of the problem and its prop-
erties

2.1 Explicit solutions in z > 0

The problem that we consider here is

∆ũ+ ω2n2(z)ũ = 0, (2)

with n2(z) = 1z<0 + (1 + λz)1z>0. Note that n2 is
continuous, with a discontinuity in the derivative on
the surface z = 0.
The first part of the analysis of this problem is to
consider the partial Fourier transform in (x, y), the
associated wave number being ω(η1, η2), with η21 +
η22 = η2, η ≥ 0. One then reverts to

∂2z2u+ ω2(n2(z)− η2)u = 0, (3)

We first consider (3) in z > 0:

u′′ + ω2(1− η2 + λz)u = 0. (4)

Introducing w±(X) = Ai(e±i
π
3X) a pair of satis-

factory solutions of U ′′ = −XU , one checks that
a pair of independent solutions of (4) is (w+(θ(z +
1−η2
λ )), w−(θ(z + 1−η2

λ ))), where θ3 = ω2λ, θ > 0 We
introduce Z0 = (1− η2)θλ−1. In z > 0, one has

u(z) = Aw+(θ(z +
1− η2
λ

)) +Bw−(θ(z +
1− η2
λ

))).

2.2 Outgoing and incoming solutions at +∞ for (3)

We show in this paragraph that the decomposition
of solutions of (3) on w+, w− is the suitable decom-
position to study outgoing and incoming solutions at
+∞. Indeed, we have

Proposition 1 The function w− is in the space of
incoming solutions from +∞, and the function w+ is
in the space of outgoing solutions to +∞ for (3).

Proof: Let Ai and Bi be the classical solutions of
u′′ = xu (see [1]). We have

Ai(Xe±i
π
3 ) =

e±i
π
3

2
[Ai(−X)± iBi(−X)]. (5)

Using 10.4.59 of [1] and noticing that X
3
2 = ωλ

1
2 (z+

1−η2
λ )

3
2 , and replacing ω by ω(1+ iσ), σ > 0, and let-

ting z → +∞, the solution w+ corresponds to a phase

behavior e−(e
i π3 )

3
2 ω(1+iσ) 2

3
(z+ 1−η2

λ
)
3
2 λ

3
4 , which goes to

0 when z → +∞, hence is in the class of outgoing
solutions to +∞.

As the roots of the Airy are on the negative real axis,
w+ and w− never vanish, hence the unique incoming

solution from +∞ on [0,+∞[ is thus
w−(θ(z+

1−η2
λ

))

w−(Z0)
,

and the unique outgoing solution to +∞ on [0,+∞[

is
w+(θ(z+ 1−η2

λ
))

w+(Z0)
.

We have now, in z > 0 as well as in z < 0,
the description of outgoing solutions to +∞ and
incoming solutions from +∞ (Proposition 1) and
outgoing solutions to −∞ and incoming solutions
from −∞ (described in the Introduction) of (3).
We want to study the reflected and the transmitted
coefficients R and T when the incoming wave from
−∞. The situation is thus the following:

• in ]−∞, 0[, u(z) = Reiω(1−η
2)

1
2 z + e−iω(1−η

2)
1
2 z,

• in ]0,+∞[, u(z) = T
w+(θ(z+ 1−η2

λ
))

w+(Z0)
.

Note that, from n2 ∈ L∞, u is in W 2,∞ hence u is
continuous, and u′ is continuous. This yields:

{
R+ 1 = T

iω(1− η2) 1
2 (R− 1) = Tθ

w′+(Z0)

w+(Z0)

2.3 Reflection operator

Noting that Z
1
2
0 = (1− η2) 1

2
ω
θ , this rewrites

{
R+ 1 = T

iZ
1
2
0 (R− 1) = T

w′+(Z0)

w+(Z0)

The reflection coefficient is thus

R(ω, η) =
iZ

1
2
0 +

w′+(Z0)

w+(Z0)

iZ
1
2
0 −

w′+(Z0)

w+(Z0)

. (6)

Note that it is a pseudo differential operator, hence
obtaining the result sought.

Proposition 2 The reflection operator R(ω, ξ) for
the ramp problem is defined by its pseudo differential
symbol R(ω, ξω ). There exists two sequences αk, βk
such that

R(ω, η) ' i λ
ω

(1− η2)− 3
2

∑
k≥0 αk(

ω
λ )−n(1− η2)− 3n

2

∑
k≥0 βk(

ω
λ )−n(1− η2)− 3n

2

.

(7)
Away from the glancing rays (1 − η2 ≥ ε0 > 0 or,
equivalently ω2−ξ2 ≥ ε0

2−ε0 (ω2+ξ2)), it is an operator
of order −1.
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Proof: We use explicitly the expansion of the Airy
function (10.4.59 of [1] and 10.4.61 of [1]):

Ai′(u)

Ai(u)
' −u 1

2

∑
(−1)kck(

2
3)−ku−

3k
2

∑
(−1)k(23)−kdku−

3k
2

with c0 = d0 = 1, and for u = ei
π
3 (1 − η2)(ωλ )

2
3 , for

which −eiπ3 u 1
2 is equal to −iZ

1
2
0 and −u− 3

2 = iZ
− 3

2
0 ,

we deduce the relation

R(ω, η) =

∑
k(i

2
3)−kZ

− 3k
2

0 (ck − dk)
∑

k(i
2
3)−kZ

− 3k
2

0 (ck + dk)

hence with c0 = d0 the expansion (7), which leads to
the the estimate in (ω, ξ), valid thanks to ω2 − ξ2 ∈
(ω2 + ξ2)[ ε0

2−ε0 , 1].
Extensions of this method, in which the most difficult
thing is to identify the incoming or outgoing solutions
in [0,+∞[, suggest that the reflection operator is of
order −α, where α > 1 is the fractional regularity of
n2(Z) at Z = 0, and can be expressed through Jost
integrals (see [2]).

2.4 Extension to a layer

Assume now that the index of refraction is contin-
uous, and that the size of the layer in which n2 has

a ramp is δ. Denote by Zδ = (1−η
2

λ + δ)θ. We know
that the base outgoing solution at +∞ in [δ,+∞[ is

e−iω(1−η
2+λδ)

1
2 (z−δ) (and the conjugate function is the

unique incoming solution). We denote by R1 and T1
the reflected (resp transmitted) coefficient. One has:

• in ]−∞, 0[: u(z) = R1e
iω(1−η2) 12 z + e−iω(1−η

2)
1
2 z,

• in ]0, δ[: u(z) = Aw+(z) +Bw−(z),

• in ]δ,+∞[: u(z) = T1e
−iω(1−η2+λδ) 12 (z−δ).

From the condition at z = δ, one deduces the rela-
tion:

Aw′+(Zδ)+Bw′−(Zδ) = −iZ
1
2
δ (Aw+(Zδ)+Bw−(Zδ)),

The condition at z = 0 yields
{
R1 + 1 = Aw+(Z0) +Bw−(Z0)

iZ
1
2
0 (R1 − 1) = Aw′+(Z0) +Bw′−(Z0)

from which one deduces R1. By investigation, R1 is
a pseudodifferential of order −1 as well, thanks to
the equality R1 = D1(ω,η)

D(ω,η) , with

D =

∣∣∣∣∣∣∣

−1 w+(Z0) w−(Z0)

−iZ
1
2
0 w′+(Z0) w′−(Z0)

0 w′+(Zδ) + iZ
1
2

δ w+(Zδ) w′−(Zδ) + iZ
1
2

δ w−(Zδ)

∣∣∣∣∣∣∣

and

D1 =

∣∣∣∣∣∣∣

1 w+(Z0) w−(Z0)

−iZ
1
2
0 w′+(Z0) w′−(Z0)

0 w′+(Zδ) + iZ
1
2

δ w+(Zδ) w′−(Zδ) + iZ
1
2

δ w−(Zδ)

∣∣∣∣∣∣∣

Define Q± =
w′±(Z0)

w±(Z0)iZ
1
2
0

, Qδ± =
w′±(Zδ)

w±(Zδ)iZ
1
2
δ

, T± =

w±(Zδ)
w±(Z0)

. One obtains

D

iZ
1
2
0 w+(Z0)w−(Z0)

=

∣∣∣∣∣∣∣∣

−1 1 1
−1 Q+ Q−

0 (1 +Qδ+)
Z

1
2
δ

Z
1
2
0

T+ (1 +Qδ−)
Z

1
2
δ

Z
1
2
0

T−

∣∣∣∣∣∣∣∣

D1

iZ
1
2
0 w+(Z0)w−(Z0)

=

∣∣∣∣∣∣∣∣

1 1 1
−1 Q+ Q−

0 (1 +Qδ+)
Z

1
2
δ

Z
1
2
0

T+ (1 +Qδ−)
Z

1
2
δ

Z
1
2
0

T−

∣∣∣∣∣∣∣∣
hence the same regularity result on the reflection
coefficient.

3 Conclusions

For the simplest model of C1 discontinuity (namely
where n2(x, y, z) = 1+λz for z > 0, and n2(x, y, z) =
1 for z < 0), we are able to define outgoing and in-
coming solutions at +∞. From these definitions we
derive the reflection operator, which is a pseudodif-
ferential operator of order −1. This result holds also
for a layer in which n2 has a ramp. It agrees with the
arguments of [3], [4] mentioned in the Introduction.
Under investigations are the analysis of the relations
between micro local outgoing solutions and outgoing
solutions, as well as the generalization to a general
fractional singularity of the interface (see [2]).
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Abstract

In this work, the problem of surface waves in an
isotropic elastic half-plane with impedance bound-
ary conditions (IBCs) is investigated. It is assumed
that the boundary is free of normal traction and the
shear traction varies linearly with the tangential dis-
placement times the frequency, where the impedance
corresponds to the constant of proportionality. The
standard traction-free boundary conditions are then
retrieved for zero impedance. The secular equation
for surface waves with IBCs is given in explicit form.
The existence and uniqueness of the Rayleigh wave
is properly established, and it is found that its veloc-
ity varies with the impedance. Moreover, we prove
that an additional surface wave exists in a particular
case, whose velocity lies between those of the longi-
tudinal and the transverse waves. Numerical results
are presented.

1 Introduction and basic equations

Elastic surface waves are of particular importance
in seismology, because they are the most destructive
in earthquakes. In a geological context, it is usu-
ally assumed that the bounding surfaces are traction-
free, which is mathematically expressed by Neumann
boundary conditions, whereas other types of bound-
ary conditions as IBCs are far less frequent. Some
authors that have previously studied elastic surface
waves with IBCs are Tiersten [1], Malischewsky [2]
and Bövik [3]. The present work considers elastic
surface waves in an isotropic elastic half-plane with
particular IBCs prescribed on its surface (cf. [4]).

Given Cartesian coordinates (x1, x2), we consider
the half-plane x2 > 0 occupied by an isotropic elastic
solid with constant density ρ. For 1 ≤ i ≤ 2, the dis-
placement components are denoted by ui. The com-
ponents of the stress tensor, denoted by σij , are given
in terms of ui through the Hooke’s law for isotropic
materials: σij = λuk,k + µ(ui,j + uj,i), where λ, µ
stand for the Lamé’s constants. The time-harmonic
waves are governed by the equation σij,j +ρω2ui = 0,
where ω is the angular frequency.

2 Impedance boundary conditions and secu-
lar equation

Malischewsky [2] proposed a general form of IBCs
in seismology. In the 2D case, it is given by (summa-
tion convention does not hold for underlined indices):

σi2 + εiui = 0, for x2 = 0, (1)

where the impedance parameters εi have the dimen-
sions of stress/length. The associated secular equa-
tion (or dispersion relation) for surface waves is

(
2s2 − s2

T

)
2 − 4s2

√
s2 − s2

L

√
s2 − s2

T

+
1

µω
s2
T

(
ε1

√
s2 − s2

T + ε2

√
s2 − s2

L

)

− 1

µ2ω2
ε1ε2

(
s2 −

√
s2 − s2

L

√
s2 − s2

T

)
= 0,

(2)

where the unknown s is the surface wave slowness
(reciprocal of velocity), sL =

√
ρ/(λ + 2µ) is the

longitudinal wave slowness, and sT =
√

ρ/µ is the
transverse wave slowness (sT > sL).

We assume that the surface x2 = 0 is free of normal
traction, and the shear traction varies linearly on the
tangential component of the displacement times the
frequency, that is, ε1 = ωZ and ε2 = 0 in (1) and
(2), where Z ∈ R is an impedance parameter that
has the dimensions of stress/velocity. The IBCs are
then obtained from (1):

σ12 + ωZu1 = 0, σ22 = 0, for x2 = 0. (3)

and the corresponding secular equation from (2):

(
2s2 − s2

T

)
2 − 4s2

√
s2 − s2

L

√
s2 − s2

T

+
Z

µ
s2
T

√
s2 − s2

T = 0.
(4)

If Z = 0 we retrieve in (3) the usual traction-free
boundary conditions and (4) becomes the classic sec-
ular equation for Rayleigh waves. Only real solutions
of (4) have physical meaning, since a complex slow-
ness gives rise to displacements that do not tend to
zero at infinity which is inadmissible. As (4) only
depends on s2, it suffices to consider s > 0.
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3 Surface wave analysis

The following propositions provide some charac-
teristics of the solutions to the secular equation (4).

Proposition 1. For each impedance Z ∈ R the sec-
ular equation (4) has a unique solution in the range
s > sT . This solution corresponds to the Rayleigh
wave slowness and is strictly increasing in Z.

Proposition 2. If the impedance Z takes the positive

value Z∗ ≡ 2µ
√

s2
T /2 − s2

L, then the secular equation

(4) has one real solution in the range sL < s < sT .
This solution is given by s∗ ≡ sT /

√
2 and corresponds

to the slowness of an additional surface wave.

Proposition 3. Let us assume a perturbed value
of the impedance Z = Z∗(1 + ε), where ε is a
real parameter satisfying |ε| << 1. Then the secu-
lar equation (4) has a complex solution s satisfying
sL ≤ Re{s} ≤ sT . Locally, this solution can be ap-
proximated as s = s∗(1 + a ε + (b + ic)ε2

)
+ o(ε3),

where a, b and c are real numbers, with c > 0.

Proposition 1 generalises the standard Rayleigh wave
to the case of IBCs. Proposition 2 establishes the
existence of an additional surface wave in the range
sL < s < sT for a particular value of Z. Proposition 3
states that the associated slowness becomes complex
if this value of Z is perturbed, hence it corresponds
to a local uniqueness result of the additional wave.

4 Numerical results

We present next some numerical results for three
elastic materials. The secular equation (4) was nu-
merically solved in function of Z. The Rayleigh solu-
tion is presented in Fig. 1 and the additional solution
is shown in Figs. 2 and 3. These results agree with
the analysis performed in the previous section.
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Figure 1: Rayleigh solution as a function of the
impedance.

0 0.5 1 1.5 2

x 10
7

1.5

2

2.5

3
x 10

−4

Impedance [MPa s/m]

S
lo

w
ne

ss
 [s

/m
]

 

 
Diabase
Limestone
Gneiss

Figure 2: Real part of the additional solution as a
function of the impedance.
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Figure 3: Imaginary part of the additional
solution as a function of the impedance.
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Abstract

The aim of this work is to develop finite elements
capable of containing many wavelengths per nodal
spacing for three dimensional elastic wave problems.
This will be achieved by applying the plane wave
basis decomposition to the three dimensional elas-
tic wave equation. The proposed elements will al-
low us to relax the traditional requirement of around
ten nodal points per wavelength, used in polynomial
based finite elements, and therefore solve elastic wave
problems without refining the mesh of the computa-
tional domain at each frequency. The accuracy and
effectiveness of the proposed technique will be deter-
mined by comparing solutions for selected problems
with available analytical solutions.

Theory and preliminary results

Plane wave basis finite elements were developed
and implemented to solve acoustic [1]and elastic wave
problems [2]. The idea consist to relax the grid den-
sity by the incorporation of the physical features of
the problem in the finite element space. Many other
techniques have been developed for the same objec-
tive such as the discontinuous enrichment method,
the ultra weak variational formulation, the partition
of unity boundary element method, the least-squares
method and the oscillated polynomials based finite
elements. These approaches led to elements capable
of containing many wavelengths per nodal spacing
and have been very successful in reducing the com-
puting effort associated to the high frequency.
Let Ω be a spacial domain in R3, occupied by an
elastic medium and Γ its boundary. We will de-
note by (e1, e2, e3) the cartesian vector system and
by x = x1e1 + x2e2 + x3e3 a generic point in R3.
Under the assumption that Ω is linear, homogenous
and isotropic, and in the absence of a body force, the
following homogeneous Navier equation holds

−ρω2u−∇ · σ(u) = 0, (1)

where the stress tensor σ is defined, via the classical
Hooke’s law, by σ(u) = λ∇·u I+µ(∇u+∇u>) for a

given displacement field u = u1e1 + u2e2 + u3e3, I is
the identity matrix, λ and µ are the Lamé parameters
of the elastic material, ω is the circular frequency,
ρ is the density of the medium, assumed constant,
and ∇u = (∇u1,∇u2,∇u3)>. Let us denote, respec-
tively, by n and t the outward unit normal and tan-
gent vectors to the boundary Γ. The time harmonic
elastic wave equation (1) is completed by a Robin
type boundary condition on Γ

σ(u)n = i[(λ+ 2µ)kP (u · n)n
+ µkS(u · t)t] + g,

(2)

where i =
√
−1 is the imaginary unit number, kP

and kS are, respectively, the P and S wave numbers,
and g is a source term.
We first derive the variational formulation. Let us in-
troduce the usual Sobolev spaceV = H1(Ω)×H1(Ω).
Taking into account (2), multiplying (1) by the com-
plex conjugate of a test function v in V and integrat-
ing by parts over Ω we get the following variational
problem:

Find u in V such that for all v in V,

− ω2ρ

∫

Ω
u · v̄ dΩ+

∫

Ω
σ(u) · ∇v̄ dΩ

− i

∫

Γ
((λ+ 2µ)kP (u · n) (v̄ · n)

+ µkS(u · t) (v̄ · t)) dΓ =

∫

Γ
g · v̄ dΓ.

(3)

Let us consider a finite element mesh containing n
nodes, denoted z, z = 1, n. We denote by {Nz}
the partition of unity by polynomial finite element
shape functions, and respectively by mP and mS the
numbers of approximating P and S plane waves. The
displacement u is approximated as follows

uh =
∑

z=1,n

∑

l=1,mP

NzA
P
z,l exp(ikPx · dlP )dlP

+
∑

z=1,n

∑

l=1,mS

NzA
S,1
z,l exp(ikSx · dlS)d

l,1
S,⊥

+
∑

z=1,n

∑

l=1,mS

NzA
S,2
z,l exp(ikSx · dlS)d

l,2
S,⊥,

(4)
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where h is the computational mesh size. The vectors
dl,1S,⊥ and dl,2S,⊥ are orthogonal to each other and lie in
the orthogonal plane to d. For convenience, the di-
rections dlP and dlS are chosen uniformly distributed
in space. This latter remark raises a problem as it is
very restrictive and not straightforward to uniformly
distribute an arbitrary number of directions in space.
The problem (3) leads to an invertible linear alge-
braic system provided that the approximating plane
waves are linearly independent. The integration of
the element matrices is performed using high order
Gauss-Legendre scheme involving large numbers of
integration points. Hence, at this stage, the compu-
tational effort shifts from the solver to the assembling
process. The global matrix of the resulting system is
symmetrical and block banded. The solution of the
final system is obtained via a direct solver based on
LDLT decomposition where LT is the transpose of
the lower triangular matrix L and D is a diagonal
matrix.
Let us consider the case of displacements caused by
progressive plane waves, in a three dimensional elas-
tic infinite medium, of the form u = exp(ikPx ·
dP )dP + exp(ikSx · dS)d1

S,⊥ + exp(ikSx · dS)d2
S,⊥.

The source term g of expression (2) is evaluated and
prescribed on Γ. All parameters λ, µ and ρ are taken
equal to 1 with their respective corresponding units.
The finite elements used here are 8-noded cubes and
their geometry is interpolated via Lagrange polyno-
mials. We consider three uniform mesh grids denoted
by h1, h 1

2
and h 1

4
for the domain 1 ≤ x1, x2, x3 ≤ 3.

The coarser mesh h1 has 8 elements and the finer
mesh h 1

4
has 512 elements. Table 1 shows the L2 er-

ror given by ||uh − u||L2(Ω)/||u||L2(Ω) × 100%, where
the Euclidean norm of the real part of uh is given
by |Re(uh)|, for increasing number of approximating
plane waves and for different values of the circular
frequency ω = 1, 5, 10, respectively.
From the numerical results it is obvious that h-

refinement improves the accuracy of the scheme for
all cases of frequencies and plane wave enrichments.
This is expected as a refinement of the mesh leads
to a higher number of degrees of freedom (DOF) per
wavelength. Increasing the number of approximating
plane waves, however, did improve the results only
at the highest considered frequency, ω = 10, while it
did not have any effect at ω = 1 and 5. This is most
likely due to the ill conditioning, which is an inherent
feature of the plane wave basis finite elements, espe-

(mP ,mS) (10,10) (26,26)

h1 0.137 0.137
h 1

2
0.100 0.100

h 1
4

0.075 0.075

h1 1.221 0.727
h 1

2
0.395 0.396

h 1
4

0.205 0.208

h1 27.454 6.126
h 1

2
1.673 0.780

h 1
4

0.531 0.255

Table 1: L2 error in % for ω = 1 (top), ω = 5 (mid-
dle) and ω = 10 (bottom).

cially at low frequencies and for high numbers of DOF
per wavelength. Such behaviour was also noticed in
previous work related to acoustic wave modelling for
which the benefit of using such elements was obvious
at high frequencies and for low DOF per wavelength.
Extensive numerical testing is currently underway to
properly assess the effectiveness of the developed el-
ements for three dimensional elastic wave problems,
including the effect of conditioning. At this stage, the
evaluation of the element matrices is carried out us-
ing a high-order Gauss-Legendre quadrature, which
involves many integration points depending on the
nodal spacing in terms of the characteristic wave-
length of the problem. This latter issue requires
significant computational time for increasing nodal
spacing, in terms of the wavelength, and hence a
semi-analytical integration scheme becomes neces-
sary in order to run simulations in practical times.
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